人教版高中物理必修二 5.5向心加速度
- 格式:ppt
- 大小:2.03 MB
- 文档页数:31
向心加速度的深入理解教学体会思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。
学生素质的培养就成了镜中花,水中月。
注意:①向心加速度是匀速圆周运动的瞬时加速度而不是平均加速度;在匀速圆周运动中,加速度不是恒定的,这里的向心加速度是指某时刻或某一位置的瞬时加速度,它等于包含该时刻(或该位置)在内的一小段时间内的平均加速度的极限值,即a n =lim t v ∆∆,公式a n =rv 2中的速度v 应为瞬时速度值. ②向心加速度不一定是物体做圆周运动的实际加速度;在匀速圆周运动中,向心加速度就是物体做圆周运动的实际加速度,而在一般的非匀速圆周运动中,它只是物体实际运动的加速度的一个分加速度,另一个分加速度为切向加速度,如图所示.可见物体做圆周运动的加速度不一定指向圆心,只有匀速圆周运动的加速度才一定指向圆心;但向心加速度方向始终沿着半径指向圆心.圆周运动的切向加速度是描述圆周运动的线速度的大小改变快慢的,向心加速度是描述线速度的方向改变快慢的.③所有做曲线运动的物体都需要向心力,其向心力F n =m Rv 2,其中R 为物体所在曲线处的曲率半径,对应的向心加速度a n =Rv 2. ④质点做匀速圆周运动和刚体的匀速转动是两个不同的物理模型;我们不能说质点在转动,也不能说刚体做圆周运动,注意刚体转动时,其上各点均做圆周运动,它们做圆周运动的半径可以不相等,但各点运动的角速度相等。
⑤一个常见的错误是:在确定了做匀速圆周运动物体受到的各力(重力、弹力、摩擦力等)后,认为物体还受到一个大小等于m rv 2的向心力.例如,长为L 的轻绳拴着一个小球做圆锥摆运动(如图所示)在分析小球受力时,有些同学除确认小球受竖直向下的重力mg 和绳子的拉力F T 外,还错误地认为小球受到一个在水平面内指向圆心的向心力.其错误在于忘掉了向心力是做匀速圆周运动物体受到的合外力.实际上,小球只受到重力和拉力,这两个力的合力F =mg tan θ就称为向心力.试想,如果把向心力当做一个额外的力,认为小球受三个力,显然歪曲了物体的受力情况(相当于把物体受到的每个力算了两遍),是完全错误的.。
双基限时练(六) 向心加速度1.一小球被细绳拴着,在水平面内做半径为R 的匀速圆周运动,向心加速度为a n ,那么( )A .小球运动的角速度ω=a nRB .小球在时间t 内通过的路程s =t a n RC .小球做匀速圆周运动的周期T = R a nD .小球在时间t 内可能发生的最大位移为2R解析 由a n =Rω2可得ω= a nR ,A 项正确;由a n =v 2R 可得v=a n R ,所以t 时间内通过的路程s =v t =t a n R ,B 项正确;由a n=Rω2=4π2T 2·R ,可知T =2πR a n,C 项错误;位移由初位置指向末位置的有向线段来描述,对于做圆周运动的小球而言,位移大小即为圆周上两点间的距离,最大值为2R ,D 项正确.答案 ABD2.由于地球自转,比较位于赤道上的物体1与位于北纬60°的物体2,则有( )A .它们的角速度之比ω1:ω2=2:1B .它们的线速度之比v 1:v 2=2:1C .它们的向心加速度之比a 1:a 2=2:1D .它们的向心加速度之比a 1:a 2=4:1解析 同在地球上,物体1和物体2的角速度必相等,设物体1的轨道半径为R ,则物体2的轨道半径为R cos60°,所以,v 1:v 2=ωR :ωR cos60°=2:1,a1:a2=ω2R:ω2R cos60°=2:1.答案BC3.一物体以4 m/s的线速度做匀速圆周运动,转动周期为2 s,则物体在运动过程的任意时刻,速度变化率大小为() A.2 m/s2B.4 m/s2C.0 D.4π m/s2解析做匀速圆周运动的物体的速度变化率大小即为向心加速度大小,a n=ωv=2πTv=2π2×4 m/s2=4π m/s2,故D选项正确.答案 D4.关于匀速圆周运动的向心加速度,下列说法中正确的是()A.由于a n=v2r,所以线速度大的物体向心加速度大B.由于a n=v2r,所以旋转半径大的物体向心加速度小C.由于a n=ω2r,所以角速度大的物体向心加速度大D.以上结论都不正确解析对于a n=v2r,只有半径一定的前提下,才能说线速度越大,向心加速度越大,选项A错误,同理选项B错误;对于a n=ω2r,只有半径一定的前提下,才能说角速度越大,向心加速度越大,故选项C错误.答案 D5.在图中,A、B为咬合传动的两齿轮,R A=2R B,则A、B两轮边缘上两点的关系正确的是()A.角速度之比为2:1B.向心加速度之比为1:2C.周期之比为1:2D.转速之比为2:1解析根据两轮边缘线速度大小相等.由v=rω、ω=vr知角速度之比为1:2,A项错误;由a n=v2r得向心加速度之比为1:2,B项正确;由T=2πrv得周期之比为2:1,C项错误;由n=v2πr,转速之比为1:2,故D项错误.答案 B6.如图所示为质点P、Q做匀速圆周运动时向心加速度随半径变化的图线,表示质点P的图线是双曲线,表示质点Q的图线是过原点的一条直线,由图线可知()A.质点P的线速度大小不变B.质点P的角速度大小不变C.质点Q的角速度随半径变化D.质点Q的线速度大小不变解析由图线可知,对质点P,其向心加速度a n与半径r的乘积为常量,即a n r=常量=v2r·r=v2,所以质点P的线速度大小不变,故A选项正确,B选项错误;质点Q的向心加速度跟r成正比,即a n=ω2r,所以质点Q做圆周运动的角速度不变,线速度随半径增大而增大,故C、D选项错误.答案 A7.如图所示,长为L的悬线固定在O点,在O点正下方L2处有一钉子C,把悬线另一端的小球m拉到跟悬点在同一水平面上无初速度释放,小球到悬点正下方时悬线碰到钉子,则小球的()A.线速度突然增大B.角速度突然增大C.向心加速度突然增大D.以上说法均不对解析当小球运动到O点正下方时,由于圆心由O点变成C点,小球做圆周运动的半径突然减小,而小球的线速度不能突变,即线速度不变,由v=ωr,可知角速度会突然增大,故A选项错误,B选项正确;由a n=v2r可知向心加速度突然增大,故C选项正确.答案BC8.甲、乙两物体都做匀速圆周运动,转动半径之比为3:4,在相同的时间里甲转过60圈时,乙转过45圈,则它们的向心加速度之比为()A.3:4 B.4:3C.4:9 D.9:16解析根据a n=ω2r,ω=2πT,得a甲a乙=r甲·T2乙r乙·T2甲,又因T甲=t60,T乙=t45,所以a甲a乙=34×4232=43,故B选项正确.答案 B9.质量相等的A、B两质点分别做匀速圆周运动,若在相等的时间内通过的弧长之比为2:3,而转过的角度之比为3:2,则A、B两质点周期之比T A:T B=__________,向心加速度之比a A:a B=__________.解析t相等,故v=st∝s,v A:v B=2:3,又ω=θt∝θ,ωA:ωB=3:2.由T=2πω∝1ω,得T A:T B=2:3,由a=vω,得a A:a B=1:1.答案2:31:110.如图所示,摩擦轮A和B通过中介轮C进行传动,A为主动轮,A的半径为20 cm,B的半径为10 cm,A、B两轮边缘上的点,角速度之比为__________;向心加速度之比为__________.解析由题知,A、B、C三轮边缘上的点的线速度相等.所以v=r AωA=r BωB,故ωAωB=r Br A=12,又a=vω∝ω,所以a Aa B=12.答案1:21:211.如图所示,一轿车以30 m/s的速率沿半径为60 m的圆形跑道行驶,当轿车从A运动到B时,轿车和圆心的连线转过的角度为90°,求:(1)此过程中轿车的位移大小;(2)此过程中轿车通过的路程;(3)轿车运动的向心加速度大小.解析由题中条件可知:v=30 m/s,r=60 m,θ=90°=π2.(1)轿车的位移为从初位置A到末位置B的有向线段的长度x=2r=2×60 m≈85 m.(2)路程等于弧长l=rθ=60×π2m≈94.2 m.(3)向心加速度大小a=v2r=30260m/s2=15 m/s2.答案(1)85 m(2)94.2 m(3)15 m/s212.飞机由俯冲转为拉起的一段轨迹可以看成圆弧,如图所示,如果这段圆弧的半径r=800 m,飞行员承受的加速度为8 g.飞机在最低点P的速率不得超过多少?(g=10 m/s2)解析飞机在最低点做圆周运动,其向心加速度最大不得超过8g才能保持飞行员安全,由a n=v2r得v=a n r=8×10×800 m/s=8010 m/s.答案8010 m/s13.如图所示,质量为m的小球用长为l的悬绳固定于O点.在O点的正下方l3处有一颗钉子,把悬绳拉直与竖直方向成一定角度,由静止释放小球,则小球从右向左摆的过程中,悬绳碰到钉子前后小球的向心加速度之比为多少?解析在悬绳碰到钉子的前后瞬间,速度不变,做圆周运动的半径从l变为23l,则根据加速度公式a n=v2r,a n1=v2l,a n2=v223l,a n1a n2=23.答案2 3小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
3.向心加速度(1)知道向心加速度的概念.(2)会用矢量图表示速度变化量与速度间的关系.(3)能运用数学方法,结合加速度定义式推导向心加速度的公式.一、匀速圆周运动的加速度方向1.定义:物体做匀速圆周运动时的加速度总指向圆心,把它叫作向心加速度(centripetal acceleration).2.方向:向心加速度的方向沿半径指向圆心,即向心加速度的方向与速度方向垂直. 导学:向心加速度与周期、转速、线速度、角速度关系的推导 由线速度与周期的关系v =2πππ代入a =π2π得a =4π2π2r .由T =1π(n 取r/s)代入a =4π2ππ2得a =4π2n 2r . 由v =ωr 代入a =π2π得a =π2π=v ·ππ=ωv .二、匀速圆周运动的加速度大小1.推导:向心加速度与向心力的关系符合牛顿第二定律,则有:F n =ma n =m π2π=mω2r . 2.向心加速度公式:a n =________=________.3.作用效果:只改变线速度的方向,不改变线速度的大小. 拓展:速度变化量的矢量图从同一点作出v A 和v B 的矢量,从v A 末端指向v B 末端的矢量,即Δv知识点一 向心加速度的方向及意义导学探究(1)图甲中的小球与图乙中的运动员正在做匀速圆周运动,是否具有加速度?(2)做匀速圆周运动的加速度方向如何确定?你的依据是什么?探究总结1.向心加速度的方向特点:(1)指向圆心:无论匀速圆周运动,还是变速圆周运动,向心加速度的方向都指向圆心,或者说与线速度的方向垂直.(2)时刻改变:无论向心加速度的大小是否变化,向心加速度的方向随线速度方向的改变而改变.所以一切圆周运动都是变加速曲线运动.2.匀速圆周运动中的“变”与“不变”:(1)“不变”量:匀速圆周运动的角速度、周期、转速不变;线速度、加速度这两个矢量的大小不变.(2)“变化”量:匀速圆周运动的线速度、加速度这两个矢量的方向时刻改变.3.物理意义:向心加速度描述圆周运动中线速度改变的快慢.典例示范【例1】下列关于向心加速度的说法中正确的是( )A.向心加速度表示做圆周运动的物体速率改变的快慢B.匀速圆周运动的向心加速度是不变的C.匀速圆周运动的向心加速度大小不变D.只要是圆周运动,其加速度都是不变的练1 荡秋千是儿童喜爱的一项体育运动,如图所示,当秋千荡到最高点时,小孩的加速度方向是图中的( )A.a方向B.b方向C.c方向D.d方向练2 (多选)关于匀速圆周运动和向心加速度,下列说法正确的是( )A.匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度B.做匀速圆周运动的物体,虽然速度大小不变,但方向时刻在变,所以必有加速度C.做匀速圆周运动的物体,向心加速度的大小保持不变,所以是匀变速曲线运动D.匀速圆周运动的向心加速度大小虽然不变,但方向始终指向圆心,时刻发生变化,所以匀速圆周运动不是匀变速运动知识点二向心加速度公式的理解与应用探究总结1.向心加速度公式,②a n=ω2r.(1)基本公式:①a n=π2πr,②a n=4π2n2r.(2)拓展公式:①a n=4π2π22.对向心加速度大小与半径关系的理解(1)当r一定时,a n∝v2,a n∝ω2..(2)当v一定时,a n∝1π(3)当ω一定时,a n∝r.3.向心加速度与半径的关系:典例示范题型一对向心加速度公式的理解【例2】(多选)如图所示为甲、乙两球在不同轨道上做匀速圆周运动的向心加速度随半径变化的图像,由图像可知( )A.甲球运动时,线速度大小保持不变B.甲球运动时,角速度大小保持不变C.乙球运动时,线速度大小保持不变D.乙球运动时,角速度大小保持不变题型二向心加速度公式的应用【例3】飞机在做俯冲拉起运动时,可以看成是做圆周运动,如图所示,若在最低点附近做半径为R=240 m的圆周运动,飞行员的质量m=60 kg,飞机经过最低点P时的速度为v=360 km/h,试计算:(1)此时飞机的向心加速度a的大小;(2)此时飞行员对座椅的压力F N是多大.(g取10 m/s2)题型三传动装置中向心加速度的分析【例4】如图所示,两轮用皮带传动,皮带不打滑.图中有A、B、C三点,这三点所在处半径关系为r A>r B=r C,则这三点的向心加速度a A、a B、a C之间的关系是( )A.a A=a B=a C B.a C>a A>a BC.a C<a A<a B D.a C=a B>a A思维方法:分析此类问题要“看”“找”“选”练3 如图所示为两级皮带传动装置,转动时皮带均不打滑,中间两个轮子是固定在一起的,轮1的半径和轮2的半径相同,轮3的半径和轮4的半径相同,且为轮1和轮2半径的一半,则轮1边缘的a点和轮4边缘的c点相比( )A.线速度之比为1∶4B.角速度之比为4∶1C.向心加速度之比为8∶1D.向心加速度之比为1∶8练4 A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4∶3,运动方向改变的角度之比是3∶2,则它们( )A.线速度大小之比为4∶3B.角速度大小之比为3∶4C.圆周运动的半径之比为2∶1D.向心加速度大小之比为1∶21.下列关于向心加速度的说法中正确的是( )A.向心加速度越大,物体速率变化越快B.向心加速度的大小与轨道半径成反比C.向心加速度的方向始终与线速度的方向垂直D.在匀速圆周运动中向心加速度是恒量2.转篮球是一项需要技巧的活动,如图所示,让篮球在指尖上匀速转动,指尖刚好静止在篮球球心的正下方.下列判断正确的是( )A.篮球上的各点做圆周运动的圆心均在指尖与篮球的接触处B.篮球上各点的向心力是由手指提供的C.篮球上各点做圆周运动的角速度相等D.篮球上各点离转轴越近,做圆周运动的向心加速度越大3.如图所示,一个凹形桥模拟器固定在水平地面上,其凹形轨道是半径为0.4 m的半圆,且在半圆最低点装有一个压力传感器(图中未画出).一质量为0.4 kg的玩具小车经过凹形轨道最低点时,传感器的示数为8 N,则此时小车的(g取10 m/s2)( )A.速度大小为1 m/sB.速度大小为4 m/sC.向心加速度大小为10 m/s2D.向心加速度大小为20 m/s24.如图所示,甲、乙、丙、丁四个可视为质点的小物体放置在匀速转动的水平转盘上,与转轴的距离分别为4r、2r、2r、r,甲、丙位于转盘的边缘处,两转盘边缘接触,靠摩擦传递动力,转盘与转盘之间、物体与盘面之间均未发生相对滑动,则向心加速度最大的是( )A.甲B.乙C.丙D.丁5.如图所示,自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A.当自行车正常骑行时,A、B、C三轮边缘的向心加速度的大小之比a A∶a B∶a C等于( )A.1∶1∶8B.4∶1∶4C.4∶1∶32D.1∶2∶43.向心加速度预习填空二、2.π2πw2r知识点精讲知识点一提示:(1)小球与运动员都具有加速度.(2)做匀速圆周运动的物体加速度方向与合力方向相同,依据是牛顿第二定律.【例1】【解析】圆周运动有两种情形:一是匀速圆周运动,二是非匀速圆周运动.在匀速圆周运动中,加速度的方向指向圆心,叫向心加速度,其大小不变,方向时刻改变;非匀速圆周运动中加速度可以分解为向心加速度和切向加速度,向心加速度改变线速度的方向,切向加速度改变线速度的大小.故选项C正确.【答案】 C练 1 解析:当秋千荡到最高点时,小孩的速度为零,沿半径方向的向心加速度为零,加速度方向沿圆弧的切线方向,即图中的b方向,B正确.答案:B练2 解析:做匀速圆周运动的物体,速度的大小不变,但方向时刻在变,所以必有加速度,且向心加速度大小不变,方向时刻指向圆心,向心加速度不恒定,因此匀速圆周运动不是匀变速运动,故A、C错误,B、D正确.答案:BD知识点二【例2】 【解析】 A 对,B 错:由a =π2π知,v 不变时,a 与R 成反比,图像为双曲线的一支.C 错,D 对:由a =ω2R 知,ω不变时,a 与R 成正比,图像为过原点的倾斜直线.【答案】 AD【例3】 【解析】 (1)v =360 km/h =100 m/s 则a =π2π=1002240 m/s 2=1253 m/s 2.(2)对飞行员进行受力分析,则飞行员在最低点受重力和座椅的支持力,向心力由二力的合力提供.所以F N -mg =ma 得F N =mg +ma代入数据得F N =3 100 N根据牛顿第三定律可知,飞行员对座椅的压力大小也为3 100 N . 【答案】 (1)1253m/s 2(2)3 100 N【例4】 【解析】 A 、B 两点通过同一条皮带传动,线速度大小相等,即v A =v B ,由于r A >r B ,根据a =v 2r 可知a A <a B ;A 、C 两点绕同一转轴转动,有ωA =ωC ,由于r A >r C ,根据a=ω2r 可知a C <a A ,所以a C <a A <a B ,故选项C 正确,A 、B 、D 错误.【答案】 C练3 解析:A 错:由题意知v a =v 3,v 2=v c ,又轮2与轮3同轴传动,角速度相同,v 2=2v 3,所以v a ∶v c =1∶2.B 错:角速度之比为ππππ=ππππ∶ππππ=14.C 错,D 对:设轮4的半径为r ,则a a =ππ2ππ=(0.5v c )22r=ππ28π=18a c ,即a a ∶a c =1∶8.答案:D练4 解析:由圆周运动公式有,通过的路程s =Rθ=vt ,转过的角度θ=ωt ,已知在相同的时间内,通过的路程之比是4∶3,转过的角度之比是3∶2,则A 、B 的线速度大小之比是4∶3,角速度大小之比是3∶2,则选项A 正确,B 错误;由R =s θ,得半径之比为ππππ=ππππ·ππππ=43×23=8∶9,由向心加速度a =ω2R ,得向心加速度大小之比为ππππ=ωA2ωB2·R A R B =3222×89=2∶1,选项C 、D 错误.答案:A随堂练习1.解析:A错:在匀速圆周运动中,速率不变.B错:向心加速度的大小可用a n=π2π或a n=ω2r表示,当v一定时,a n与r成反比;当ω一定时,a n与r成正比.可见a n与r的比例关系是有条件的.C对:向心加速度的方向始终与线速度的方向垂直.D错:在匀速圆周运动中,向心加速度的大小恒定,但方向始终指向圆心,即其方向时刻变化,所以向心加速度不是恒量.答案:C2.解析:A错:篮球上的各点做圆周运动的圆心在篮球的轴线上,类似于地球的自转轴.B错:手指并没有与篮球上别的点接触,不可能提供所有点的向心力.C对:篮球上各点做圆周运动的周期相等,角速度相等.D错:篮球上各点离转轴越近,由a=rω2可知,做圆周运动的向心加速度越小.答案:C3.解析:当小车经过最低点时,受到的支持力与重力的合力提供向心力,则F N-mg=mπ2π,代入数据得v=2 m/s,向心加速度a n=π2π=10 m/s2.答案:C4.解析:先根据a n=ω2r分析同一转盘上两物体的向心加速度关系,再根据a n=π2π分析不同转盘上两物体的向心加速度关系.所以选项C正确.答案:C5.解析:A、B的线速度大小相等,R A∶R B=1∶4,根据a=π2π知,a A∶a B=4∶1.A、C 的角速度大小相等,R A∶R C=1∶8,根据a=ω2r知,a A∶a C=1∶8,所以a A∶a B∶a C=4∶1∶32.答案:C。