当前位置:文档之家› 神经网络大作业

神经网络大作业

神经网络大作业
神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介

—神经网络原理及应用报告

课程名称:神经网络原理及应用

课程编号:

指导教师:

学院:

班级:

姓名:

学号:

日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介

摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。

关键词:军事,战斗识别,模式识别,敌我识别,神经网络

1 引言

众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。

2 神经网络简介

2.1 神经网络的历史

神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。

1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

研究,提出了改变神经元连接强度的Hebb规则。这一理论在各种神经网络模型中起着重要的作用,且在生理解剖学上得到的证实。

1957年,Rosenblatt引进了感知器概念,给出了两层感知器的收敛定理,建立了第一个真正的神经网络。感知器由阈值性神经元组成,试图模拟动物和人脑的感知和学习能力。

1961年,Widrow和Hoff创立了用于自适应控制系统的连续取值的线性网络。这种线性网络可由硬件实现。这一研究成果引起了不少科学家的兴趣,也带来了很大的争论。此后,Minsky和Paper又从数学上深入研究了以感知器为代表的神经网络系统的功能和它的局限性后,以一个异或运算的例子,对神经网络提出质疑,致使神经网络的研究步入低谷期。但仍有一些卓越的学者在此低弃的七分钟,锲而不舍、难能可贵地坚持这一领域的研究。有Grossberg、Kohonrn、FuKushima、Anderson和Webos等学者分别提出了自适应共振理论、自组织映射论、神经认识机网络理论、BSB模型和BP理论等,从而为神经网络的发展奠定了坚实的理论基础。

1982年起,神经网络的研究重又进入了新的发展期。Hopfield提出了具有联想记忆的反馈互联网络,引入了“计算能量函数”的函数,给出了网络稳定性的判据。Hinton和Sejnowski运用了统计物理学概念和方法,得出多层网络的学习方法(学习过程中的模拟退火技术),保证整个系统的全局稳定。Rumelhart和Meclelland提出PDP(并行分布处理)理论,对认识微观结构进行了探索,同时发展了多层网络的BP算法。

1988年,美国的Chua提出了细胞神经网络模型,它是一个大规模的非线性模拟系统,具有细胞自动机的动力学特性。

至此,神经网络的研究已经在世界各国广泛展开,尤其是近几年来,神经网络理论已引起了美国、英国、日本和欧洲等发达国家科技界的极大关注。国际神经网络学会和IEEE已多次召开神经网络国际学术年会,并一致认为神经网络的发展会带来重大科研成果和应用前景。

2.2 神经网络的基本原理

人工神经网络是对人和动物神经网络的某种结构和功能模拟。人和动物神经网络的基本组成单元是神经元(如图1所示)。

它包括了细胞体,轴突,树突,突触等元件。对于从同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理结果可使细胞膜电位升高;当膜电位升高到一个阈值(约40mV ),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当降到地狱阈值时,细胞转入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。

突触界面具有脉冲/电位信号转换功能,即类似于D/A 转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。

神经冲动信号的传导速度在1~150m/s 之间,随纤维的粗细、髓鞘的有无而不同。

神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机和控制机。

就目前的理论水平、制造水平和应用水平,人工神经元上不可能是对人脑神经网络的全部真实模拟,只能是对人脑神经网络有选择的、单一的、简化的构造和性能模拟,从而形成了不同的功能,多种类型的,不同层次的神经网络模型。

人工神经王阔的基本组成单元是神经元。神经元的原理结构模型如图2。

图1 神经元结构

图2 人工神经元结构模型

神经元一般是多输入、单输出的非线性元件。

大量的神经元连接在一起,就形成了神经网络,即神经网络的互联结构。神经网络的互连结构大致有四种类型。

(1)无反馈网络神经元分层排列。第一层为输入层,其次是若干中间层,最后一层为输出层。每一层神经元只接受前一层神经元的输入,而

与本层的神经元和后一层的神经元无输出关系。输入此您好经过逐

层模式转换后,最终由输出层输出。

(2)有反馈网络神经元分层排列,但与前者不同的是,输出层的一些神经元其输出又反馈给前面的输入层。

(3)层内各神经元之间有交互输入、输出的网络同层内的神经元间有信息互通,这样可横向控制层内个神经元的抑制和兴奋状态,从而实

现更灵活、更复杂的控制机制。

(4)互联型网络网络中任两神经元之间都可能有输入、输出的互联。这种网络十分复杂信号的传递四通八达,信号在神经元之间反复往复

传递,这样就可能使网络进入震荡或混沌状态,也有可能经过数次

变化而达到稳定的平衡。前述的两种网络可视为互联型网络的某种

简化网络。

3 战斗识别与神经网络

3.1 战斗识别简介

战斗识别,美军的定义是:在较短时间内和一定距离外准确地区分友军、敌军和中立方军队。战斗识别的发展与战争形态的演变密切相关。目前的战斗识别方式主要有平台式识别、平台外识别和综合识别三种识别方式。

平台式识别的主要特点是战斗识别系统与射击平台一体化。系统由两部分组

成:第一部分直接用以识别未知目标,称为直接分系统;第二部分是向用户提供潜在目标的信息,称为间接分系统。直接分系统又分为两种:一种是协同式目标识别,需要目标与其合作;另一种是非协同式目标识别,不需要目标合作,如探测雷达。

平台外识别与平台式识别不同之处在于:设计平台不需要安装战斗识别系统,只是利用安装在设计平台外的装备和识别系统,检验来自众多信息源的目标信息,通过对目标信息的分析处理,实现对目标属性的判别,然后将目标属性信息提交射手。

综合识别系统是把平台式目标识别和平台外目标识别综合起来,集成基于不同技术体系的信息获取系统(包括目标反射、辐射信息,建立与目标的信息交换通道等),以实现目标属性的最终判别。

未来的战斗识别系统将是分布式的战斗识别系统,可将空中和地面的所有装备连接在一起,形成前所未有的态势感知能力,将极大提高作战效能。

3.2 神经网络在未来战争中的重要地位

众所周知,包括指挥(Command)、控制(Control)、通信(Communication)与情报(Information)的C3I是现代化战争的主要组成部分。举世瞩目的海湾战争在经历了多国部队38天的电子干扰、卫星侦察、计算机破译侦听和猛烈而有效的空袭后,仅用100小时的地面站就取得了战争的全面胜利,为未来战争的特征提供了一个良好的范例。

实际上,在以电子信息为代表的高科技迅猛发展的今天,战场的胜负主要决定于双方综合力量的对比,其中迅速而可靠的信息传输和正确而有效的信息处理更是去的战争主动权的关键因素。所以,表征计算技术(Computation)和通信

技术(Communication)的C&C,已经是未来军事技术中一个密不可分的整体。

换言之,当前的军事通信和现行的计算机技术紧密相连。

但是,由于以串行集中方式按预先编好程序进行累加计算的Von Neumann

型计算机,在处理诸如图像识别、自然语言理解一类问题时,由于规则推理解释的串行性和非确定性本质,以及大铜梁知识库顺序检索匹配的处理时间呈指数级爆炸,因而远远不如哪怕是只有两三岁婴儿的智能。现行计算机的这种本质性的弱点,限制它在错综复杂、讯息万变的现代战争中的作用。有人估计,利用现有

技术手段,只能收集到军事信息的1~10%。

而神经网络计算机具有下面一些特点,使它能在未来的军事信息传输和处理中,发挥不可估量的巨大作用。

(1)巨量并行分布式处理方式

(2)信息存储和信息处理合二为一,能由局部信息恢复出全局信息

(3)具有从例子(即经验)进行自组织学习的能力

(4)具有非环境变化自适应调节能力

(5)适合于处理模拟的、模糊的和随机的输入信息

(6)具有良好的容错能力

(7)以实时地给出满意解的方式来处理众多的智能性问题

3.3 神经网络在战斗识别中的应用前景

我们知道,当1946年美国宾夕法尼亚大学用18000多个电子管研制成世界上第一台Vom Neumann型计算机时,它的用途限于数字积分计算。可是当计算机技术进一步发展后,在国防军事部门就得到了极其广泛的应用。在1991年初的海湾战争中,美国在军事通信分析截取道德对方密码信息、控制指挥和后勤支持等方面都大量地使用了现行Von Neumann型计算机,为取得战争胜利,减少人员伤亡做出了巨大贡献。因此,我们不难预计,一旦神经网络和神经计算机技术得到进一步发展后,它在智能信息处理方面的巨大优越性,定能使它在未来的军事技术中,特别是战斗识别中,具有现行Von Neumann型计算机所不能达到的重要价值和地位。

3.4 神经网络应用于模式识别以提升战斗识别水平

人类在长期的生活实践和科学研究中,逐渐积累起来了通过感觉器官辨别不同事物的能力。例如颜色、形状、质地以及各部分的结构关系等。人类之所以可以进行这种识别,重要原因是各事物具有不同的特征。像这样用事物的特征所构成的数据结构就成为相应的事物的模式,或者说模式就是对食物定量的火结构的描述。人们通过模式感知外部世界的各种食物,这是获得只是、概念和做出反应的基础,是一种思维和抽象的过程。而在人工智能或信息科学范畴内,模式识别是指用数学、物理的方法和技术实现对模式的自动处理、描述、分类和解释,目的在于用及其部分实现人的这种智能活动。

战斗识别,从本质意义来讲,也是数以一种广义的的模式识别。通过收集目标的各种情报,由计算机做出采样和修正,交给指挥阶层做出决策,然后再下达命令,最后实现对目标的识别。而神经网络在其间的应用,是为了通过计算机中的神经网络对目标实行高效率且精确的自识别。由于神经网络具有学习性和遗忘性,其总能实时更新战场动态,能根据以往积累的经验分析出当前最可能的态势,从而做出最贴近实际情况的战斗识别。

4 从邻近空间平台与空天飞机在未来战争中的协同作用看神经网络对战斗

识别的作用

邻近空间(Near-space)是坤宁宫天一体化作战的重要战略领域,处于传统的空天之间,其下面的区域通常称为“天空”,是传统航空器的主要活动空间;其上的空域就是“太空”,是航天器的运行空间。在邻近空间中部署军事装备,向上可威胁天基平台,向下可攻击航空器等空基平台,甚至地面目标,并可以以相对较低的成本完成通信、遥测、情报、侦查和监视等各种军事任务。

在战斗识别中,邻近空间平台具有以下优点:信息感知范围大、信息资源探测精度高、持续工作时间长、覆盖范围广、反应时间快、隐身性能好、生存能力强、任务载荷大、应急作战能力强等特点。

在邻近空间平台中,有空天飞机。空天飞机是指可以重复往返于地球表面和空间辅导之间,并可以在轨道和轨道间执行各种有效在和运输任务的空天飞行器系统。他想普通飞机一样起飞,以超高音速在大气层内飞行,在30~100KM好高空的飞行速度可达Ma=12~25,并直接加速进入地球轨道,成为航天飞行器。返回大气层后,想飞机一样在机场着陆。在此之前,航空和航天是两个不同的技术领域,由于飞机和航天飞行旗分别在大气层内外活动,航空和运输系统是重复使用的。而空天飞机能达到完全重复使用和大幅度降低和航天运输费用的目的。

在战争或战场环境下,邻近空间平台可以充分发挥各项特点,圆满完成侦查、监视等战术任务,但邻近空间平台的覆盖范围远大于低空无人机,而却持续时间长达数月,时分适合于战场战术的指挥、决策。这其中就有应用于战斗识别的潜在价值。

在未来的综合战斗识别系统上,神经网络利用更为广泛的邻近空间平台进行信息收集,甚至利用其进行军事打击,都是神经网络对战术识别的运用价值。

临近空间平台因其潜在的军用价值已成为各国近期的研究热点。从总体来看,临近空间平台技术尚处于关键技术公关与演示验证阶段,而各国开展的邻近空间平台与其他飞行器之间的协同作用研究还处于起步阶段,但其蕴藏的巨大军事价值已经引起美国在内的世界各军事强国的高度重视。就临近空间平台与空天飞机协同作用来说,将可能包括对重点区域的协同剑士、协同预警和拦截反卫星武器,使邻近空间平台作为空天飞机的发射平台。将明天飞机作为额往返邻近空间的运输工具,将空天飞机作为战场情报收集和敌我识别的指挥所。

5 神经网络在编队防空中的应用前景

5.1 目前舰艇编队防空面临的问题

随着军事科学技术的进步,空袭武器系统得到了长足发展,把海上防空特别是对空袭武器的识别锁定逼到了一个十分空难的境地。神经网络具有自适应性、自组织性和容错性等优点,应用于舰艇编队的海上防空将产生革命性的影响。

自上世纪80年代以来,电子技术、电子计算机技术、人工智能技术、通信

技术、精确制导技术、航空航天技术、激光技术、隐身技术等一大批搞技术迅速而广泛地运用到了空中打击领域。是空袭武器系统得到了长足的发展,把防空逼到了十分困难的境地。从80年代以来的几场局部战争可以看出,空袭与防空失去了平衡,一强以弱的状况令人深思。时至今日,空袭仍居上风,防空作战困难重重。

现代空袭武器系统速度快、机动性强、威力大、电子战能力强,使得现代海战的战术环境尤为复杂,信息处理量剧增,紧靠人工决策已不能适应现代海战的要求。只有拥有灵活、准确行之有效的作战指挥系统来辅助指挥员进行战术决策,在指挥远急需辅助和难以及时处置的情况下给予必要的提示,或按全自动方式控制系统运行,才能提高系统的快速反应能力和作战效果。叫停作战指挥系统当前面临的严峻挑战是

信息量大。如不实时处理,可能导致重要情报丢失。

信息不完全。处于电子对抗和二类自然环境中的传感器,往往只能获取不玩增或不精确的信息,如何处理这些信息,需要在信息出路系统中妥善解决。

数据融合要求高。大量运动的传感器平台接受的数据需要融合,才能正确提取目标,做出战术决策并实施武器指挥和控制

战场决策难度大。多武器平台、软硬武器结合的决策系统是根据专家知识建立起来的买这种专家系统难以应付多变的战场态势。

以上这些特性对于一非线性和并行处理为基础的人工神经网络来说,具有一定的适应性。为适应未来高技术条件下海战的需要,下面将对神经网络在舰艇编队海上防空中的战斗识别中的应用进行一些探讨。

5.2 神经网络在编队防空战斗识别中的应用前景

神经网络在舰载雷达上的应用前景会越来越广。从舰艇编队海上防空的敌我识别角度看,神经网络的应用前景主要是以下几个方面:

1、舰艇编队实现多传感器组网和信号融合

各种舰艇,特别是大中型舰艇,均装有众多的完成各种功能的雷达以及激光、电视、红外等设备,一个舰艇编队所具有的传感器数量就更多。圣经网络具有并行处理、容错性的特点,适合于多传感器的信息融合。舰艇编队运用神经网络后,能扩展探测空域,提前预警时间,缩短反应时间,提高可靠性和可信度,增强软抗/硬摧毁能力,提高反隐身和抵抗狄孔国突防能力,改善系统精度,提高信息质量,增加新的信息,增强C3I系统的有效性,从而大大提高舰载雷达系统的“四抗”能力。

2、海战实现智能指挥

现代海战中,指挥员要考虑上级指令、作战环境武器装备、战斗序列等因素,对来袭导弹的探测、对抗武器的设定和发射参数的概述往往限制在一秒钟内完成,而当前的计算机不能胜任这一任务,只有社宁网络可以完成。神经网络中信息的存储和操作是合二为一的,易于快速联想、迅速类比和对复杂问题进行概括,加上神经网络具有极强的自学习能力,可随条件变化而变化,及时改进规定,完善军事数据和军事知识库的性能。美国休斯公司设计了一个实验性模拟系统模拟一个对付外来威胁、保护重要目标的导弹系统,其中用到了具有自学习能力的神经网络,在快速变化的环境下,对付多个目标的拦截成功率达85%~95%,对付单目标的拦截陈功率平均大于95%,如果使用专用芯片,拦截成功率将更加惊人。因此,在未来海战中,利用神经网络辅助指挥与决策,可大大提高作战指挥效能。

3、在强杂波下实现对目标信号的检测

舰载雷达探测不可避免地会遇到杂波,特别探测掠海飞行的反舰导弹,要求舰载雷达必须有优良的抗杂波能力。然而,由于咋比复杂多变,传统的贝叶斯验证法汉南得到最优解。社狞恶昂罗多层感应方法可以通过学习和训练找到其分布规律,实现目标自动检测与分类,并能得到近似最优解。

4、实现抗饱和攻击

舰艇编队可能受到不同层次各个方位、各种发射平台和多种武器的饱和攻击,利用神经网络能使舰载雷达缩短反应时间,增加搜索目标和跟踪目标的批数,确保舰载武器威力的发挥。美国休斯公司曾作过一组实验,在一次防空演习中,用神经网络优化处理的方法进行多传感器被动跟踪,收到了良好的效果。其中涉及在大量目标存在的情况下,对真目标进行迅速定位,使用神经网络的处理速度比通常的计算机高6个数量级。可以预见,神经网络用于舰艇,可实现多目标的跟踪和订位,对于抗饱和攻击具有极大好处。

5、目标威胁判断和排序,战斗识别

这是神经网络用于信息处理的一个方面,目前,对目标威胁判断及排序大多是考虑其预警时间和对我损伤大小出发,而很少了考虑目标战术样式的变化特点。结合应用模糊理论和神经网络理论,考虑了目标供给角度这一特点,通过对所构造的网络即兴训练,获得了较之常用算法感更为确切的威胁判断及排序结果。因此,基于神经网络理论的应用,给威胁判断的决策指挥开辟了一条新途径,在很大程度上能弥补常用算法解决此类问题的不足。

6、雷达辐射源识别

现代舰艇使用先进电子设备系统装备起来的移动式信息平台,么有这类电子系统,海军作战舰艇就不可能完成预期功能。这也表明了舰艇电磁干扰对舰艇种牛痘行动起到制约和限制作用。能否实时、准确地从秘籍电磁信号中识别雷达的特性。是能否才去正确的电子战手段的前提条件,因而雷达辐射源的识别为各国海军所重视。由于神经网络具有传统算法所不具有的自联想功能,所以经过训练的神经网络不仅能实时地识别雷达特性,而且即使在侦查收集的信号u完整实,神经网络也能通过联想功能,给出合理的结果。

6 结束语

开发先进的用于战斗识别的神经网络作战系统既是一场艰巨的技术革命,又

是一项庞大的系统工程。当今,许多问题充斥于战场中的战斗识别灵魂与,如战场态势评估、武器分配、指挥决策、威胁判断等。由于人脑受外界环境、心理因素、知识结构、记忆能力等因素的影响,其决策速度和准确性是很难满足现代战争要求的。从神经网络的有点和近战情况来看,它是比较适合解决上述一类问题的。因此,将神经网络理论用于战场中战斗识别,对三栖作战将产生革命性影响。

参考文献

[1]冯泉英.神经网络技术的军事应用前景[J].船舶电子工程,1995,2:21-28.

[2]任庆勇.辨析敌我的火眼金睛——美军战斗识别系统[J].国防,2011,10:76-78.

[3]康天增.神经网络的原理和应用[J].机电设备,1996年,05期:32-36.

[4]靳蕃.神经网络的基本特征及其在军事通信领域中的应用前景[J].电讯技

术,1993,01:1-9.

[5]靳蕃.电脑与人脑—展望神经计算机的未来[J].自然杂志,1991,7(14):56-59.

[6]林加乡,葛元.浅谈BP神经网络在模式识别中的应用[J].电脑知识与技

术,2011,7(7):1543-1545.

[7]邓可.神经网络在编队防空中的应用前景[J].舰载武器,2002,3:4-6.

[8]常建龙,赵良玉,李克勇.邻近空间平台与空天飞机在未来战争中的协同作用[J].舰载武器,2002,3:81-96.

[9]焦李成,保铮.神经网络与军事电子技术智能化[J].系统工程与电子技

术,1993,8:1-10.

[10]陆伟.战斗识别综述[J].国外坦克,2012,4:18-22.

[11]张伟豪,陈怀新,崔莹,王连亮.基于动态贝叶斯网络的战斗目标综合推理识别[J].电讯技术,2012,06:79-81.

[12]罗金平,杨抑强,代伟权.舰艇编队网络一体化防空作战体系研究[J].舰船电子工程,2012,2:10-12.

[13]郑宏建,孙有田.水面舰艇防空体系的发展趋势分析[J].飞航导

弹,2010,11:15-20.

人工智能大作业

第一章 1、3 什么就是人工智能?它的研究目标就是什么? 人工智能(Artificial Intelligence),英文缩写为AI。它就是研究、开发用于模拟、延伸与扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 研究目标:人工智能就是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理与专家系统等。 1、7 人工智能有哪几个主要学派?各自的特点就是什么? 主要学派:符号主义,联结主义与行为主义。 1.符号主义:认为人类智能的基本单元就是符号,认识过程就就是符号表示下的符号计算, 从而思维就就是符号计算; 2.联结主义:认为人类智能的基本单元就是神经元,认识过程就是由神经元构成的网络的信 息传递,这种传递就是并行分布进行的。 3.行为主义:认为,人工智能起源于控制论,提出智能取决于感知与行动,取决于对外界复 杂环境的适应,它不需要只就是,不需要表示,不需要推理。 1、8 人工智能有哪些主要研究与应用领域?其中有哪些就是新的研究热点? 1、研究领域:问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器 学习,神经网络,机器人学,数据挖掘与知识发现,人工生命,系统与语言工具。 2、研究热点:专家系统,机器学习,神经网络,分布式人工智能与Agent,数据挖掘与知识发 现。 第二章 2、8 用谓词逻辑知识表示方法表示如下知识: (1)有人喜欢梅花,有人喜欢菊花,有人既喜欢梅花又喜欢菊花。 三步走:定义谓词,定义个体域,谓词表示 定义谓词 P(x):x就是人

【上海交通大学】【神经网络原理与应用】作业3

Neural Network Theory and Applications Homework Assignment3 oxstar@SJTU January19,2012 1Data Preprocessing First we used‘svm-scale’of LibSVM to scale the data.There are two main advantages of scaling:one is to avoid attributes in greater numeric ranges dominating those in smaller numeric ranges,another one is to avoid numerical di?culties during the calculation[1].We linearly scaled each attribute to the range[-1,+1]. 2Model Selection We tried three di?erent kernel functions,namely linear,polynomial and RBF. ?liner:K(x i,x j)=x T i x j ?polynomial:K(x i,x j)=(γx T i x j+r)d,γ>0 ?radial basis function(RBF):K(x i,x j)=exp(?γ x i?x j 2),γ>0 The penalty parameter C and kernel parameters(γ,r,d)should be chosen.We used the ‘grid-search’[1]on C andγwhile r and d are set to their default values:0and3. In Figure1,we presents the contour maps for choosing the proper attributes.We just searched for some maxima while the global maximum is usually di?cult to?nd and with the values of attributes increasing,the running time increasing dramatically.Note that‘ovr’stands for one-versus-rest task decomposition methods while‘ovo’is short for one-versus-one and‘pvp’is short for part-versus-part. The liner kernel doesn’t have private attributes,so we should just search for the penalty parameter C.The results are shown in Figure2. The?nal selection for each attributes are presented in Table1. Table1:A Selection for Each Attributes Decomposition Kernel Cγ RBF10 1.0 one-versus-rest Polynomial0.10.7 Liner1 RBF1 1.5 one-versus-one Polynomial0.010.2 Liner0.1 RBF10.1 part-versus-part Polynomial0.010.4 Liner1

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

数据挖掘期末大作业任务

数据挖掘期末大作业 1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。 对于数据挖掘的发展趋势,可以从以下几个方面进行阐述: (1)数据挖掘语言的标准化描述:标准的数据 挖掘语言将有助于数据挖掘的系统化开发。改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。 (2)寻求数据挖掘过程中的可视化方法:可视 化要求已经成为数据挖掘系统中必不可少的技术。可以在发现知识的过程中进行很好的人机交互。数据的可视化起到了推动人们主动进行知识发现的作用。 (3)与特定数据存储类型的适应问题:根据不 同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。 (4)网络与分布式环境下的KDD问题:随着 Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。 (5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等 领域。由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。 (6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处 理系统的主流。 2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输 入,不知道其对应的输出。请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。 首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。 然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

人工神经网络

人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。 橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。 传统的回归方法存在以下局限性: (1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致; (2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据; (3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。因此,人们开始将人工神经网络应用于橡胶配方设计”J。 随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。 1橡胶配方设计 1.1橡胶配方设计概述 配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。 橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以 及加工性能、光洁度、外观等。 橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于 配方设计具有重要意义。

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

期末大作业报告

期末大作业报告 课程名称:数字图像处理 设计题目:车牌识别 学院:信息工程与自动化学院 专业:计算机科学与技术 年级:xxxxx 学生姓名:xxxxxxx(学号xxxxxxxxxxxxx) 指导教师:xxxx 日期:20XX.6.10 教务处制 车牌识别 摘要:数字图像处理技术是20世纪60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MA TLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MA TLAB在图像处理的应用中具有很大的优势。车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。 关键词:车牌识别、数字图像处理、MATLAB

一、设计原理 车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP 格式的数字,输出则为车牌号码的数字。牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 二、设计步骤 1. 提出总体设计方案: (1)车牌图像预处理方法 因为车牌图像都是在室外拍摄的,所以不可避免地会受到光照、气候等因素的影响,而且拍摄者的手部抖动与车辆的移动会造成图像的模糊。要去除这些干扰就得先对车牌图像进行预处理。由于当前数码相机的像素较高,原始图像的数据一般比较大,输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度。因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。对图像进行灰度化处理后常用的方法是图像二值化、去除背景图像、增强处理、边缘检测、滤波等处理等。

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

基于人工神经网络的图像识别

本文首先分析了图像识别技术以及bp神经网络算法,然后详细地阐述了人工神经网络图像识别技术。 【关键词】人工神经网络 bp神经网络图像识别识别技术 通常而言,所谓图像处理与识别,便是对实际图像进行转换与变换,进而达到识别的目的。图像往往具有相当庞大的信息量,在进行处理图像的时候要进行降维、数字化、滤波等程序,以往人们进行图像识别时采用投影法、不变矩法等方法,随着计算机技术的飞速发展,人工神经网络的图像识别技术将逐渐取代传统的图像识别方法,获得愈来愈广泛的应用。 1 人工神经网络图像识别技术概述 近年来,人工智能理论方面相关的理论越来越丰富,基于人工神经网络的图像识别技术也获得了非常广泛的应用,将图像识别技术与人工神经网络技术结合起来的优点是非常显著的,比如说: (1)由于神经网络具有自学习功能,可以使得系统能够适应识别图像信息的不确定性以及识别环境的不断变化。 (2)在一般情况下,神经网络的信息都是存储在网络的连接结构以及连接权值之上,从而使图像信息表示是统一的形式,如此便使得知识库的建立与管理变得简便起来。 (3)由于神经网络所具有的并行处理机制,在处理图像时可以达到比较快的速度,如此便可以使图像识别的实时处理要求得以满足。 (4)由于神经网络可增加图像信息处理的容错性,识别系统在图像遭到干扰的时候仍然能正常工作,输出较准确的信息。 2 图像识别技术探析 2.1 简介 广义来讲,图像技术是各种与图像有关的技术的总称。根据研究方法以及抽象程度的不同可以将图像技术分为三个层次,分为:图像处理、图像分析以及图像理解,该技术与计算机视觉、模式识别以及计算机图形学等学科互相交叉,与生物学、数学、物理学、电子学计算机科学等学科互相借鉴。此外,随着计算机技术的发展,对图像技术的进一步研究离不开神经网络、人工智能等理论。 2.2 图像处理、图像识别与图像理解的关系 图像处理包括图像压缩、图像编码以及图像分割等等,对图像进行处理的目的是判断图像里是否具有所需的信息并滤出噪声,并对这些信息进行确定。常用方法有灰度,二值化,锐化,去噪等;图像识别则是将经过处理的图像予以匹配,并且对类别名称进行确定,图像识别可以在分割的基础之上对所需提取的特征进行筛选,然后再对这些特征进行提取,最终根据测量结果进行识别;所谓图像理解,指的是在图像处理与图像识别的基础上,根据分类作结构句法分析,对图像进行描述与解释。所以,图像理解包括图像处理、图像识别和结构分析。就图像理解部分而言,输入是图像,输出是对图像的描述解释。 3 人工神经网络结构和算法 在上个世纪八十年代,mcclelland与rumelhant提出了一种人工神经网络,截止现在,bp神经网络已经发展成为应用最为广泛的神经网络之一,它是一种多层前馈神经网络,包括输入层、输出层和输入层输出层之间隐藏层,如图1所示,便是一种典型的bp神经网络结构。 bp神经网络是通过不断迭代更新权值使实际输入与输出关系达到期望,由输出向输入层反向计算误差,从而通过梯度下降方法不断修正各层权值的网络。 bp神经网络结构算法如下所述: (1)对权值矩阵,学习速率,最大学习次数,阈值等变量和参数进行初始化设置; (2)在黑色节点处对样本进行输入;

神经网络作业20092676吴戈林电子0901班

神经网络原理及其应用——基于BP 人工神经网络的图像分割器 学校:东北大学 班级:电子信息工程0901班 姓名:吴戈林 学号:20092676 指导老师:王斐 时间:2012年12月

目录 人工神经网络 (3) 一、特点与优势 (3) 二、人工神经网络的主要研究方向 (4) 三、人工神经网络的应用分析 (4) 四、人工神经网络在图像分割中的应用 (6) 1.问题概述 (7) 2.基于BP 人工神经网络的图像分割器 (8) 2.1神经网络结构的确定 (8) 2. 2 神经网络结构的改进 (9) 2. 3 BP 神经网络的图像分割基本训练 (9) 2. 4 BP 神经网络的针对性训练 (10) 3.网络应用 (10) 4.结论 (11) 五、课程收获与感想 (11) 六、参考文献 (12)

人工神经网络 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。 一、特点与优势 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的优越性,主要表现在三个方面: 第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

相关主题
文本预览
相关文档 最新文档