当前位置:文档之家› 高一数学复合函数讲解(最新整理)

高一数学复合函数讲解(最新整理)

高一数学复合函数讲解(最新整理)
高一数学复合函数讲解(最新整理)

 1、复合函数的概念

如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g (x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。

例如:函数是由复合而成立。

函数是由复合而成立。

a是中间变量。

2、复合函数单调性

由引例对任意a,都有意义(a>0且a≠1)且。

对任意,

当a>1时,单调递增,当0<a<1时,单调递减。

∵当a>1时,

∵y=f(u)是上的递减函数∴

∴是单调递减函数

类似地, 当0<a<1时,

是单调递增函数

一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。

有以下四种情况:

(1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;

(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;

(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。

注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。

例1、讨论函数的单调性

(1)(2)

又是减函数

∴函数的增区间是(-∞,2],减区间是[2,+∞)。

②x∈(-1,3)

∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。

∵是增函数

∴函数在(-1,1]上单调递增,在(1,3)上单调递减。

注意:要求定义域

练习:求下列函数的单调区间。

1、(1)减区间,增区间;

(2)增区间(-∞,-3),减区间(1,+∞);

(3)减区间,增区间;

(4)减区间,增函数。

2、已知求g(x)的单调区间。

提示:设,则g(x)=f(u)利用复合函数单调性解决:g(x)

的单调递增区间分别为(-∞,-1],[0,1],单调递减区间分别为[-1,0],[1,+∞)。

例2、y=f(x),且lglgy=lg3x+lg(3-x)

(1)y=f(x)的表达式及定义域;

(2)求y=f(x)的值域;

(3)讨论y=f(x)的单调性,并求其在单调区间上相应的反函数。

答案:(1)x∈(0,3)

(2)(0,]

(3)y=f(x)在上单调递增函数,在上是单调递减函数

当x∈时,;

当x∈时,。

例3、确定函数的单调区间。

 提示,先求定义域:(-∞,0),(0,+∞),再由奇函数,先考虑(0,+∞)上单调性,并分情况讨论。

 函数的递增区间分别为(-∞,-1], [0,+∞)

 函数的递减区间分别为[-1,0),(0,1]。 

1、求下列函数的单调区间。

(1)(2)(3)

2、求函数的递减区间。

3、求函数的递增区间。

4、讨论下列函数的单调性。

(1)(2)

答案:1(1)递减区间(2)递增区间(0,+∞)(3)递减区间(-∞,0]递增区间[2,+∞)

2、[,2]

3、(-∞,-2)

4、(1)在上是增函数,在上是减函数;

(2)a>1时,在(-∞,1)上是减函数,在(3,+∞)上是增函数;

8、二次函数图象经过A(0,2)和B(5,7)两点,且它的顶点在直线y=-x上。

高中三角函数公式大全必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

(完整版)高一数学复合函数讲解

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地,当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

高一数学三角函数公式大全

高一数学三角函数公式大全 sinα=∠α的对边/斜边 cosα=∠α的邻边/斜边 tanα=∠α的对边/∠α的邻边 cotα=∠α的邻边/∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1 tan2A=(2tanA)/(1-tanA2) (注:SinA2是sinA的平方sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a=tana·tan(π/3+a)·tan(π/3-a) 三倍角公式推导 sin3a=sin(2a+a)=sin2acosa+cos2asina 三角函数辅助角公式 Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中sint=B/(A2+B2)’(1/2) cost=A/(A2+B2)’(1/2) tant=B/A

Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 三角函数推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos2α 1-cos2α=2sin2α 1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1- 2sin2a)sina=3sina-4sin3a cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2- sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°- a)/2]cos[(60°-a)/2]=4s inasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a- (√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{- 2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=- 4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

最新三角函数-高中数学诱导公式大全

常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα

cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。(符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”.

复合函数相关性质和经典例题

定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。 求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行: (1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =; (2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等; (3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数 )]([x g f y =的一个单调区间; 若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间; (5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性; (6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。 (7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减. (12) 结论:同曾异减 (13) 例1. 求函数222)(-+=x x x f 的单调区间. (14) 解题过程: (15) 外层函数:t y 2= (16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],2 1[+∞-∈x (18) 内层函数的单调减区间:2 1,[--∞∈x (19) 由于外层函数为增函数 (20) 所以,复合函数的增区间为:],2 1[+∞-∈x (21) 复合函数的减区间为: 2 1,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间. (23) 解 原函数是由外层函数u y 2 1log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 2 1log =的单调减区间; (25) 令0232>--=x x u ,解得x 的取值范围为)1,3(-; (26) 解题过程:

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学三角函数公式总结

高中数学三角函数公式整理下面是高中数学三角函数公式大全: 1.两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 2.倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 3.三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a ? tan(π/3+a)? tan(π/3-a) 4.半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

5.和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 6.积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 7.诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 8.万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

相关主题
文本预览
相关文档 最新文档