含参数分式方程问题详解
- 格式:doc
- 大小:171.50 KB
- 文档页数:5
含参的分式方程(一)教学设计
教学任务分析
教学过程设计
板书设计
教学反思:
1.整节课以流畅、开放、合作、引导为基本特征,教师对学生的思维较少干预,教学过程呈现一种比较流畅的特征。
整节课学生与学生,学生与教师之间以对话、讨论为出发点,采用独立思考,以互助合作,讲台展示,屏幕讲解,等手段以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
2.本堂课通过暴露学生的问题,引导学生发现问题,提出问题,解决问题,并归纳解决同类型问题的方法,来突破重难点。
让学生经历不断暴露,不断辩证,不断补充,不断总结的过程,将解决问题的方法归功于学生。
3.学生的点评还需多样化。
期间有学生提出了优化增根问题的解题方法,应加以表扬,鼓励更多的学生除了要做到会做题以外,还要思考如何计算简单。
但由于词汇匮乏,点评不到位,没有起到更好的鼓舞作用。
4.因时间有限,小试牛刀的练习题学生未训练到,虽仍是无解问题,但是又比之前的无解问题多出增根不成立的情况,随即布置成了课后的练习题。
以后教学中要对时间还有好好把握,及时调整,收放自如。
分式方程的解法在初等代数中,我们经常会遇到分式方程(或称有理方程)的求解问题。
分式方程的特点是方程中包含分式(或有理式),而其求解方法与一般的代数方程有所不同。
在本文中,我将为您介绍几种常见的分式方程的解法。
一、化简与分子分母清零法对于一些简单的分式方程,我们可以通过化简和清零的方法求解。
首先,我们需要将方程中的分母清零,然后将分子进行化简。
接下来,我们将方程化简为一个代数方程,再通过解代数方程的方法求得解。
最后,我们将得到的解代入原方程中,验证是否满足。
例如,考虑以下分式方程:\[ \frac{2}{x-3} + \frac{3}{x+2} = \frac{5}{x} \]我们首先将方程两边的分母清零,得到:\[ x(x+2) + (x-3)(x) = 5(x-3)(x+2) \]然后对方程进行化简,得到:\[ x^2 + 2x + x^2 - 3x = 5x^2 - 15x - 30 \]继续化简,得到:\[ 2x^2 - 6x = 5x^2 - 15x - 30 \]将方程转化为代数方程:\[ 3x^2 - 9x - 30 = 0 \]解代数方程,得到 x = -2 或 x = 5 。
将解代入原方程进行验证,可得:\[ \frac{2}{-2-3} + \frac{3}{-2+2} = \frac{5}{-2} \]\[ \frac{2}{-5} + \frac{3}{0} = \frac{5}{-2} \]我们发现 x = -2 不满足原方程,而 x = 5 满足原方程。
因此,分式方程的解为 x = 5 。
二、通分法当分式方程中有多项式相除时,我们可以通过通分的方法将分式方程转化为一个方程,从而求解。
例如,考虑以下分式方程:\[ \frac{x+1}{x} - \frac{1}{2} = \frac{3x-4}{2x} \]首先,我们将分数进行通分,得到:\[ \frac{2(x+1)}{2x} - \frac{x}{2x} = \frac{3x-4}{2x} \]继续化简,得到:\[ \frac{2(x+1) - x}{2x} = \frac{3x-4}{2x} \]化简后,我们得到:\[ \frac{2x + 2 - x}{2x} = \frac{3x-4}{2x} \]继续合并同类项,得到:\[ \frac{x + 2}{2x} = \frac{3x-4}{2x} \]此时,分母相同,我们可以去掉分母,得到:\[ x + 2 = 3x - 4 \]然后,我们将方程化简为代数方程,得到:\[ 2 = 2x - 4 \]解代数方程,得到 x = 3 。
八下数学思维解法技巧培优小专题专题9 分式方程中的参数问题题型一由分式方程解的情况求参数的值或取值范围【典例1】(2019•淅川县期末)若关于x的方程2m−3x−1−xx−1=0无解,则m的值是()A.3B.2C.1D.﹣1【点拨】分式方程去分母转化为整式方程,由分式方程无解得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【解析】解:去分母得:2m﹣3﹣x=0,由分式方程无解,得到x﹣1=0,即x=1,把x=1代入整式方程得:2m﹣4=0,解得:m=2,故选:B.【典例2】(2019•吉安县期末)若mx−3−1−x3−x=0无解,则m的值是()A.3B.﹣3C.﹣2D.2【点拨】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到分式方程的解.【解析】解:去分母得:m﹣x+1=0,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:m=2,故选:D.【典例3】(2019•齐齐哈尔)关于x的分式方程2x−ax−1−11−x=3的解为非负数,则a的取值范围为a≤4且a≠3.【点拨】根据解分式方程的方法和方程2x−ax−1−11−x=3的解为非负数,可以求得a的取值范围.【解析】解:2x−ax−1−11−x=3,方程两边同乘以x﹣1,得2x ﹣a +1=3(x ﹣1), 去括号,得 2x ﹣a +1=3x ﹣3, 移项及合并同类项,得 x =4﹣a ,∵关于x 的分式方程2x−a x−1−11−x=3的解为非负数,x ﹣1≠0,∴{4−a ≥0(4−a)−1≠0, 解得,a ≤4且a ≠3, 故答案为:a ≤4且a ≠3.【典例4】(2019•江阴市期中)若分式方程x−2x−3−2=mx−3有增根,则m 的值为 1 . 【点拨】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【解析】解:方程的两边都乘以(x ﹣3),得 x ﹣2﹣2(x ﹣3)=m , 化简,得 m =﹣x +4,原方程的增根为x =3, 把x =3代入m =﹣x +4, 得m =1, 故答案为:1.【典例5】(2019•江都区四模)若关于x 的分式方程1x−2−m 2−x=1的解是正数,求m 的取值范围.【点拨】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m 的范围即可.【解析】解:去分母得:1+m =x ﹣2, 解得:x =m +3,由分式方程的解为正数,得到m +3>0,且m +3≠2,解得:m >﹣3且m ≠﹣1.题型二 分式方程与不等式的综合【典例6】(2019•九龙坡区校级月考)已知关于x 的分式方程2−ax 1−x−1x−1+1=0有整数解,且关于x 的不等式组{3x ≤2(x −12)2x −x−13<a的解集为x ≤﹣1,则符合条件的所有整数a 的个数为( ) A .2 B .3 C .4 D .5【点拨】解分式方程得x =4a+1且x ≠1,则整数a 为0,1,﹣2,﹣3,﹣5时分式方程的解为整数解,再解不等式组得到a >−43,从而得到满足条件的整数a 的值. 【解析】解:去分母得2﹣ax +1+1﹣x =0, 解得x =4a+1且x ≠1,当整数a 为0,1,﹣2,﹣3,﹣5时,分式方程的解为整数解, 解不等式组为{x ≤−1x <3a−15,而不等式组的解集为x ≤﹣1, 所以3a−15>−1,解得a >−43,∴满足条件的整数a 的值为0,1. 故选:A .【典例7】(2019•巴南区期中)若关于x 的分式方程m 2−x−1=1−xx−2的解为正数,且关于y 的不等式组{2y−53≤−3y −m −1>−1无解,那么符合条件的所有整数m 的和为( )A .5B .3C .1D .0【点拨】根据题意可以求得m 的取值范围,从而可以得到符合条件的m 的整数值,从而可以解答本题. 【解析】解:由方程m2−x−1=1−xx−2,解得,x =4﹣m ,则{4−m >04−m ≠2, 解得,m <4且m ≠2,∵关于y 的不等式组{2y−53≤−3y −m −1>−1无解,解得,m ≥﹣2,由上可得,m 的取值范围是:﹣2≤m <4,且m ≠2, ∴符合条件的所有整数m 的和为:﹣2+(﹣1)+0+1+3=1, 故选:C .【典例8】(2019•沙坪坝区校级月考)若实数a 使关于x 的不等式组{13x −1≤x−1212a −3x >0有且只有4个整数解,且使关于x 的方程2x−1+5−a 1−x=−2的解为正数,则符合条件的所有整数a 的和为( )A .7B .10C .12D .1【点拨】解不等式组求得其解集,根据不等式组只有4个整数解得出a 的取值范围,解分式方程得出x =5−a2,由方程的解为正数且分式有意义得出a 的取值范围,综合两者所求最终确定a 的范围,据此可得答案.【解析】解:解不等式组{13x −1≤x−1212a −3x >0得,−3≤x <a 6, ∵不等式组只有4个整数解, ∴0<a6≤1, ∴0<a ≤6, 解分式方程2x−1+5−a1−x=−2得:x =5−a2, ∵分式方程的解为正数, ∴5−a 2>0,且5−a 2≠1,解得:a <5且a ≠3,综上可得,a 的取值范围为0<a <5,且a ≠3, 则符合条件的所有整数a 的和为:1+2+4=7. 故选:A .【典例9】(2019•沙坪坝区校级一模)如果关于x 的不等式组{5x+36≤x +115a −x ≥0至少有3个整数解,且关于x的分式方程axx−5=1−a 5−x−3xx−5的解为整数,则符合条件的所有整数a 的取值之和为( )A .﹣10B .﹣9C .﹣7D .﹣3【点拨】先分别解不等式组里的两个不等式,因为不等式组有解,写出其解集为﹣3≤x ≤15a ,根据不等式组至少有3个整数解,可得a 的取值,再解分式方程得x =a−1a+3,根据解为整数即得到a 的范围.得到两个a 的范围必须同时满足,即求得可得到的整数a 的值.【解析】解:解不等式组{5x+36≤x +115a −x ≥0,得:﹣3≤x ≤15a , ∵至少有3个整数解, ∴15a ≥﹣1,∴a ≥﹣5, 解方程:ax x−5=1−a 5−x−3x x−5,ax =a ﹣1﹣3x , x =a−1a+3,∵分式方程有解且解为整数,a−1a+3≠5,∴a ≠﹣4,a +3是a ﹣1的约数, ∵a ≥﹣5,∴a =﹣5,﹣2,﹣1,1,∴符合条件的所有整数a 的和为﹣7, 故选:C .【典例10】(2019•长寿区模拟)若关于x 的方程k 1−x=3x−1−2有非负实数解,关于x 的一次不等式组{x−12−2x ≤1x +k ≤2有解,则满足这两个条件的所有整数k 的值的和是 ﹣6 .【点拨】分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有非负实数解确定出k 的范围,由不等式有解确定出k 的范围,进而确定出k 的具体范围,求出整数解,进而求出之和即可. 【解析】解:分式方程去分母得:﹣k =3﹣2x +2, 解得:x =k+52,由分式方程有非负实数解,得到k+52≥0,且k+52≠1,解得:k ≥﹣5且k ≠﹣3, 不等式组整理得:{x ≥−1x ≤2−k,由不等式组有解,得到2﹣k ≥﹣1,即k ≤3,综上,k 的范围为﹣5≤k ≤3,且k ≠﹣3,即整数k =﹣5,﹣4,﹣2,﹣1,0,1,2,3, 则所有满足题意整数k 的值的和为﹣6, 故答案为:﹣6巩固练习1.(2019•九龙坡区期末)关于x 的分式方程ax−24−x+6x−4=−3的解为正数,且关于x 的不等式组{x >1a+x 2≥x −72有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【点拨】根据分式方程的解为正数即可得出a <2且a ≠1,根据不等式组有解,即可得出a >﹣5,找出﹣5<a <2且a ≠1中所有的整数,将其相加即可得出结论. 【解析】解:解分式方程得x =43−a , 因为分式方程的解为正数, 所以43−a>0且43−a≠4,解得:a <3且a ≠2, 解不等式a+x 2≥x −72,得:x ≤a +7,∵不等式组有解, ∴a +7>1, 解得:a >﹣6,综上,﹣6<a <3,且a ≠2,则满足上述要求的所有整数a 绝对值之和为5+4+3+2+1+0+1=16, 故选:C .2.(2019•南岸区模拟)若数k 使关于x 的不等式组{3x +k ≤0x3−x−12≤1只有4个整数解,且使关于y 的分式方程k y−1+1=y+ky+1的解为正数,则符合条件的所有整数k 的积为( ) A .2 B .0 C .﹣3 D .﹣6【点拨】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y =﹣2k +1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【解析】解:解不等式组{3x +k ≤0x3−x−12≤1得:﹣3≤x ≤−k3, ∵不等式组只有4个整数解, ∴0≤−k3<1, 解得:﹣3<k ≤0, 解分式方程k y−1+1=y+ky+1得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0,综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选:A .3.(2019•嘉祥县模拟)若关于x 的方程3x−1=1−k1−x无解,则k 的值为( ) A .3B .1C .0D .﹣1【点拨】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出k 的值.【解析】解:去分母得:3=x ﹣1+k , 由分式方程无解,得到x =1, 把x =1代入整式方程得:k =3, 故选:A .4.(2019•碑林区校级期末)若关于x 的分式方程x+a x−2+a 2=12x−4无解,则a 的值为( )A .−32B .2C .−32或2D .−32或﹣2【点拨】分式方程去分母转化为整式方程,由分式方程无解确定出a 的值即可. 【解析】解:去分母得:2x +2a +ax ﹣2a =1, 整理得:(a +2)x =1,由分式方程无解,得到a +2=0或x =1a+2=2, 解得:a =﹣2或a =−32, 故选:D .5.(2019•渝中区校级期中)关于y 的分式方程3−a y−2=y−62−y 有正整数解,且关于x 的不等式{3x +32<3a 2x−36≥23无解,则满足条件的所有整数a 的和为( ) A .﹣4B .0C .﹣8D .﹣12【点拨】依据不等式组无解,即可得到a ≤4;依据分式方程有正整数解,即可得到a >﹣12且a ≠﹣4,进而得出﹣12<a ≤4且a ≠﹣4,根据y =a+124是正整数,可得a =﹣8,0,4,计算和可得结论. 【解析】解:解不等式3x +32<3a 得,x <2a−12, 解不等式2x−36≥23得,x ≥72,∵不等式组无解, ∴72≥2a−12,解得a ≤4;由分式方程3−ay−2=y−62−y , 可得y =a+124, ∵分式方程有正整数解, ∴y >0且y ≠2, 即a+124>0且a+124≠2,解得a >﹣12且a ≠﹣4, ∴﹣12<a ≤4且a ≠﹣4,∵a+124是正整数,∴a =﹣8,0,4,∴满足条件的所有整数a 的和=﹣8+0+4=﹣4, 故选:A .6.(2019•渝中区二模)若数a 使关于x 的不等式组{x−22≤−12x +27x +4>−a有且只有4个整数解,且使关于y 的分式方程2y−1+a 1−y=3的解为正数,则符合条件的所有整数a 的和为( ) A .﹣2B .0C .3D .6【点拨】先分别解不等式组里的两个不等式,因为不等式组有解,写出其解集为−4−a 7<x ≤3,得到在此范围内的整数解为x =0,1,2,3,进而得到−4−a 7的范围,求得此时满足的a 的范围;再解分式方程得y =5−a3,解为正数即得到a 的范围.得到两个a 的范围必须同时满足,即求得可得到的整数a 的值. 【解析】解:解不等式x−22≤−12x +2,得:x ≤3解不等式7x +4>﹣a ,得:x >−4−a7∵不等式组有且只有4个整数解 ∴在−4−a 7<x ≤3的范围内只有4个整数解∴整数解为x =0,1,2,3 ∴−1≤−4−a7<0 解得:﹣4<a ≤3① 解方程:2y−1+a 1−y=3解得:y =5−a 3∵分式方程有解且解为正数∴{5−a3≠15−a3>0 解得:a <5且a ≠2② ∴所有满足①②的整数a 的值有:﹣3,﹣2,﹣1,0,1,3 ∴符合条件的所有整数a 的和为﹣2故选:A .7.(2019•江油市一模)若数a 使关于x 的不等式组{x−22≤−12x +22x +4>−a有且仅有四个整数解,且使关于y 的分式方程ay−2+22−y=2有非负数解,则满足条件的整数a 的值是 ﹣2 .【点拨】先解不等式组,根据不等式组有且仅有四个整数解,得出﹣4<a ≤﹣2,再解分式方程a y−2+22−y=2,根据分式方程有非负数解,得到a ≥﹣2且a ≠2,进而得到满足条件的整数a 的值.【解析】解:解不等式组{x−22≤−12x +22x +4>−a ,可得{x ≤3x >−a+42,∵不等式组有且仅有四个整数解, ∴﹣1≤−a+42<0, ∴﹣4<a ≤﹣2, 解分式方程a y−2+22−y=2,可得y =12(a +2),又∵分式方程有非负数解, ∴y ≥0,且y ≠2,即12(a +2)≥0,12(a +2)≠2,解得a ≥﹣2且a ≠2,∴满足条件的整数a 的值为﹣2, 故答案为:﹣2.8.(2019•保康县模拟)若关于x 的方程x+m x−3+3m 3−x=2的解为正数,则m 的取值范围是 m <3且m ≠32.【点拨】分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m 的范围即可. 【解析】解:去分母得:x +m ﹣3m =2x ﹣6, 解得:x =6﹣2m ,由分式方程的解为正数,得到6﹣2m >0,且6﹣2m ≠3, 解得:m <3且m ≠32, 故答案为:m <3且m ≠32,9.(2019•沙坪坝区校级期中)关于x的分式方程2x−1+kxx2−1=3x+1会产生增根,则k=﹣4或6.【点拨】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.【解析】解:方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为:﹣4或6。
专题04 分式方程中的参数问题考纲要求:1. 了解分式方程的概念2.会解可化为一元一次方程的分式方程(方程中的分式不超过两个),会对分式方程的解进行检验.3.会用分式方程解决简单的事件问题.基础知识回顾:1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的一般步骤:()1去分母化分式方程为整式方程.()2解这个整式方程,求出整式方程的根.()3检验,得出结论.一般代入原方程的最简公分母进行检验.3.增根是分式方程化为整式方程的根,但它使得原分式方程的分母为零.应用举例:招数一、分式方程增根问题:增根问题可按如下步骤进行:①让最简公分母0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【例1】若关于x的分式方程+=2m有增根,则m的值为______.【答案】1【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1招数二、分式方程无解问题:分式方程无解分为以下两种情况:①原方程解不出数来,也就是整式方程无解;②整式方程能解出来,但是解出来的数使得原分式方程的分母为零,也就是所谓的增根,所以切记一定要讨论。
【例2】取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为________.【答案】.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.招数三、已知分式方程解的范围求参数范围问题:明确告诉了解的范围,首先还是要按正常步骤解出方程,解中肯定带有参数,再根据解的范围求参数的范围,注意:最后一定要讨论增根的问题.【例3】已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3 C.m>﹣3 D.m≥﹣3【答案】A【解析】方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.【例4】若关于x的分式方程=1的解是负数,求m的取值范围.【答案】m<2且m≠0.【解析】解:由=1,得(x+1)2-m=x2-1,解得x=-1+.由已知可得-1+<0,-1+≠1且-1+≠-1,解得m<2且m≠0.招数四、与其它方程或不等式结合求参数问题:【例5】关于x的两个方程260x x--=与213x m x=+-有一个解相同,则m= .【答案】﹣8.【解析】【例6】若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣2 C.﹣1 D.1【答案】A【解析】由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴﹣<a<3;由关于y的分式方程﹣=﹣3得1﹣2y+a=﹣3(y﹣1),∴y=2﹣a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴﹣<a<2,且a≠1,∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3.故选:A .方法、规律归纳:1.按照基本步骤解分式方程时,关键是确定各分式的最简公分母,若分母为多项式时,应首先进行因式分解,将分式方程转化为整式方程,给分式方程乘最简公分母时,应对分式方程的每一项都乘以最简公分母,不能漏乘常数项;2.检验分式方程的根是否为增根,即分式方程的增根是去分母后整式方程的某个根,如果它使分式方程的最简公分母为0.则为增根. 增根问题可按如下步骤进行:①让最简公分母0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. 分式方程的增根和无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解;分式方程的增根是去分母后整式方程的根,也是使分式方程的分母为0的根.实战演练:1.若关于x 的分式方程﹣1=有增根,则m 的值为______.【答案】3【解析】方程两边都乘(x ﹣2),得3x ﹣x+2=m+3∵原方程有增根,∴最简公分母(x ﹣2)=0,解得x =2,当x =2时,m =3.故答案为3.2.若关于x 的分式方程1322m x x x -=---有增根,则实数m 的值是 . 【答案】1.【解析】试题分析:去分母,得:13(2),m x x =---由分式方程有增根,得到20,x -= 即 2.x =把2x =代入整式方程可得: 1.m =故答案为:1.3. 若关于x 的分式方程=2a 无解,则a 的值为_____.【答案】1或【解析】解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.4.已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1【答案】B【解析】∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.5.已知关于x的方程无解,则a的值为_____________.【答案】-4或6或1【解析】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.故答案为-4或6或16.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4 B.k<4 C.k>﹣4且k≠4D.k<4且k≠﹣4 【答案】C.【解析】分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.7 . 若关于x的方程2230x x+-=与213x x a=+-有一个解相同,则a的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或3 【答案】C.【解析】解方程2230x x+-=,得:x1=1,x2=﹣3,∵x=﹣3是方程213x x a=+-的增根,∴当x=1时,代入方程213x x a=+-,得:21131a=+-,解得a=﹣1.故选C.8.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【答案】B【解析】由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为-3+1+3=1.故选:B.9.已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为()A.5 B.6 C.7 D.8【答案】D【解析】解不等式-(4x+)<0,得:x>,解不等式﹣(x+2)+2≥0,得:x≤2,则不等式组的解集为<x≤2,∵不等式组有且只有四个整数解,∴﹣2≤<﹣1,解得:﹣3≤k<5;解分式方程-2=得:x=,∵分式方程有正数解,∴>0,且≠1,解得:k>﹣3且k≠﹣1,所以满足条件的整数k的值为﹣2、0、1、2、3、4,则满足条件的整数k的和为﹣2+0+1+2+3+4=8,故选:D.10.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程的解为正数,求a的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.由题意可得a﹣2>0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证a≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x的方程=1的解为负数,求m的取值范围;(2)若关于x的分式方程=﹣1无解.直接写出n的取值范围.【答案】(1):m<且m≠﹣;(2)n=1或n=.【解析】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x的分式方程得,x=,∵方程有解,且解为负数,∴,解得:m<且m≠-;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=.。
含参数的分式方程教学设计导语:分式方程是代数学中的重要概念,掌握它们的解题方法对于学生来说至关重要。
本文将介绍一种教学设计,通过引入含参数的分式方程,帮助学生更好地理解分式方程的概念,掌握解题技巧。
一、教学目标:1. 理解含参数的分式方程的定义与性质。
2. 掌握含参数的分式方程的解题方法。
3. 能够应用所学知识解决实际问题。
二、教学准备:1. 教师准备教案、教材、实物、白板、笔等教学工具。
2. 学生准备纸、笔等学习用具。
三、教学过程:1. 导入向学生复习分式方程的概念和基本解题方法,强调“分母不能为零”的原则。
2. 引入含参数的分式方程给学生出示一个含参数的分式方程,例如:(2x + 3)/(x - a) = 4。
向学生解释参数a可以是任意实数,通过调整a的值,可以得到不同的分式方程。
引导学生思考这种含参数的分式方程的含义与特点。
3. 分析参数的作用让学生观察参数a对分式方程的影响。
通过代入不同的a值,解出方程并观察解的变化。
引导学生发现参数a对方程的根的影响,例如当a取某个特定值时,方程无解或有唯一解等。
4. 解决含参数的分式方程让学生根据所学知识解决含参数的分式方程。
引导学生思考如何通过解方程找出参数的取值范围,使得方程有解或无解。
5. 应用实际问题通过多个实际问题引导学生应用所学知识解决含参数的分式方程。
例如,给学生提供一个含参数的分式方程:(2x + 5)/(x - b) = 3,要求学生找出参数b的取值范围,使得方程有且仅有一个解。
6. 总结与拓展帮助学生总结本节课所学知识,并拓展到更复杂的含参数分式方程的解题方法。
鼓励学生勇于尝试和探索,培养解决问题的能力和思维能力。
四、教学评价:1. 在课堂中,观察学生对于含参数分式方程的理解和解题方法的掌握情况。
2. 针对学生的解题过程和结果,给予及时的反馈和指导,纠正错误并强化正确的解题思路。
3. 布置课后习题,检验学生对于新知识的掌握情况。
五、教学延伸:教师可根据学生的掌握情况和教学进度,进一步拓展含参数分式方程的应用领域,如实际应用中的实例分析等。
题型四 含参数的方程(组)与不等式(组)1. (2019重庆实验外国语月考)如果二次函数y =x 2-ax +1,当x ≤-2时,y 随x 的增大而减小,且关于z 的分式方程12-z -1-az z -2=2有正数解,则符合条件的整数a 的个数为( ) A. 3个 B. 4个 C. 5个 D. 6个 2. (2019重庆一中模拟)若关于x 的分式方程2ax -1-3=3-x 1-x的解为整数,且关于x 的不等式组⎩⎪⎨⎪⎧x +43-1>x -32,2(x -a )>x +6的解为正数,则符合条件的整数a 的个数为( ) A. 2个 B. 3个 C. 4个 D. 5个3. (2019重庆巴蜀中学一诊)如果关于x 的不等式组⎩⎪⎨⎪⎧m -4x >4x -112<3(x +12)有且仅有三个奇数解,且关于x的分式方程2-mx 2-x -30x -2=13有非负数解,则符合条件的所有整数m 的和是( )A. 15B. 27C. 29D. 45 4. (2019重庆江北区模拟)如果关于x 的分式方程1-ax x -2+2=12-x有整数解,且关于x 的不等式组⎩⎪⎨⎪⎧x -a 3>0,x +2<2(x -1)的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A. 7 B. 8 C. 4 D. 5 5. (2019重庆沙坪坝区模拟)若关于x 的方程2ax -3=4-x -a 3-x的解为非负数,且关于x 的不等式组⎩⎨⎧x -a3>0,3x +15≥x -1有解,则所有满足条件的整数a 的值之和是( ) A. -8 B. -7 C. -5 D. -46. (2019重庆西南大附中月考七)若数a 使关于x 的方程4+ax x -2+2=-62-x 有整数解,且使关于y 的不等式组⎩⎪⎨⎪⎧3y +a <y +1-8y +43-32≤2(14-y )最多有三个整数解,则所有满足条件的整数a 的和为( ) A. -3 B. 0 C. -4 D. 17. (2019重庆南开中学模拟)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -52+1≤x +135x -2a >2x +a 至少有3个整数解,且使关于y的分式方程a -3y -1-21-y=2有非负整数解,则满足条件的所有整数a 的和是( )A. 14B. 15C. 23D. 248. 从-3,-1,12,2,3,5这六个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -a 2<0x -4<3(x +2)至少有三个整数解,且关于x 的分式方程 a +x 3-x +2x -3=2有正整数解,那么这6个数中所有满足条件的a 的值之积是( )A. 7B. 6C. 10D. -109. (2019重庆八中周考二)已知关于x 的分式方程a x -1+11-x =3的解为正数,且关于x 的不等式组⎩⎨⎧3x -14+1>x +435x -a3<1无解,则所有满足条件的整数a 的绝对值之和是( ) A. 11 B. 10 C. 8 D. 610. 已知关于x 的不等式组⎩⎪⎨⎪⎧x +5<5x +1x -a >-4的解集为x >1,且使关于x 的分式方程ax -6x -2=2的解为非负数,那么取得满足条件的整数a 的和为( )A. 8B. 9C. 10D. 1111. 若数a 使关于x 的不等式组⎩⎪⎨⎪⎧3-x ≥a -2(x -1)2-x ≥1-x2有解且所有解都是不等式2x +6>0的解,且使关于y 的分式方程y -51-y +3=ay -1有整数解,则满足条件的所有整数a 的个数是( )A. 5B. 4C. 3D. 2参考答案题型四 含参数的方程(组)与不等式(组)1. C 【解析】由题意可知--a 2≥-2 ,∴a ≥-4.解分式方程12-z -1-az z -2=2,得z =22-a ,∵分式方程有正数解,∴2-a >0.∴a <2.又∵22-a≠2,即2-a ≠1,∴a ≠1.∴-4≤a <2且a ≠1.∴a 的整数值可取-4,-3,-2,-1,0.∴符合条件的整数a 的值有5个.2. A 【解析】解分式方程2ax -1-3=3-x 1-x ,得x =3+a 2,且x ≠1,即a ≠-1,解不等式x +43-1>x -32,得x <11,解不等式2(x -a )>x +6,得x >6+2a ,∴不等式组的解集为6+2a <x <11.∵不等式组的解是正数,∴6+2a ≥0, 解得a ≥-3.由6+2a <11.解得a <2.5,又∵3+a2取整数,∴a =-3,1.∴符合条件的整数a 有2个.3. C 【解析】解不等式m -4x >4,得x <m -44,解不等式x -112<3(x +12),得x >-72,∵不等式组有且仅有3个奇数解,∴1<m -44≤3.解得8<m ≤16,解分式方程得x =6m -13,∵方程有非负数解,∴m >13 , 且6m -13≠2.∴13<m <16.∴m 的整数值可取14,15.14+15=29. 4. A 【解析】解关于x 的分式方程1-ax x -2+2=12-x ,解得x =22-a ,其中x =22-a ≠2,即a ≠1,∵关于x 的分式方程有整数解,则2-a =±2或-1,解得a =0或4或3,解不等式x -a3>0得x >a ,解不等式x+2<2(x -1)得x >4,∵关于x 的不等式组⎩⎪⎨⎪⎧x -a 3>0,x +2<2(x -1)的解集为x >4,∴a ≤4.综上,a =0或4或3,∴符合条件的所有整数a 的值之和为7,故选A .5. A 【解析】解方程2ax -3=4-x -a 3-x ,得x =3a +125,∵分式方程的解为非负数,∴x ≥0且x ≠3.∴3a +125≥0且3a +125≠3,解得a ≥-4且a ≠1.解不等式x -a 3>0,得x >a .解不等式3x +15≥x -1,得x ≤3,∴不等式组的解集为a <x ≤3.∵不等式组有解,∴a <3.∴a 的取值范围是-4≤a <3,且a ≠1,则a 的整数解为-4,-3,-2,-1,0,2,-4+(-3)+(-2)+(-1)+0+2=-8,∴所有满足条件的整数a 的值之和是-8.6. A 【解析】解分式方程4+ax x -2+2=-62-x ,得x =6a +2,∵该分式方程有整数解,∴6a +2是整数且6a +2≠2.则整数a 为-8,-5,-4,-3,-1,0,4;解不等式组⎩⎪⎨⎪⎧3y +a <y +1-8y +43-32≤2(14-y ),得-1≤y <1-a2,又∵该不等式组最多有三个整数解,∴1<1-a2≤2.解得-3≤a <-1.综上所述,满足条件的整数a 为-3,则所有满足条件的整数a 的和为-3.7. A 【解析】解不等式x -52+1≤x +13,得x ≤11,解不等式5x -2a >2x +a ,得x >a ,∴不等式组的解集为a <x ≤11.∵不等式组至少有3个整数解,即至少有整数解为11,10,9,则a <9.解分式方程a -3y -1-21-y=2,得y =a +12,∵分式方程有非负整数解,∴y ≥0,y ≠1,且y 为整数.则a +12≥0,a +12≠1,且a+1为偶数,解得a ≥-1且a ≠1,其中a 为奇数,又∵a <9,∴a 的值为-1,3,5,7,则所有整数a 的和为14.8. C 【解析】解不等式组得-5<x <a ,由不等式组至少有三个整数解,得到a >-2,∴a 的值可能为-1,12,2,3,5,解分式方程a +x 3-x +2x -3=2得x =8-a 3,∵分式方程有正整数解,且x ≠3,∴a =2,5,则这6个数中所有满足条件的a 的值之积是2×5=10.9. B 【解析】分式方程去分母得a -1=3x -3,解得x =a +23,由分式方程的解为正数,得到a +2>0且x ≠1,解得a >-2且a ≠1;不等式组整理得⎩⎨⎧x >75x <3+a5,由不等式组无解,得到75≥3+a5,即a ≤4,∴a的取值范围是-2<a ≤4且a ≠1.∴满足条件的整数a 的值为-1,0,2,3,4.∴所有满足条件的整数a 的绝对值之和是10.10. B 【解析】解不等式x +5<5x +1,得x >1,解不等式x -a >-4,得x >a -4,∵该不等式组的解集为x >1,∴a -4≤1,解得a ≤5.解方程ax -6x -2=2,得x =2a -2,∵分式方程ax -6x -2=2的解为非负数,∴2a -2≥0且2a -2≠2.解得a >2且a ≠3,∴满足条件的整数a 为4、5,∴取到满足条件的整数a 的和为9. 11. D 【解析】解不等式3-x ≥a -2(x -1),得x ≥a -1;解不等式2-x ≥1-x2,得x ≤3;解不等式2x +6>0,得x >-3,由题意知-3<a -1≤3,即-2<a ≤4,解分式方程y -51-y +3=ay -1,得y =a -22,∵分式方程有整数解且y ≠1,∴a 为0,2.∴满足条件的整数a 的个数是2.。
含字母参数分式方程的有增根、有解和无解问题【要点梳理】要点一 分式方程的增根分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;要点二 分式方程的无解而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.【典型例题】类型一、概念理解1.分式方程的增根概念:把分式方程化为整式方程后,得到的整式方程的根使分式方程中分母的值为0,分式方程无解,这样的根叫做________.检验方法:将解得的整式方程的根代入最简公分母,看计算结果是否为0,不为0就是原分式方程的根,若为0则为增根,必须舍去.【答案】增根解:把分式方程化为整式方程后,得到的整式方程的根使分式方程中分母的值为0,分式方程无解,这样的根叫做增根,故答案为:增根.2.分式方程有增根与分式方程无解的关系:分式方程的增根与无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解.分式方程的增根是去分母后的________方程的根,也是使________方程的分母为0的根.【答案】 整式 分式分式方程的增根是去分母后的整式方程的根,也是使分式方程的分母为0的根.故答案为:整式,分式类型二、含参分式方程的增根3、关于x 的方程225111m x x x +=+--去分母转化为整式方程后产生增根,求m 的值. 【答案】-10或-4【分析】方程两边同时乘以21x -将分式方程化为整式方程,再将整式方程的增根代入整式方程中计算求解即可.解:方程两边同乘以21x -,得2(1)5(1)x x m --+=,当210x -=时,1x =±,∴关于x 的方程225111m x x x +=+--的增根为±1, 当1x =时,2(11)5(11)10m =--+=-;当1x =-时,2(11)5(11)4m =----+=-,故m 的值为10-或4-.【点拨】本题主要考查分式方程的增根,解题的关键是理解增根产生的原因,并能从整式方程中代入增根求解对应参数.举一反三:【变式1】如果解关于x 的分式方程1134x m x x +-=-+出现了增根,求m 的值. 【答案】-3【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值. 解:由分式方程1134x m x x +-=-+去分母, 整理得(m+2)x=-4m-15,由分母可知,分式方程的增根可能是3或-4,当x=3时,(m+2)×3=-4m-15,解得m=-3, 当x=-4时,(m+2)×(-4)=-4m-15,此方程无解.故m 的值为-3.【点拨】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【变式2】已知关于x 的方程214339m m x x x +-=+--. (1)若m =﹣3,解这个分式方程;(2)若原分式方程无解,求m 的值.【答案】(1)x =5.5;(2)m =﹣1,m =2,m =﹣47. 【分析】(1)把m =−3代入原方程得23134339x x x -+-=+--,方程两边都乘最简公分母(x −3)(x +3),可以把分式方程转化为整式方程求解; (2)方程两边都乘最简公分母(x −3)(x +3),分式方程转化为整式方程,m (x −3)+(x +3)=m +4,整理得(m +1)x =1+4m ,原分式方程无解,m +1=0,m =−1,然后把x =3.x =−3分别代入整式方程求m 值.解:(1)依题意把m =﹣3代入原方程得23134339x x x --+-=+--. 方程两边都乘最简公分母(x ﹣3)(x +3)得,﹣3(x ﹣3)+(x +3)=1,解得x =5.5,检验:把x =5.5代入(x +3)(x ﹣3)≠0.∴x =5.5是原方程的解;(2)当(x +3)(x ﹣3)=0时.x =±3. 方程两边都乘最简公分母(x ﹣3)(x +3),得,m (x ﹣3)+(x +3)=m +4,整理得(m +1)x =1+4m ,∵原分式方程无解.∴m +1=0,m =﹣1.把x =±3代入m (x ﹣3)+(x +3)=m +4. m =2,m =﹣47. ∴m =﹣1,m =2,m =﹣47. 【点拨】分式方程转化为整式方程求解,最后注意需检验.无解注意整式方程一次项系数带字母系数,字母系数为零,再把增根代入化简的整式方程,这样不漏m 的值.类型三、含参分式方程的有解、无解问题4、若关于x 的分式方程212111m x x x -=--+无解.求m 的值. 【答案】2或-4【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x =1或−1,代入整式方程即可求出m 的值.解:分式方程两边同乘(x +1)(x −1),去分母得:m -(x +1)=2(x −1),整理得:3x =m +1,由分式方程无解得到x −1=0,或x +1=0,即x =1或−1,代入整式方程得:m =2或-4.【点拨】此题考查了分式方程的解,解决本题的关键是熟记分式方程无解即最简公分母为0.举一反三:【变式1】关于x 的分式方程3601(1)x k x x x x ++-=--有解,则k 该满足什么条件? 【答案】3k ≠-且5k ≠.【分析】根据分式方程有解的条件进行求解即可;解:方程去分母得:()()3160x x x k -+-+=,去括号得:3360x x x k -+--=,移项、合并得:83x k =+,∵该分式方程有解,∴0x ≠且1x ≠,即30k +≠,且38k +≠,解得:3k ≠-目5k ≠.【点拨】本题主要考查了分式方程有解的相关计算,准确分析计算是解题的关键.【变式2】若关于x 的方程:234393ax x x x +=--+无解,求a 的值. 【答案】a =1或8或﹣6.【分析】分式的无解分两种情况来解:(1)是分式有增根,即分母为零;(2)是分式方程转化成整式方程后,整数方程无解,即未知数系数为0.解:分式方程去分母得:3x +9+ax =4x ﹣12,(1)由分式方程有增根,得到(x +3)(x ﹣3)=0,即x =3或x =﹣3,把x =3代入整式方程得:18+3a =0,即a =﹣6;把x =﹣3代入整式方程得:﹣3a =﹣24,即a =8,综上,a 的值为﹣6或8.(2)整式方程整理得:(a ﹣1)x =﹣21,由方程无解,得到a ﹣1=0,即a =1或8或﹣6.【点拨】注意区分分式方程无解和有增根两种情况.分式方程无解包括有增根和化成整数方程后无解的情况,而有增根仅仅是分式分母为0一种情形.类型四、分式方程的增根和无解综合5、有下列说法:①不论k 取何实数,多项式x 2﹣ky 2总能分解能两个一次因式积的形式;②关于x 的分式方程3122++=--x m x x 无解,则m =1;③关于x 、y 的方程组252ax y x ay a +=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,其中,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,则这个公共解为31x y =⎧⎨=-⎩,其中正确的是____.(填序号) 【答案】②③【分析】分别运用因式分解的公式法、分式方程的解法及解二元一次方程组的方法,可作出判断. 解:①当k 为负值时,多项式x 2﹣ky 2不能分解能两个一次因式积的形式,故①不正确;②将关于x的分式方程3122++=--x mx x两边同时乘以(x﹣2)得3﹣x﹣m=x﹣2∴x=52m,∵原分式方程无解,∴x=2,∴52m=2,解得m=1,故②正确;③将所给方程组的两个方程左右两边分别对应相加,得(a﹣1)x+(a+2)y=2a﹣5,(x+y)a+2y﹣x=2a﹣5,∴225x yy x+=⎧⎨-=-⎩,解得:31 xy=⎧⎨=-⎩则当a每取一个值时,就有一个方程,而这些方程有一个公共解,则这个公共解为31xy=⎧⎨=-⎩,故③正确.综上,正确答案为:②③.【点拨】本题考查了因式分解、分式方程的解、二元一次方程组的解,解题关键是理解题意,遵循题意按照相应的解题方法准确进行计算.举一反三:【变式1】已知关于x的分式方程512x ax x+-=-.(1)若分式方程的根是5x=,求a的值;(2)若分式方程有增根,求a的值;(3)若分式方程无解;求a的值的.【答案】(1)1;(2)-2;(3)3或-2【分析】分式方程去分母转化为整式方程,(1)把x=5代入整式方程求出a的值即可;(2)由分式方程有增根,得到最简公分母为0求出x的值,代入整式方程求出a的值即可;(3)分a-3=0与a-3≠0两种情况,根据分式方程无解,求出m的值即可.解:(1)去分母得,x(x+a)-5(x-2)=x(x-2),整理得:(3)100a x -+=把x =5代入(3)100a x -+=得,5(3)100a -+=,∴a =1;(2) 由分式方程有增根,得到x (x -2)=0,解得:x=2或x=0,把x=2代入整式方程(3)100a x -+=得:a=-2;把x=0代入整式方程(3)100a x -+=得:a 的值不存在,∴分式方程有增根,a=-2(3) 化简整式方程得:(a -3)x =-10,当a -3=0时,该方程无解,此时a =3;当a -3≠0时,要使原方程无解,必须为分式方程增根,由(2)得:a =-2,综上,a 的值为3或-2.【点拨】此题考查了分式方程的解和增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.【变式2】已知W =(1122a a +-+)÷2244a a a -+. (1)化简W ;(2)若a ,2,4恰好是等腰△ABC 的三边长,求W 的值.(3)若12k W a +=+的解为正数,求k 的取值范围. 【答案】(1)22a a -+;(2)W 的值为13;(3)3k >-. 【分析】(1)先算括号里的,再运用完全平方公式进行化简即可得;(2)根据a ,2,4恰好是等腰△ABC 的三边长可得a =4,将a =4代入即可得;(3)根据题意得2122a k a a -+=++,解得3a k =+,根据12k W a +=+的解为正数得30k +>,进行计算即可得.(1)解:2112()2244a W a a a a =+÷-+-+ =2222(2)(2)(2)(2)(2)a a a a a a a a ⎡⎤+-+÷⎢⎥+-+--⎣⎦ =22(2)(2)(2)2a a a a a-+- =22a a -+ 解:∵a ,2,4恰好是等腰△ABC 的三边长,∴a =4,2422124263a W a --====++. (3) 解:由题意得,2122a k a a -+=++, 21a k -=+3a k =+ ∵12k W a +=+的解为正数, ∴30k +>,2320a k +=++≠3k >-.【点拨】本题考查了分式的化简求值,等腰三角形,分式方程,解题的关键是掌握这些知识点.【变式3】阅读下列材料:在学习“分式方程及其解法”的过程中,老师提出一个问题:若关于x 的分式方程14a x =-的解为正数,求a 的取值范围.经过独立思考与分析后,小明和小聪开始交流解题思路,小明说:解这个关于x 的方程,得到方程的解为4x a =+,由题目可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面,还必须保证4a ≠-才行.(1)请回答:的说法是正确的,正确的理由是.完成下列问题:(2)已知关于x 的方程233m x x x -=--的解为非负数,求m 的取值范围; (3)若关于x 的方程322133x nx x x --+=---无解,求n 的值. 【答案】(1)小聪,分式的分母不能为0;(2)6m ≥-且3m ≠-;(3)1n =或53. 【解析】【分析】(1)根据分式有意义的条件:分母不能为0,即可知道小聪说得对;(2)首先按照解分式方程的步骤得到方程的解,再利用解是非负数即可求出m 的取值范围;(3)按照解分式方程的步骤去分母得到整式方程,若分式方程无解,则得到增根或者整式方程无解,即可求出n 的范围.(1)解:∵分式方程的解不能是增根,即不能使分式的分母为0∴小聪说得对,分式的分母不能为0.(2) 解:原方程可化为233m x x x +=-- 去分母得:2(3)m x x +=-解得:6x m =+∵解为非负数∴60m +≥,即6m ≥-又∵30x -≠∴63m +≠,即3m ≠-∴6m ≥-且3m ≠-(3) 解:去分母得:322(3)x nx x -+-=--解得:(1)2n x -=∵原方程无解∴10n -=或者3x =①当10n -=时,得:1n =②当3x =时,23(1)n =-,得:53n = 综上:当1n =或53n =时原方程无解.【点拨】本题考查了解分式方程以及根据分式方程的解确定参数范围,重点要掌握解分式方程的步骤:去分母化成整式方程;再解整式方程;验根.理解当分式方程无解时包含整式方程无解和有曾根两种情况.。
含有参数的分式方程【问题一】解含有参数的分式方程例如:解关于x 的方程11(1)1a a x +=≠- 分析:解分式方程的一般是方法将分式方程转化为整式方程,通过在等式两边乘以最简公分母达到去分母的效果。
在解决含有参数的分式方程时,将参数看作一个常数进行运算,用含有参数的代数式表示方程的解。
解:去分母,方程两边同时乘以1x -得:1(1)1a x x +-=-整理方程得:(1)2a x a -=-∵1a ≠,∴10a -≠, ∴21a x a -=- 检验,当21a x a -=-时,10x -≠ ∴原分式方程的解为21a x a -=- 小结:将等式中的参数看作常数,用含有参数的代数式表示一个未知数的值,是解决含参问题的基本方法。
练习:解关于x 的方程10(0,1)1m m m x x -=≠≠+且 (1m x m=-) 【问题二】已知含有参数的分式方程有特殊解,求参数的值例如:当a 为何值时,关于x 的方程12325x a x a +-=-+的解为0. 分析:将方程的解代入原方程建立关于参数的方程。
解:当x =0是方程的解时有0123025a a +-=-+,解得 15a = 当15a =时,50a +≠ 所以15a =是方程23152a a -=-+的解. 所以当15a =时,原方程的解为0 . 小结:方程的解是指使得等式两边相等的未知数的值,所以将方程的解代入原式,等式依然成立。
练习:当a 为何值时,关于x 的方程2334ax a x +=-的解为1. (3a =)【问题三】已知含有参数的分式方程解的范围,求参数的值例如:已知关于x 的方程233x m x x -=--的解为正数,试求m 的取值范围. 分析:将m 看作常数,表示出方程的解,根据方程的解的范围建立关于m 的关系式,注意方程有意义这个前提条件.解:去分母得:2(3)x x m --=解得6x m =-∵原方程的解为正数,∴0x >,即60m ->……………①又∵原方程要有意义 ∴30x -≠,即63m -≠……………②由①②可得6m <且3m ≠所以,当6m <且3m ≠时,方程的解为正数.小结:用含有参数的代数式将方程的解表示出来,进而根据原方程解的范围,建立与参数有关的关系式子。
分式方程参数问题
求分式方程中参数(字母系数)的取值范围的问题是一类非常重要的题目,在各类试题中出现频率较高,和解分式方程的题目相比,它更能考差学生思维的全面性和敏捷程度。
在此类题目中往往首先给出分式方程解的情况,让解题者作出逆向判断,从而确定参数的取值范围。
由于分式方程是先化成整式方程求解的,并且在去分母化简的过程中容易扩大未知数的范围,所以求出的参数的取值范围也就不准确了。
例1. 已知关于x 的分式方程
132323-=--+--x
mx
x x 无解,求m 的值。
正解:将原方程化为整式方程,得:()21-=-x m , 因为原分式方程无解,所以()01=-m 或312
=--m
所以m=1或 m=3
5
.
辨析:产生错误的原因是只从字面意思来理解“无解”,认为“无解”就单单是解不出数来。
实际上,导致分式方程无解的原因有两个:①解不出数来,也就是整式方程无解;②解出的数不符合原方程,也就是整式方程虽然有解,但这个解能使最简公分母为零. 例2. 已知关于x 的分式方程
3
23-=
--x m
x x 有一个正解,求m 的取值范围。
正解:将原方程化为整式方程,得:()m x x =--32
∴m x -=6,∵原方程有解且是一个正解 ∴06>-m 且36≠-m ∴m 的取值范围是:m <6且m ≠3
辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
误认为分式方程有一个正解就是整式方程有一个正解,从而简单处理了事。
实际上,题目隐含着一个重要的条件:x ≠3, 有一个正解并不表示所有的正数都是它的解,而表示它有一个解并且这个解是一个正数两层含义。
例3:已知关于x 的分式方程4
2212-=-+x m x x 的解也是不等式组()⎪⎩⎪⎨⎧-≤-->-8
32221x x x x
的一个解,求m 的
取值范围。
正解:解不等式组()⎪⎩⎪⎨⎧-≤-->-8
3222
1x x x x
得:x ≤-2 将分式方程4
2212
-=-+
x m x x 化为整式方程,得:m x x x 2)2(42=+--
解这个整式方程得:2--=m x ∴分式方程4
2212
-=-+
x m
x x 的解为:2--=m x (其中m ≠0和-4) 由题意得:22-≤--m ,解得:0≥m ∴m 的取值范围是:m >0.
辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
实际上,题目隐含着一个重要的条件:2±≠x ,首先保证分式方程有解然后才能利用解的取值范围去限制参数的取值范围。
谈求分式方程中字母参数的值
按给定条件,求分式方程中字母参数的值,在中考和竞赛试题中经常出现。
这类题涉及到分式方程的增根和分式方程转化为整式方程后根的讨论问题。
例4、(1997年湖北省孝感市中考题)当m 为何值时,11
122-+=---
x x
x m x x
无实数根.... 分析:去分母并整理得022=-+-m x x ①,原分式方程无实数解,可能有两种情况:(1)原分式方程产生增根x =0或x =1;(2)一元二次方程①无实数解,即△<0.
解:原方程可化为022=-+-m x x . ①
(1)把分式方程可能产生的增根x =0代入①,得m =2;把可能产生的增根x =1代入①,得m =2.
(2)由方程①的判别式△=()()02412<---m ,解得4
7<m .
综上所述,当4
7<m 或m =2时,原分式方程无实数解.
例5、若关于x 的方程
x
kx x x x x k 1
122+=---只有一个解.....,试求出k 的值与方程的解. (第
15届江苏省初中数学竞赛试题)
解:化简原方程,得01232=-+-x kx kx ①
当k =0时,原方程有唯一解2
1=x ,符合题意.
当k ≠0时,方程①的根的判别式△=()
9203434232
2
+⎪⎭
⎫ ⎝⎛
-=+-k k k .
因为03432
≥⎪⎭
⎫
⎝⎛-
k ,所以△>0,故方程①总有两个不同的实数解. 按题意其中必有一根是原方程的增根. 原方程可能产生的增根只能是0或1.
把x =0代入①,方程不成立,不合题意. 故增根只能是x =1;把x =1代入①,得2
1=k ,
此时方程为022=-+x x ,两个根为1,221=-=x x .
所以,当k =0时,分式方程的解为2
1=x ;当k ≠0时,分式方程的解为2-=x .
例6、 已知关于x 的方程x x a x =++3
23有两个实数根......
,求a 的取值范围. 解:原方程可化为022=-a x ,即a x 22=. ①
由题意方程①必须有解,故得0>a ,由于3-=x 可能是原方程的增根,应该排除. 由3-≠x ,得2
9≠a .
所以,当0>a 且2
9≠a 时,原方程有两个实数根.
例7、已知关于x 的方程022122
22
=-+-+
+m
x x m x x
,其中m 为实数.当实数m 为何值时,方
程恰有三个互不相等的实数根并求出这三个实数根.
解:令y x x =+22,则原方程可化为01222=-+-m my y ,解得11+=m y ,12-=m y .
所以0122=--+m x x ① 或0122=+-+m x x ② 从而△1=4m +8,△2=4m .
‘;.,由题意,△1与△2中应有一个等于零,一个大于零.
当△1=0即m =-2时,△2<0,不合题意;当△2=0即m =0时,△1>0,此时方程②有两个相等的实数根1-=x ,方程①有两个不相等的实数根21±
-=x
所以当m =0,原方程有三个互不相等的实数根:1x =0,212+-=x ,213--=x .
妙用分式方程的增根求参数值
解分式方程时,常通过适当变形化去分母,转化为整式方程来解,若整式方程的根使分式方程中的至少一个分母为零,则是增根,应舍去,由此定义可知:增根有两个性质:(1)增根是去分母后所得整式方程的根;(2)增根是使原分式方程分母为零的未知数的值,灵活运用这两个性质,可简捷地确定分式方程中的参数(字母数)值,请看下面例示:
分式方程有增根,求参数值 例8 a 为何值时,关于x 的方程
3
42-+-x a
x x =0有增根
解:原方程两边同乘以(x-3)去分母整理,得 x 2-4x+a=0(※)
因为分式方程有增根,增根为x=3,把x=3代入(※)得,9-12+a=0 a=3
所以a=3时,342-+-x a
x x =0有增根。
例9 m 为何值时,关于x 的方程
1
1-x +
2
-x m =232
22+-+x x m 有增根。
解:原方程两边同乘以(x-1)(x-2)去分母整理,得 (1+m )x=3m+4(※)
因为分式方程有增根,据性质(2)知:增根为x=1或x=2。
把x=1代入(※),解得m=-2
3
;把x=2代入(※)得m=-2
所以m=-2
3或-2时,原分式方程有增根
点评:分式方程有增根,不一定分式方程无解(无实根),如方程1
+x k +1=)2)(1(2
-+x x 有
增根,可求得k=-3
2
,但分式方程这时有一实根x=
3
8。
分式方程是无实数解,求参数值 例10 若关于x 的方程
5
2--x x =
5
-x m +2无实数,求m 的值。
解:去分母,得x-2=m+2x-10,x=-m+8
因为原方程无解,所以x=-m+8为原方程的增根。
又由于原方程的增根为x=5,所以-m+8=5所以m=3。