材料表界面高分子材料的表面改性
- 格式:pptx
- 大小:7.02 MB
- 文档页数:60
2021年第2期广东化工第48卷总第436期 · 233 ·基于超星学习通的高分子材料专业教学模式的改革探讨——以《材料的表面与界面》为例熊贤强1,张晓2*,余彬彬1,金燕仙1(1.台州学院医药化工与材料工程学院,浙江台州318000;2.台州学院生命科学学院,浙江台州318000) [摘要]超星学习通是一款为高校师生提供教育教学的移动平台,可以通过“网上+线下”模式将课堂教学与网上教学融合在一起,打造材料的表面和界面翻转课程的有效载体。
基于超星学习通平台搭建材料的表面和界面翻转课堂,改变传统“老师讲、学生听”的大水漫灌式教学方式,提升课程教学质量。
本文以超星学习通平台搭建材料的表面和界面翻转课堂,探索研究新形势下“互联网+教学”模式改革。
[关键词]超星学习通;教学改革;翻转课堂[中图分类号]G4 [文献标识码]A [文章编号]1007-1865(2021)02-0233-02Discussion on the Reform of the Teaching Mode of Polymer Material Specialty Based on Chaoxing Learning Platform—Taking “The Surface and Interface ofMaterials” as an ExampleXiong Xianqiang1, Zhang Xiao2*, Yu Binbin1, Jin Yanxian1(1. School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000;2. College of Life Science, Taizhou University, Taizhou 318000, China)Abstract: Chaoxing Learning is a mobile platform that provides education and teaching for teachers and students in colleges and universities. It can integrate traditional offline teaching with online teaching through the “online + offline” mode to create an effective carrier for material surface and interface flipped course. Based on the Chaoxing Learning platform, the surface and interface flipped classroom of materials are built to change the traditional teaching method of “teacher speaks, student listens” and improve the teaching quality. In this paper, the superstar learning platform is used to build the surface and interface flipped classroom of materials and explore the reform of “Internet + teaching” mode under the new situation.Keywords: Chaoxing Learning Platform;teaching reform;flipped classroom1 引言高分子材料专业是研究高分子材料的设计、合成、制备以及组成、结构和性能学科,目前是国民经济发展的支柱产业之一,主要培养适应现代经济发展需要,具备高分子材料合成与改性方面的技术研发、工艺设计、生产管理等的高端人才。
难粘高分子材料的表面处理技术聚乙烯(PE)、聚丙烯(PP)等聚烯烃和聚四氟乙烯(PTFE)类含氟高分子材料,若不经特殊的表面处理,是很难用普通胶粘剂粘接的,这类材料通常称为难粘高分子材料或难粘塑料。
聚烯烃类塑料由于性能优良、成本低廉,其薄膜、片材及各种制品在日常生活中大量地应用着。
而氟塑料则因具有优异的化学稳定性、卓越的介电性能和极低的摩擦系数以及自润滑作用,使其在一些特殊领域中具有重要的用途。
但是,这类材料在应用过程中,不可避免地会遇到同种材料之间或与其它材料的粘接问题,因此,人们曾对这类难粘高分子材料的难粘原因及表面处理方法进行了不断深入的研究。
难粘高分子材料的难粘原因是多方面的1.润湿能力差一般胶粘剂在未固化前都呈流动态,粘接过程是胶液在粘接件表面浸润,然后固化的过程,对粘接来说,润湿接触是粘接的首要条件。
液体与固体接触,其润湿程度可用接触角表示,几种塑料的表面特征数据见表1。
从表1可以看出水对它们的接触角都比较大,表面张力小,接着能不大,润湿能力就差,比较难粘。
2.结晶度高这几种难粘塑料都是高结晶度物质,所以化学稳定性好,它们的溶胀和溶解都比非结晶高分子困难,当与溶剂型胶粘剂粘接时,很难发生高聚物分子链的扩散和相互缠结,不能形成很强的粘附力。
3.是非极性高分子聚乙烯、聚丙烯、聚四氟乙烯等都是非极性高分子,它们的表面只能形成较弱的色散力,而缺少取向力和诱导力,因而粘附性能较差。
4.存在弱的边界层这些高聚物难粘除了结构上的原因外,还在于材料表面存在弱的边界层。
聚烯烃类树脂本身含有低分子量物质以及在加工过程中加入的添加剂(如滑爽剂、抗静电剂等),这类小分子物质极容易析出、汇集于树脂表面、形成强度很低的薄弱界面层,表现出粘附性差,不利用于印刷、复合和粘接等后加工。
基于上述认识,人们采取了多种手段对难粘高分子材料表面进行改性处理:一在聚烯烃等难粘材料表面的分子链上导入极性基团;二提高材料的表面能;三提高制品表面的粗糙度;四消除制品表面的弱界面层,以提高难粘材料的粘附性能和粘接强度。
生物材料的表面和界面改性研究进展引言:生物材料的表面和界面改性是一项重要的研究领域,涉及到生物医学工程、组织工程、药物传递系统等多个领域。
通过改变材料的表面性质和界面特性,可以实现生物材料的生物相容性、机械性能和药物传递性能的改善。
本文将介绍生物材料表面和界面改性的研究进展,包括表面修饰技术、生物相容性改善、界面相互作用等方面的内容。
一、表面修饰技术的发展表面修饰技术是改变材料表面性质的关键手段,其发展对于生物材料的应用和性能提升至关重要。
目前,包括物理方法、化学方法和生物方法等多种表面修饰技术被广泛应用于生物材料的改性。
1. 物理方法物理方法是通过改变表面形貌和结构来实现材料性能的调控。
常见的物理方法包括沉积薄膜、等离子体处理、溶液喷雾等。
例如,利用磁控溅射技术可以在材料表面形成一层均匀的薄膜,改变表面的化学反应性,提高材料的生物相容性和耐磨性。
2. 化学方法化学方法是通过表面化学反应来改变材料的表面性质。
其中,最常见的化学方法是控制材料表面的化学组成和功能团的引入。
例如,通过溶液法或气相法在材料表面修饰一层功能化分子,可以增强材料的生物相容性或控制材料的附着行为。
3. 生物方法生物方法是利用生物分子的特异性识别和作用来实现材料的表面修饰。
生物方法基于生物分子与材料表面之间的特异性相互作用,可以制备具有特定生物活性和生物识别特性的材料。
例如,利用抗体与特定抗原的配对作用,可以在材料表面制备具有高度选择性的生物传感器。
二、生物相容性改善的研究进展生物相容性是生物材料在生物体内具有良好的生物适应性和稳定性的能力。
通过表面和界面的改性可以改善材料的生物相容性,降低材料在体内引起的炎症反应和排异反应。
1. 表面形貌对生物相容性的影响表面形貌是材料表面粗糙度和微观结构的表征。
研究表明,改变材料的表面形貌可以影响细胞黏附、增殖和分化等过程,进而影响生物材料的生物相容性。
例如,通过控制材料表面的纳米结构,可以实现细胞的定向分化和组织再生。
表面改性原理
表面改性是一种通过在材料表面引入新的物质或改变材料表面结构,从而改变其性质和功能的方法。
其主要目的是提高材料的性能,例如增加材料的化学稳定性、耐磨性、耐腐蚀性或增强材料的粘附能力等。
表面改性可以通过多种方法实现,包括化学方法、物理方法和生物方法等。
化学方法中常用的表面改性技术包括溶液处理、电沉积和化学气相沉积等。
溶液处理是将材料浸泡在含有特定化学物质的溶液中,使化学物质与材料表面发生反应,形成新的物质层。
电沉积是利用电解作用,在材料表面沉积一层新的金属或化合物。
化学气相沉积则是将特定气体在高温条件下与材料表面反应,生成新的表面物质。
物理方法中常用的表面改性技术包括离子注入、磁控溅射和激光处理等。
离子注入是将高能离子轰击材料表面,使离子能量转化为材料表面的热能,从而改变表面结构和性质。
磁控溅射是利用磁场控制金属靶材上的离子,将其沉积在材料表面形成薄膜。
激光处理则是利用激光束对材料表面进行表面熔化或表面重结晶,改变材料的组织和性质。
生物方法中常用的表面改性技术包括生物功能化修饰和生物分子固定化等。
生物功能化修饰是将生物大分子或生物活性物质修饰在材料表面,从而赋予材料特定的生物功能,如抗菌、抗炎或细胞黏附等。
生物分子固定化是将特定的生物分子固定在材料表面,用于生物传感、靶向治疗等应用。
总之,表面改性是一种有效的方法,在不改变材料体积和内部结构的情况下,对材料表面进行改变,从而获得新的表面性能和功能。
这些技术在材料科学和工程领域中具有广泛的应用前景。
材料表面处理对复合材料界面性能的影响研究复合材料广泛应用于航空航天、汽车制造和建筑等领域,因为它们具有优异的力学性能和轻质化特征。
然而,复合材料的界面区域对整体性能至关重要。
为了增强界面性能,材料表面处理技术成为研究的热点之一。
本文将探讨材料表面处理对复合材料界面性能的影响。
一、材料表面处理方法材料表面处理方法广泛应用于改善复合材料的界面性能。
其中包括物理方法和化学方法。
物理方法主要包括射线辐照、机械磨削和喷砂等,旨在提高材料表面的粗糙度和附着力。
化学方法如表面活性剂的引入、化学改性和表面微结构的修饰等,以提高界面的亲合力和粘附力。
二、材料表面处理对界面粘附强度的影响表面处理对复合材料界面的粘附强度具有显著影响。
一方面,物理方法如机械磨削和喷砂可以增加界面的粗糙度,增强了界面的机械锁合效应,从而提高了复合材料的粘附强度。
另一方面,化学方法如引入表面活性剂可以增加界面的化学键数量,提高了界面的粘附强度。
研究发现,采用化学方法处理复合材料的表面,能够使界面粘附强度相较于未处理表面提高10%-20%。
三、材料表面处理对界面能量耗散的影响界面能量耗散是衡量界面性能的重要指标之一。
表面处理能够有效提高复合材料的界面能量耗散能力。
通过物理方法处理复合材料表面,如喷砂或机械磨削,能够增加界面的粗糙度,增加位移钳合阻力,从而提高界面的能量耗散能力。
此外,通过化学方法处理表面,如引入表面活性剂,可以增加界面的摩擦阻尼,提高能量的耗散。
实验证明,经过表面处理的复合材料界面能量耗散能力相比未处理表面提高了15%-30%。
四、材料表面处理对界面的耐久性的影响表面处理技术在提高界面的耐久性方面发挥了重要作用。
物理方法处理表面,如射线辐照或喷砂处理,可以去除材料表面的污染和氧化层,减少界面的缺陷和腐蚀,从而提高界面的耐久性。
化学方法可以改变表面的化学特性,增加界面的抗腐蚀性能。
实验研究表明,经过表面处理的复合材料界面耐久性相较于未处理表面有所提高,延长了复合材料的使用寿命。
材料表面与界面的物理与化学性质研究材料表面与界面的物理与化学性质一直以来都是材料科学研究的重要方向,其研究不仅有助于深入了解材料的结构与性能之间的关系,还能为材料的设计和应用提供有力的支持。
本文将就这一主题展开讨论,从介观尺度的物理与化学性质入手,分析材料表面与界面的特点和研究方法。
一、表面与界面的介观尺度特征材料的表面和界面通常被视为材料结构的特殊区域,在微观尺度上具有与体相不同的特征。
一方面,材料表面具有较高的比表面积,这使得它们在许多材料的物理和化学过程中起着至关重要的作用。
另一方面,材料界面是材料间相互作用的平台,其特性直接影响材料的宏观性能。
因此,深入研究材料表面与界面的物理与化学性质具有重要的科学和应用价值。
表面和界面的特征主要包括表面形貌、表面能、界面结构、界面能等。
表面形貌直接反映了材料表面的细节结构,不同的形貌将导致不同的表面性能。
表面能反映了表面原子与周围环境的相互作用强度,它决定材料表面的润湿性、粘附性等特性。
界面结构是指两个不同材料之间的交界面,根据不同的材料特性和界面条件,界面结构可以发生不同的变化。
界面能主要研究材料界面的能量状态和热力学特性,对于材料的粘接、分离等过程有重要影响。
二、材料表面与界面性质研究方法在研究材料表面与界面的物理与化学性质时,科学家们尝试了多种研究方法,其中一些方法也适用于表征材料的界面结构。
下面介绍几种常用的研究方法。
1. 表面分析技术:表面分析技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等。
这些技术能够观察材料的表面形貌和表面原子级别的化学状态,从而得到表面的物理和化学信息。
2. 界面能测量:界面能测量是研究界面物理性质的重要手段,主要通过接触角测量和界面力学测试来实现。
接触角测量可以定量表征材料的润湿性和界面能,在微纳尺度上研究材料的表面能。
界面力学测试可以测量材料界面的拉伸、剪切等力学性能,对于材料的界面粘附等过程具有重要意义。
材料科学中的表面与界面材料科学是研究材料的性质、结构、制备、应用等方面的一门学科,而表面和界面是材料科学中非常重要的概念。
表面是指材料的表层,而界面则是不同材料或同一材料不同相之间的界面。
在材料制备、材料性能及材料应用等方面表面与界面都起着至关重要的作用。
表面对材料性能的影响材料的大部分性质都与材料的表面直接相关。
在一些材料中,表面的化学和物理性质与体积的性质有很大的不同。
表面可以影响材料的机械性能、光学性能、电学性能和化学反应等方面。
表面是由原子/分子组成的,当材料表面被处理时,会影响原子/分子的结构和间隙,从而产生不同的表面能、表面电位等物理和化学性质,如氧化、硫化、氢氟化等处理方式都会影响材料表面的性质。
表面的改性可以改变材料的结构和性能。
如铝合金表面的氧化处理可以形成氧化层,保护铝合金表面,提高铝合金的耐腐蚀性;金属材料表面经过镀铬、喷涂等处理可以提高银的光学透明度和化学稳定性。
此外,通过表面处理可以增加材料表面的疏水性或亲水性,进一步改变材料与周围环境的相互作用。
表面的改性也可以改善材料的生物学性能和生物适应性。
例如,医用材料如人工骨骼和人工关节一般要表面进行多次处理,以增加其生物相容性和降低其对周围组织的损伤。
界面对材料性能的影响界面是不同材料或同一材料不同相之间的界面。
在这些界面上,会有不同的物理和化学反应,从而产生不同的力、电学和光学性质。
例如,当两个金属接触时,界面处的电子相互作用可以导致金属表面发生化学反应,使得接合界面处形成化合物等化学反应。
界面的存在也会对材料力学性能产生影响。
在金属合金中,不同的晶体方向表现出不同的机械性能,即不同的力学属性。
当这些晶体遇到界面时,界面中的应力会产生影响,导致材料在局部区域的形变和塑性变形。
除此之外,在半导体工艺中,也需要对半导体材料进行热处理、光刻等工艺处理,生成不同的界面,从而制备出不同的器件。
而当这些器件的性质以及器件之间的交互作用都依赖于界面的存在和性质。