信道编码定理
- 格式:ppt
- 大小:171.50 KB
- 文档页数:6
第二章 信道编码简介2、1信道编码简介一、信道编码理论1948年,信息论的创始人Shannon 从理论上证明了信道编码定理又称为Shannon 第二定理。
它指出每个信道都有一定的信道容量C ,对于任意传输速率R 小于信道容量C ,存在有码率为R 、码长为n 的分组码和),,(00m k n 卷积码,若用最大似然译码,则随码长的增加其译码错误概率e p 可以任意小]1[。
)(R E n b e b e A p -≤ (2.1))()()1(0R E n c R E n m c e c c c e A e A p -+-=≤ (2.2)式中,b A 和c A 为大于0的系数,)(R E b 和)(R E c 为正实函数,称为误差指数,它与R 、C 的关系]2[如图2.1所示。
由图可以看出:)(R E 随信道容量C 的增大而增加,随码率R 的增加而减小。
这个存在性定理告诉我们可以实现以接近信道容量的传输速率进行通信,但并没有给出逼近信道容量的码的具体编译码方法。
Shannon 在信道编码定理的证明中引用了三个基本条件:1、采用随机编译码方式;2、编译码的码长n 趋于无穷大;3、译码采用最佳的最大后验译码。
在高斯白噪声信道时,信道容量:)/](1[log 02s bit WN P W C S += (2.3)上式为著名的Shannon 公式,式中W 是信道所能提供的带宽,T E P S S /=是信号概率,S E 是信号能量,T 是分组码信号的持续时间即信号宽度,W P S /是单位频带的信号功率,0N 是单位频带的噪声功率,)/(0WN P S 是信噪比。
图2.1 )(R E 与R 的关系由上面几个公式及图2.1可知,为了满足一定误码率的要求,可用以下两类方法实现。
一是增加信道容量C ,从而使)(R E 增加,由式(1.3)可知,增加C 的方法可以采用诸如加大系统带宽或增加信噪比的方法达到。
当噪声功率0N 趋于0时,信道容量趋于无穷,即无干扰信道容量为无穷大;增加信道带宽W 并不能无限制的使信道容量增加。