内燃机课程设计6200柴油机曲轴设计动力计算
- 格式:doc
- 大小:249.86 KB
- 文档页数:15
内燃机的课程设计一、课程目标知识目标:1. 了解内燃机的基本结构、工作原理及其在交通工具中的应用。
2. 掌握内燃机的四个冲程(进气、压缩、做功、排气)及其能量转换过程。
3. 理解内燃机的热效率、功率等性能指标,并学会如何提高内燃机的效率。
技能目标:1. 能够运用所学的内燃机知识,分析实际内燃机运行中可能存在的问题,并提出改进措施。
2. 学会使用简单工具进行内燃机的拆装和组装,提高动手实践能力。
3. 能够运用数学和物理知识,对内燃机的性能进行初步计算和评估。
情感态度价值观目标:1. 培养学生对内燃机及相关技术的兴趣,激发创新意识,增强探索精神。
2. 增强学生的环保意识,认识到内燃机排放对环境的影响,关注新能源技术的发展。
3. 培养学生团队合作意识,学会在团队中发挥个人作用,共同完成任务。
课程性质:本课程为初中物理学科的教学内容,侧重于内燃机的基础知识和实践技能的传授。
学生特点:初中生具有较强的求知欲和好奇心,动手实践能力逐渐提高,但理论知识掌握程度有限。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的积极性,提高学生的内燃机知识水平和实践能力。
在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。
通过有效的教学设计和评估,帮助学生将课程目标分解为具体的学习成果。
二、教学内容1. 内燃机概述- 内燃机的定义、类型及应用- 内燃机的发展简史2. 内燃机的结构与工作原理- 内燃机的四个冲程:进气、压缩、做功、排气- 内燃机的关键部件:气缸、活塞、连杆、曲轴、配气机构等- 内燃机的能量转换过程3. 内燃机的性能指标- 热效率、功率、扭矩等基本概念- 影响内燃机性能的因素- 提高内燃机性能的方法4. 内燃机的实际应用- 内燃机在交通工具中的应用案例- 内燃机在非交通工具领域的应用5. 内燃机的环保问题及新能源技术- 内燃机排放污染物的种类及危害- 环保内燃机技术及新能源技术简介6. 内燃机的拆装与组装实践- 内燃机的拆装与组装步骤- 安全操作规程及注意事项教学内容安排与进度:第1-2周:内燃机概述、结构与工作原理第3-4周:内燃机的性能指标、实际应用第5-6周:内燃机的环保问题及新能源技术第7-8周:内燃机的拆装与组装实践教学内容与课本关联性:教学内容紧密结合课本,按照教材章节顺序进行教学,确保学生能够系统地掌握内燃机相关知识。
内燃机曲轴机构教案设计一、教学目标本教案主要面向机械类专业的学生,通过本教案的学习,学生能够了解内燃机的工作原理和构造,掌握内燃机曲轴机构的基本原理和结构特点,能够完成内燃机曲轴机构的运动分析和设计计算,以及部分机械零件的加工制作和粗加工检验。
二、教学内容1、内燃机的原理和结构内燃机是一种利用燃料的化学能直接转化为机械能的热力机械,其原理是通过燃油与空气混合后被点火,燃烧产生高温高压气体,将活塞向下推,通过连杆和曲轴实现轴向流动并输出机械功。
内燃机的构造气缸、活塞、曲轴、连杆、气门等部分,它们的配合和运动是实现内燃机工作的关键。
2、曲轴机构的基本原理和结构曲轴是内燃机的重要组成部分,它转换来往直线往复运动为连续转动运动的能力决定了内燃机的输出功率和运动平稳性。
曲轴用于将活塞的线性倾斜转换为趋向同一方向的旋转运动,其主要结构有曲柄、连杆、曲轴轴颈、轴承等部分,各个部分的结构和工作原理都对内燃机的运动性能有着极其重要的影响。
3、曲轴机构的运动分析和设计计算曲轴机构的设计需要综合考虑旋转惯量、振动力、惯性力、力矩和转速等因素,以及各种基本力学条件和实际使用情况,最终确定曲轴的各个尺寸参数和连接方式。
曲轴机构的运动分析可以通过建立几何模型和运动学方程,以及结合液压传动和力学分析等方法,对各个部分的受力情况进行合理评估和优化设计。
4、曲轴机构的加工制作和粗加工检验曲轴机构的加工制作需要依据设计图纸和标准,通过数控机床和特种加工设备将各个部分进行加工和组装,在生产制造过程中需要确定各项加工质量指标和检验标准,实现过程的高效性和产品的可靠性。
在粗加工检验阶段,需要通过测量和检测各个尺寸和表面形状参数,以确保机械零件符合质量要求和标准。
三、教学方法本教学采用理论讲解和实践操作相结合的方式,前期着重于理论讲解,对内燃机曲轴机构进行逐个分析和演示,让学生了解其结构和原理,熟悉其内部运动规律和相互作用关系;后期通过实际仿真、实验操作和现场观察等形式,让学生进行实操和精细制作,提高其综合素质和实际掌握能力。
内燃机课程设计任务书
一、题目
6200柴油机曲轴设计
二、零件设计条件
1.主要用途:用于6200柴油机;
2.机械强度要求:满足动力计算的负荷条件;
3.机构、工艺和材料应适合我国一般柴油机厂的制造水平和国家资源情况;4.重量、尺度指标应在原件所达到的基础上有所改进。
三、设计内容
1.动力计算;
2.绘制柴油机曲轴零件图;
3.曲柄销圆角处的安全校核;
4.编写设计计算说明书。
四、设计要求
1.编写设计计算说明书一份,1.2万字左右(20~25页)。
2.用计算机书写文本,用AutoCAD绘图。
3.公式要有出处,符号要有说明。
五、课程设计进度安排
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。
内燃机课程设计任务书一、题目:柴油机热力设计二、给定参数:1.活塞排量: 2.4L2.柴油重量成分:C=0.870,H=0.126,O=0.004。
3.柴油的低位发热值:H=42860kJ/kg。
u三、设计内容1.方案选择及总体设计(确定主要性能参数和结构参数)。
2.工作循环计算(包括最低转速、最大扭矩、最大功率、最高速度工况)与示功图。
3.热平衡计算与热平衡图。
4.外特性计算与外特性曲线图。
5.绘制曲轴零件图(A1)。
四、设计要求1.编写设计计算说明书一份,1.2万字左右(20~25页)。
2.用计算机书写文本,用AutoCAD绘图。
3.公式要有出处,符号要有说明。
柴油机热力设计计算说明书1.文献综述1.1柴油机发展现状1.1.1我国柴油机产业的现状与发展我国柴油机产业自20世纪80年代以来有了较快的发展,随着一批先进机型与技术的引进,我国柴油机总体技术水平已经达到国外80年代末90年代初的水平,一些国外近几年开始采用的排放控制技术在少数国产柴油机上也有应用。
最新开发投产的柴油机产品的排放水平已经达到欧1排放限值要求,一些甚至可以达到欧2排放限值要求。
但我国柴油机产业的整体发展仍然面临着许多问题。
(1)我国重型柴油车的产量在逐年的增加,中型、轻型车柴油化步伐也在加快,但在微型汽车、轿车领域,柴油车所占比例仍为零。
而另一方面,我国中型柴油机市场已呈现供大于求,轻型柴油机市场也趋向饱和,但骨干企业正在生产的多数产品从技术角度已应是淘汰产品,发展潜力不大。
(2)柴油机行业投入不足,严重制约了生产工艺水品、规模发展和自主开发能力的提高。
现在,我国柴油机技术基础薄弱,整体技术水平落后国际先进水平10至20年,也落后于国内车用汽油机的发展,还不具备完整的全新柴油机产品和关键零部件开发能力。
许多国外普遍采用的技术在我国仍处于研究阶段,有些甚至仍是空白。
(3)我国柴油机技术的落后、产品质量差以及车辆使用中维修保养措施不力,导致低性能、高排放柴油车在使用中对城市环境和大气质量造成不良影响,使社会产生“厌柴”心理。
1前言 (2)2结构参数计算 (2)2.1已知条件 (2)2.2发动机结构形式 (2)2.3发动机主要结构参数 (2)3动力学计算 (5)4连杆的设计 (9)4.1连杆主要尺寸设计 (9)4.1.1连杆长度的确定 (9)4.1.2连杆小头尺寸的确定 (9)4.1.3连杆大头尺寸的确 (10)4.2连杆强度的计算 (10)4.2.1连杆小头强度的计算 (10)4.2.2连杆大头的强度计算 (13)5小结 (14)6参考文献 (15)1前言《内燃机设计》课程设计是在我们学习了一些基础制图知识和汽车以及发动机的整体知识框架后所给我们的一次很好的锻炼,众所周知现代汽车工业发展越来越快,而作为汽车心脏的发动机自然也成为了发展的重中之重,发动机的结构和性能对汽车起着决定性的影响,比如汽车的行使速度、加速性能、爬坡度、牵引力等等都取决于发动机,因此来说设计发动机是汽车设计的重中之重,而发动机的设计又对我们的想象能力,制图能力,分析计算能力,查阅各种工具书的能力无疑是一次很好的锻炼,因此,我们要充分利用这次课程设计的机会,认真对待,做好充分的准备,保证高质量的去完成,这也为以后学习打下了一个很好的基础。
2结构参数计算2.1已知条件平均有效压力:1.064MPa活塞平均速度:7.8m/s2.2发动机结构形式发动机功率为41.695KW ,参考袁兆成版《内燃机设计》设计为4缸4冲程柴油机,冷却方式采用水冷。
2.3发动机主要结构参数参考袁兆成版《内燃机设计》S/D 的取值范围在0.8~1.2之间,取S/D=1P e =τ20785.0Vm zD p em =4808.74064.10785.02⨯⨯⨯⨯=41.695KwD=80mm 则S=80mm (S 与D 均取整) 则气缸工作容积V=LSD 40192.042=πn=SC m30 =3000 r/min 角速度度ω=30nπ=3.14×3000/30=314rad/s S/2=40mm3动力学计算由曲柄连杆机构的受力分析计算:P=P g +P j =P g -m j r ω2(cos α+λcos2α) =Pg-mjj (m j 为机构往复惯性质量)活塞质量mp=630g 连杆小头质量m4=190g连杆质量m=0.00063(D-80)2+0.0476(D-80)+0.2149≈1.05kg 估算m j=mp+m3+m4≈387.22gP 在连杆小头处即活塞销孔处分解为Pn 和P1,而P1又在两岸大头分解为K 和t ,Pn=P*tg β P l =βcos Pk= P l cos(α+β)=ββαcos )cos(+pββαcos )sin(+=P t4连杆的设计连杆是发动机的重要组成部分,主要由连杆大头、大头盖、连杆轴瓦及连杆螺栓等部分组成。
目录一柴油机基本参数选定 (2)1.1柴油机设计指示 (2)1.2柴油机基本结构参数选用 (2)二近似热计算 (3)2.1燃料燃烧热化学计算 (3)2.2换气过程计算 (3)2.3压缩过程计算 (4)2.4燃烧过程计算 (4)2.5膨胀过程计算 (7)2.6示功图绘制 (7)2.7柴油机性能指标计算 (8)三连杆尺寸的确定、建模以及制图 (8)四动力计算 (10)4.1 活塞位移、速度、加速度 (10)4.2 活塞连杆作用力分析 (11)4.3 曲柄销载荷和连杆轴承载荷 (12)参考文献 (13)附表 (13)一、柴油机基本参数选定1.1、 柴油机设计指示1、功率Pe有效功率是柴油机基本性能指标。
Pe 由柴油机的用途选定,任务书指定所需柴油机有效功率Pe 为66.2KW 。
2、转速n转速的选用既要考虑被柴油机驱动的工作机械的需要,也要考虑转速对柴油机自身工作的影响。
本设计中的柴油机为1050rpm 。
3、冲程数τ本设计的柴油机采用四冲程,即τ=4. 4、平均有效压力Pem平均有效压力Pem 表示每一工作循环中单位气缸工作容积所做的有效功,是柴油机的强化指标之一。
查表去本柴油机的Pem=0.61Mpa 5、有效燃油消耗率be这是柴油机最重要的经济性指标。
影响柴油机经济性的因素很多,在设计中要仔细分析。
四冲程非增压柴油机215[g/(kw ·h)]~285[g/(kw ·h)]。
6、可靠性和寿命可靠性和寿命是车用柴油机的基本要求之一,设计时必须提出具体指标,但本课程设计从略。
此外,设计指标还可能包括造价、排污、噪声等方面的因素。
1.2、柴油机基本结构参数选用由有效功率计算公式:τ30e nV i P P s em ⨯⨯⨯=可知由于Pe 、Pem 、n 、τ已选定,则柴油机的总排量s V i ⨯=12.4,下一步应选定柴油机的基本结构参数:气缸直径d 、活塞行程S 、缸数i 及其它一些参数。
内燃机动力学课程设计一、课程设计背景内燃机是一种常见的动力设备,广泛应用于汽车、飞机、船舶等各种交通工具及机械设备中。
内燃机动力学是机械制造和汽车工程专业中的重要课程之一,它关注内燃机燃烧、气缸压力、功率输出等基本原理及其应用,培养学生对内燃机的深刻理解和初步的设计能力,为未来的工程实践打下基础。
为了提高内燃机动力学课程的教学质量,加深学生对于内燃机原理及其应用的理解,我们设计了一套完整的课程设计方案。
本设计方案旨在通过实际操作、让学生深入了解内燃机结构及其工作原理,提高学生的动手操作能力和独立思考能力。
二、课程设计目标1.理解内燃机的基本结构和工作原理;2.掌握内燃机气缸压力的计算方法及使用;3.学习使用计算机辅助设计软件进行内燃机的初步设计;4.培养学生动手实践和独立思考能力。
三、课程设计内容3.1 内燃机结构和工作原理1.内燃机的基本结构和分类;2.内燃机的工作原理及其热力循环;3.内燃机燃油系统、点火系统、排气系统的组成和作用。
3.2 气缸压力计算及分析1.内燃机燃烧过程中气缸压力的变化规律;2.内燃机气缸压力计算的基本方法及其应用;3.内燃机气缸压力的分析及其影响因素。
3.3 计算机辅助设计1.内燃机设计软件的基本介绍及使用;2.内燃机初步设计的基本流程和方法;3.内燃机设计方案的评估和优化。
3.4 课程设计实践环节1.学生分组进行内燃机设计和实验操作;2.设计小组负责制,学生需要充分讨论,确定内燃机设计的细节和方向;3.在教师的指导下,学生进行内燃机的装配、测试和性能评估。
四、课程设计评估1.考勤:学生需按时到达实验室进行实验操作,旷课行为不得出现;2.内燃机设计文档:学生需要按照教师要求,撰写和提交内燃机设计文档和实验报告;3.内燃机性能评估:教师将根据内燃机性能评估结果,对学生的设计和操作能力进行评估;4.问答答题:在实验操作的过程中,学生需要回答教师的问答题,并对实验过程中的出现的问题予以解答。
6200柴油机总体设计及气缸工作过程热力计算[摘要]:近几年来,由于经济体制的改革和市场经济的迅速发展,城区物流行业蓬勃发展,对轻型卡车和商务车的需求量与日俱增,这给轻型车用柴油机带来了无限商机。
原机型主要用于城市间的长距离运输,对于城市交通路况需要重新设定参数,以改善燃油经济性和排放性能。
柴油机的总体布置和各附件的布置对内燃机的外形尺寸和工作可靠性、使用方便性都有很大的影响。
应在保证拆装、维修方便的前提下,尽可能直接可靠地固定在机体和气缸盖上,并且不使任何附件过于突出。
尽量不用外接的机油管和冷却液管,而采用在零件上开通道代替,以减少泄露的可能。
减少零件数不仅改善了其可靠性,而且有利于降低成本。
对本课题对曲轴进行了详细设计和分析验算,并给出了合理的设计方案。
[关键词]:6200 交通运输六缸柴油机气缸设计目录第一章绪论 (1)1.1 选题的意义 (1)1.2 国内外研究现状及发展趋势 (1)1.3 6200型柴油机设计任务 (2)第二章 6200型柴油机总体设计 (3)2.1确定发动机的主要参数 (3)2.2 机体组的设计 (3)2.3曲柄连杆机构的设计 (5)2.4配气机构的设计 (9)2.5柴油机燃油供给系统 (11)2.6 柴油机冷却系统的设计.............................. (12)2.7 润滑系统的设计 (12)2.8 增压系统的设计 (13)2.9 总体布置方案设计 (13)第三章气缸工作过程热计算 (14)3.1 进气过程 (14)3.2 压缩过程 (14)3.3 燃烧过程 (15)3.4 膨胀过程 (16)3.5 动力、经济性能指标 (17)参考文献 (21)第一章绪论1.1选题的意义内燃机的外形尺寸和工作可靠性、使用方便性都受柴油机的总体布置和各附件的布置的很大影响。
应在保证拆装、维修方便的前提下,尽可能直接可靠地固定在机体和气缸盖上,并且不使任何附件过于突出。
内燃机学第三版课程设计一、课程设计目标及内容1.1 课程设计目标《内燃机学》是机械工程专业的重要课程之一,其主要包括燃烧理论、热力循环、机构运动、气缸和活塞、曲轴系统、气门系统、滑动轮、燃油系统、点火和燃油喷射等内容。
本次课程设计的目标是帮助学生更好地理解内燃机工作原理、热力循环等知识,加深掌握内燃机的结构和特性,培养学生的实际操作和实验分析能力。
1.2 课程设计内容本次课程设计主要包括以下内容:1.内燃机元件测量设计2.制作内燃机曲轴动平衡装置3.燃油系统检测与实验4.点火系统调试与实验5.内燃机基本参数测试与分析二、课程设计方案2.1 实验设备准备1.双缸四冲程内燃机2.曲轴平衡器3.手动油泵装置4.点火灯和高压电缆5.学生实验室仪表2.2 实验流程2.2.1 内燃机元件测量设计1.授课教师向学生介绍实验原理和要求2.学生根据教师要求,选择测量工具和时间,进行内燃机元件测量设计3.学生根据测量数据,进行数据分析和处理2.2.2 制作内燃机曲轴动平衡装置1.授课教师向学生介绍实验原理和要求2.学生根据教师要求,选择工具和材料,进行内燃机曲轴动平衡装置制作3.学生根据制作步骤和要求,进行实验操作和数据分析2.2.3 燃油系统检测与实验1.授课教师向学生介绍实验原理和要求2.学生根据教师要求,进行燃油系统检测和调试3.学生对实验数据进行分析和总结,排除实验误差2.2.4 点火系统调试与实验1.授课教师向学生介绍实验原理和要求2.学生根据教师要求,进行点火系统调试和实验3.对实验数据进行分析和处理2.2.5 内燃机基本参数测试与分析1.授课教师向学生介绍实验原理和要求2.学生根据教师要求,选择实验工具和时间,进行内燃机基本参数测试3.学生根据测量数据,进行数据分析和处理三、课程设计总结本次《内燃机学》第三版课程设计以实际操作为基础,结合理论分析,充分培养和发挥学生的实验分析能力和实际操作能力,使学生更好地掌握和理解内燃机工作原理、特性和性能参数,对内燃机领域的专业知识有更深刻的理解和掌握,为学生未来的学习和工作打下良好的基础。
《内燃机学》课程设计设计计算说明书题目6200柴油机曲轴设计学院专业班级姓名学号指导教师年月日目录1 动力计算 (2)1.1初始条件 (2)1.2曲柄连杆机构运动质量的确定 (2)1.3 P-φ示功图的求取 (3)1.4往复惯性力P j(α)计算 (3)1.5总作用力P(α)计算 (4)1.6活塞侧推力P H(α)计算 (4)1.7连杆力P C(α)计算 (5)1.8法向力P N(α)计算 (5)1.9切向力P T(α)计算 (6)∑T p计算 (7)1.10总切向力)(α1.11曲柄销负荷R B(α)计算 (8)1.12准确性校核 (9)2 曲轴设计计算 (10)2.1曲轴各部尺寸比例 (10)2.2曲轴船规验算 (11)1 动力计算1.1初始条件母型机参数:四冲程六缸、废气涡轮增压、不可逆式、直接喷射、压缩空气启动。
D=200mmS=270mmn=600r/min Ne=440kW增压压力P k =0.241Ma ,压缩比ε=12.5,机械效率ηm =0.85,压缩复热指数n 1=1.37,膨胀复热指数n 2=1.26,Z 点利用系数ξz =0.88,燃烧过量空气系数α=2.0,中冷器出水温度t=250 ,原机配气定时:进气门开——上死点前60度 进气门关——下死点后40度 排气门开——下死点前40度 排气门关——上死点后60度行程失效系数可取约0.083。
连杆长L=540mm ,质量为34.76kg ,活塞组质量m=35.76kg ,连杆组质量分配比0.347/0.653,单位曲柄不平衡质量m=48.67kg 。
1.2曲柄连杆机构运动质量的确定将摆动的连杆用双质量系代替,一部分质量等价到做往复运动的活塞组中,另一部质量等价到做回转运动的曲柄组中,从而可以求出往复质量j m 和连杆组算到大端的质量B m 。
由于连杆尺寸并未确定,先按照母型机的连杆质量分配比。
0.347*35.760.347*34.7647.8217()j L m M m kg =+=+=0.653*0.653*34.7622.6983()B L m m kg ===上式中,M 表示活塞组质量,0.347/0.653为连杆组质量分配比,L m 为连杆质量,质量单位都用kg 。
1.3 P-φ示功图的求取将所给的P-V 示功图,用发动机运动学公式将其展开,即得P-φ示功图。
将活塞的位移转换成对应的曲柄转角,以α代表曲柄转角,取145个点,对应0度到720度每隔5度取一次,由此可得各曲柄转角α下的气体力值Pg (α),单位为MPa 。
用matlab 画成曲线见图1,其matlab 程序参见附录。
图中实线表示的是气缸压力Pg 与曲柄转角a 的关系。
图1 P,Pg,Pj 与曲柄转角a 的关系1.4往复惯性力P j (α)计算232()(cos cos 2)104jj m p a R a a D ωλπ-=-+ (MPa) (1)往复惯性力按照公式1计算,图1中虚线即为往复惯性力与曲柄转角a 的关系。
式中:mj —往复运动质量,kg ; R —曲柄半径,mm ; D —气缸直径,mm ;ω—曲轴旋转角速度,rad/s ; β—连杆摆角,rad 。
1.5总作用力P (α)计算)()()(a p p a p a p j B g +-= (MPa) (2)总作用力P (a )按照公式2计算,式中P B 表示活塞底部气体压力,取大气压力,即P B =0.1Mpa 。
图1中点划线表示总作用力与曲柄转角之间的关系。
通过三者的比较可以看出气缸压力对总作用力影响较大。
1.6活塞侧推力P H (α)计算βtg a p a p H )()(= (MPa) (3)活塞侧推力()H p a 按照公式3进行计算,式中β表示连杆摆角。
连杆摆角与曲柄转角纯在下列关系:arcsin(*sin())a βλ=,活塞侧推力与曲柄转角的关系见图2。
图2 活塞侧推力与曲柄转角的关系1.7连杆力P C (α)计算βcos /)()(a p a p C = (MPa) (4)连杆力()c p a 按照公式4进行计算,连杆力()c p a 与曲柄转角的关系见图3。
图3 连杆力与曲柄转角的关系1.8法向力P N (α)计算)cos()()(βα+=a p a p C N (MPa) (5)法向力()N p a 按照公式5计算,法向力()N p a 与曲柄转角的关系见图4。
图4 法向力与曲柄转角的关系1.9切向力P T (α)计算)sin()()(βα+=a p a p C T (MPa) (6)切向力()T p a 按照公式6计算,切向力()T p a 与曲柄转角的关系见图5。
图5 曲柄转角与切向力的关系1.10总切向力)(α∑T p 计算1()(720/)zTT i pa p a i z ==+⋅∑∑ (MPa) (7)对于四冲程曲柄均匀排列情况的总切力按照公式6计算。
气缸之间的间隔角为120deg ,总切力与曲柄转角的关系见图6。
图6 总切力与曲柄转角之间的关系1.11曲柄销负荷R B (α)计算22()()()B BH BV R a R a R a =+ (MPa) (8)曲柄销合力按照公式8计算,式中:()BH R α—曲柄销负荷水平分量,()()BH T R p a α=(MPa);()BV R a —曲柄销负荷垂直分量()()BV N r R a p a p β=-,22p /()4r B m R D βπω=(MPa);B m —连杆组算到大端的质量,kg 。
曲柄销合力()B R a 与曲柄转角的关系见图7。
图7 曲柄销负荷与曲柄转角的关系1.12准确性校核610)(ωR F p N p cp T i ∑=(KW) (9)按照总切力曲线作准确性校核,根据总切曲线计算出平均切力,再按公式9进行计算,式中p F 表示活塞面积,单位是2mm ;()T cpp ∑表示平均切力,单位是Mpa 。
再将指示功率与给定功率进行比较,计算出误差。
610)(ωR F p N p cp T i ∑==501.2382kwii i N N N '-=∆= -3.27% 计算出来的误差在5%以内,符合要求。
2 曲轴设计计算2.1曲轴各部尺寸比例在初步定出曲轴的尺寸后,应立即作曲柄销和主轴颈最大比压验算:曲轴销MPaLdDppppz56.3342max==π主轴颈a70.18242maxMPLdDqppjjz==π式中:Pz—最大燃烧压力,Mpa;D—气径直径,mm;dp,dj—曲柄销及主曲颈直径,mm;L P ,Lj—曲柄销及主轴颈有效长度,mm(考虑了过渡圆角的影响);q—考虑相邻缸的影响系数。
四冲程q≤1.25;二冲程q≤1.50,式中q=1.2。
2.2曲轴船规验算我国船舶检验局“钢质海船入级与建造规范(2006)”对船舶柴油机曲轴有如下规定:对整锻、铸造、半组合或全组合曲轴的主轴颈及曲柄销,其最小直径d 如下计算。
曲轴材料选用铸钢。
对锻钢、铸钢、合金钢材料的曲轴: []mm S p Ca L L Pz Aa D d b i r P B 2.149)590160(65)(32=++-=σ式中: D —气缸直径,D =200mm ;S —活塞行程,S =270mm ;L —相邻两主轴承中心线间的距离,L =320mm ; L P —曲柄销的有效长度,L P =90mm ; Pz —最高燃烧压力,Pz=12.5MPa ;Pi —平均指示压力,MPa niV nii 97.1120P s ==Ni —由总切力得到的指示功率,Ni =501.2382kW ; Vs —每缸的工作容积,L SVs 48.81042702004D 6-22=⨯⨯⨯==ππ;n —柴油机转速,n=600r/min ; i —气缸数,i=6;σb —材料标定抗拉强度下限值,σb =500MPa ;A —系数,对直列式单作用柴油机,A =0.50; C —系数,对直列式单作用四冲程柴油机,C =2.553; αB —弯曲应力集中系数,对于原机型的曲轴,αB =3..39;r p —过渡圆角半径,r p =10mm ; d p —曲柄销直径,dp =130mm ; b —曲臂宽,b =200mm ;e —轴颈的重叠量,e=(dp+dj )/2-S/2=0; αr —扭转应力集中系数,))/(8570.0)/(3482.5)/(654.108955.7()/(923.032)/1015.02205.0(r p p p d e p p d b d b d b d r p -+-⋅=--α=1.69;由计算结果可知,d=149.2mm <150mm ,故设计的曲轴可用。
附录Matlab计算程序>> %内燃机课程设计动力计算%a1 =0 : 5 : 720;%曲柄转角%Pg1=[3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3.05,3.1,3.15,3.2,3.25, 3.3,3.35,3.35,3.4,3.45,3.45,3.5,3.75,4,4.25,4.5,4.75,5,5.5,6.5,7,8,9,10.5,13,15,18,21.5,26,32,40,49, 59,65,80,105,119,124,125,115,101,87.5,72.5,60,50,43,36.5,32,28,25,22,19.5,18,16.5,15.5,14,13,1 2.5,12,11,10.5,10.25,10,9.75,9.5,9,8.5,8,7.75,7,6.5,6,5.5,5,4,3.5,3,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2. 5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,3];%气缸压力,kg/cm^2%a = 0 : 1 : 720;Pg = interp1(a1,Pg1,a,'spline');>> Pg = Pg/10.197;%气缸压力单位转化,Mpa%Ne = 440;%单位是kw%mj = 35.76 + 0.347 * 34.76; %活塞组等效质量,kg%mb = 0.653 * 34.76; %连杆组算到大端的质量,kg%D = 200;%活塞直径,mm%L = 540;%连杆长度,mm%R = 135;%曲柄半径,mm%z = 6;%气缸数;x = R/L;%曲柄连杆比%B = asin(x*sin(a*pi/180));%连杆摆角%w = 600*pi/30;%转速,rad/s%Pj = - mj * R * w^2 *(cos(a*pi/180) + x * cos(a*pi/90))/(pi * D^2/4 * 10^3);%往复惯性力,Mpa%Pb = 0.1;%活塞底部气体压力,取为大气压力,Mpa%P = Pj - Pb + Pg;%总作用力,Mpa%figure(1);%打开新图版;plot(a,Pg,a,Pj,'--',a,P,'-.');%蓝色的为气缸压力与曲轴转角的关系,黄色为往复惯性力与曲柄转角的关系,红色为总作用力与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('(P,Pg,Pj)/Mpa');%加纵坐标%legend('Pg','Pj','P')grid on ;%添加网格%Ph = P .* tan(B);%活塞侧推力,单位是Mpa%Pc = P./cos(B);%连杆力,单位是Mpa%Pn = Pc .* cos(a*pi/180 + B);%法向力,单位是Mpa%Pt = Pc .* sin(a*pi/180 + B);%切向力,单位是Mpa%SumPt = Pt ;%为总切力,单位是Mpa;%for i=1:721for j=1:5m=i+720*j/z;if m>721m=m-720;endSumPt(i)=SumPt(i)+Pt(m);endendavePt = mean(SumPt);%平均切向力,单位是Mpa%Rbh = Pt;%曲柄销负荷水平分量,单位是Mpa%Prb = mb * R * w^2/(pi * D^2/4 * 10^3);Rbv = Pn - Prb; %曲柄销负荷垂直分量,单位是Mpa%Rb = (Rbh .* Rbh + Rbv .* Rbv).^0.5; %曲柄销总负荷%figure(2);%打开新图版%plot(a,Ph);%画侧推力与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('侧推力Ph/Mpa');%加纵坐标%grid on ;%添加网格%figure(3);%打开新图版%plot(a,Pc);%画连杆力与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('连杆力Pc/Mpa');%加纵坐标%grid on ;%添加网格%figure(4);%打开新图版%plot(a,Pn);%画法向力与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('法向力Pn/Mpa');%加纵坐标%grid on ;%添加网格%figure(5);%打开新图版%plot(a,Pt);%画切向力与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('切向力Pt/Mpa');%加纵坐标%grid on ;%添加网格%figure(6);%打开新图版%A = 0 :1: 720;plot(A,SumPt);%画总切向力与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('总切向力SumPt/Mpa');%加纵坐标%grid on ;%添加网格%figure(7);%打开新图版%plot(a,Rb);%画曲柄销负荷与曲柄转角的关系%xlabel('曲柄转角a/deg');%加横坐标%ylabel('曲柄销负荷Rb/Mpa');%加纵坐标%grid on ;%添加网格%Ni = avePt * pi * D^2 * R * w / (4 * 10^6)%由总切力计算指示功率% d = ( Ni - Ne/0.85 ) / Ni %计算误差%。