2014全国新课标1数学试题及答案解析
- 格式:doc
- 大小:1.12 MB
- 文档页数:12
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<bx9.函数y= | lg (x-1)| 的图象是 ( )10.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x ;⑤f (x )=1x .其中满足条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.2503432162322428200549-⨯+--⨯--()()()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满足()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性;(3)若对任意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:根据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
])3,[+∞,所以[2,A B =--,集合B ,求A B .2(1i)2i(1i)i)2i1i ++=---=.则(4,P F =-,0(FQ x =-,根据抛物线定义得||3x QF ==【解析】由题易知点AC与AB的夹角为【提示】根据向量之间的关系,利用圆直径的性质,即可得到结论【考点】数量积表示两个向量的夹角16.【答案】3【解析】根据正弦定理和因为+10n a ≠,所以+2n n a a λ-=.(2)由题设11a =,1211a a S λ=-,可得21a λ=-,由(1)知31a λ=+,若{}n a 为等差数列,则2132a a a =+,解得4λ=,故+24n n a a -=.由此可得21{}n a -是首项为1,公差为4的等差数列,2143n n a -=-;2{}n a 是首项为3,公差为4的等差数列,2=41n a n -.所以21n a n =-,+1n n a a -=2.因此存在4λ=,使得数列{}n a 为等差数列. 【提示】根据等差数列知识完成证明,求出使得{}n a 为等差数列的参数λ 【考点】等差数列18.【答案】(1)200=平均数2150s =(2)(i )0.6826 (ii )68.26【解析】(1)抽取产品的质量指标值的样本平均数和样本方差2s 分别为:平均数1700.021800.091900.222000.332100.242200.082300.02200=⨯+⨯+⨯+⨯+⨯+⨯+⨯=.2222222(30)(20)(10)0020090220033102420008300025010s ---=⨯+⨯+⨯+⨯+⨯+⨯+⨯=........(2)(i )由(1)知(200,150)ZN ,从而187821222001222001220.682()6)(P Z P Z <<=-<<+=..... (ii )由(i )知,一件产品的质量指标值位于区间1878,2(212)..的概率为06826.,依题意知100,0682 ()6X B ~.,所以100068266826EX =⨯=...【提示】给出频率分布直方图求平均数和方差,利用正态分布求概率. 【考点】平均数和方差及正态分布19.【答案】(1)证明:连接1BC ,交1B C 于点O ,连接AO ,因为侧面11BB C C 为菱形,所以1B C ⊥1BC , 且O 为1B C 及1BC 的中点.又AB ⊥1B C ,所以1B C ⊥平面ABO . 由于AO ⊂平面ABO ,故1B C ⊥AO .又1B O CO =,故1AC AB =. (2)因为AC ⊥1AB ,且O 为1B C 的中点,所以AO CO =.又因为AB BC =,所以BOA BOC △△≌.故OA ⊥OB ,从而OA ,OB ,1OB 两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,||OB 为单位长,建立如图所示的空间直角坐标系O xyz -. 因为∠160CBB ︒=,所以1CBB △为等边三角形,10,B A ⎛= ⎝,1,0,AB ⎛= ⎝,1,BC ⎛-- ⎝设(,n x y =1B 的法向量,则即333333y x z --=1|||7n m n m =.所以结合图形知二面角221431k k -+.22||44341k d k PQ -=+,即72k =±时等号成立,满足72k =±,知,∠D=∠E,所以△ADE为等边三角形.。
2024年高考数学新课标1卷真题试卷一、选择题:本共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}355A x x =-<<,{}3,1,0,2,3B -=-,则A B = ()A.{}1,0- B.{}2,3 C.{}3,1,0-- D.{}1,0,2-2.若11zi z =+-,则z =()A.1i --B.1i -+C.1i -D.1i +3.已知向量()()0,1,2,a b x ==,若()4b b a ⊥- ,则x =()A.2-B.1-C.1D.24.已知cos()m αβ+=,tan tan 2αβ=,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,则圆锥的体积为()A. B. C. D.6.已知函数22,0,()ln(1),0x x ax a x f x e x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是()A.(],0-∞B.[]1,0-C.[]1,1-D.[)0,+∞7.当[]0,2x π∈时,曲线sin y x =与2sin(3)6y x π=-的交点个数为()A.3B.4C.6D.88.已知函数()f x 的定义域为R,()(1)(2)f x f x f x >-+-,且当3x <时,()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f > C.(10)1000f < D.(20)1000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值元 2.1x =,样本方差:20.01s =,已知该种植区以往的亩收入X 服从正态分布2(1.8,0.1)N ,假设推动出口后的亩收入Y 服从正态分布2(,)N X s ,则()(若随机变量Z 服从正态分布2(,)N μσ,则(Z )0.8413P μσ<+≈)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.810.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,2()()f x f x <C.当12x <<时,4(21)0f x -<-<D.10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C上的点满足横坐标大于2-,到点F(2,0)的距离与到定直线(0)x a a =<的距离之积为4.则()A.2a =-B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点00(,)x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12,F F ,过2F 作平行于y 轴的直线交C 于,A B 两点,若113,10F A AB ==,则C 的离心率为_________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =_________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为__________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或验算步骤.15.(13分)记ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin C B =,222a b c +-=.(1)求B ;(2)若ABC ∆的面积为3,求c .16.(15分)已知(0,3)A 和3(3,)2P 为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1BC =,AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .18.(17分)已知函数3()ln(1)2xf x ax b x x=++--.(1)若0b =,且'()0f x ≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形:(3)若()2f x >-当且仅当12x <<,求b 的取值范围.设m 为正整数,数列1242,,,m a a a + 是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,,m a a a + 是(,)i j -可分数列(1)写出所有的(,)i j ,16i j ≤<≤,使数列126,,,a a a 是(,)i j -可分数列;(2)当3m ≥时,证明:1242,,,m a a a + 是(2,13)-可分数列;(3)从1,2,,42m + 中一次任取两个数i 和()j i j <,记数列1242,,,m a a a + 是(,)i j -可分数列的概率为m P ,证明:18m P >.2024年高考数学新课标1卷真题试卷详细解析一、选择题.题号12345678答案ACDABBCB1.【答案】A2.【答案】C【解析】:(1)(1)(1)(1)z i z i z i =+-=+-+所以1iz i =+所以11iz i i+==-故选C.3.【答案】D【解析】:()24(2,)(2,4)4(4)(2)0b b a x x x x x ⋅-=⋅-=+-=-= 所以2x =.故选D.4.【答案】A【解析】:由cos()m αβ+=得:cos cos sin sin m αβαβ-=由tan tan 2αβ=得:sin sin 2cos cos αβαβ=所以cos cos ,sin sin 2m mαβαβ=-=-所以cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-.故选A.5.【答案】B【解析】:设底面半径为r ,圆锥母线长为l .所以1222r r l ππ=⨯⨯,得:l =.所以3r ==.所以213V r h π==.故选B.6.【答案】B【解析】:()f x 在R 上单调递增,所以有202(1)(0)(0)a f f --⎧-≥⎪⨯-⎨⎪≤⎩,即202(1)1a a -⎧-≥⎪⨯-⎨⎪-≤⎩,解得:10a -≤≤.故选B.7.【答案】C【解析】:由图像知:共6个交点.故选C.8.【答案】B【解析】:因为当3x <时,()f x x =,(1)1f ∴=,(2)2f =.考虑斐波那契数列,其前20项分别为:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946.则(20)1000f >.故选B.二、选择题.题号91011答案BCACDABD【答案】BC【解析】:由题意:2(1.8,0.1)X N ,2(2.1,0.1)Y N 2=1.8+20.1=+2μσ⨯ (>2)=(>+2)<(>+)=10.84130.1587P X P X P X μσμσ∴-=.故A 错误.(>2)<(>1.8)=0.5P X P X ∴.故B 正确.2=2.10.1=μσ-- (>2)>(>2.1)0.5P Y P Y ∴=.故C 正确.(>2)=(>)()0.84130.8P Y P Y P Y μσμσ∴-=<+=>.故D 错误.综上:选BC.10.【答案】ACD【解析】:'()3(1)(3)f x x x =-- .()f x ∴在(),1-∞上 ,在()1,3上 ,在()3,+∞上 .故A 正确.当01x <<时,201x x <<<,故B 错误.当12x <<时,1213x <-<,所以(3)(21)(1)f f x f <-<,即4(21)0f x -<-<,故C 正确.当10x -<<时,3(2)()2(1)0f x f x x --=-->,故D 正确.综上:选ACD.11.【答案】ABD【解析】:因为C 过坐标原点O ,所以24a -⨯=,得:2a =-.故A 正确.设曲线上一点任意一点(,)P x y ,则曲线C 的方程为:(4(2)x x +=>-,得:2224((2)2y x x =--+.点满足方程,故B 正确.取132x =,则216412071494196y =-=>,所以11y >,故C 错误.222200044()(2)(22y x x x =--≤++,所以0004422y x x ≤=++,故D 正确.综上:选ABD.三、填空题.12.【答案】32【解析】:1213,10,5F A AB AF ==∴=.1212212,21358c F F a AF AF ∴====-=-=36,4,2c c a e a ∴====.13.【答案】ln 2.【解析】:''(),()1,(0)2,x x f x e x f x e f =+=+∴=∴切线l 的方程为21y x =+.'1()ln(1),()1g x x a g x x =++=+,当12x =-时,'1()22g -=,'11()ln +ln 222g a a -==-所以切线方程为:1(ln 2)2()2y a x --=+,故ln 20a -=,即:ln 2a =.14.【答案】12【解析】不妨设甲的顺序是1,3,5,7,考虑甲得分为0,1的情况(1)甲得0分情况:只有1种,1,3,5,72,4,6,8⎛⎫⎪⎝⎭(2)甲得1分情况①甲出3的时候得分,此时只有1种1,3,5,74,2,6,8⎛⎫⎪⎝⎭②甲出5的时候得分,此时乙对应有两种情况乙出4的时候有1种情况,乙出2的时候有2种情况,所以共有3种.③甲出7的时候得分,此时乙对应有3种情况乙出6的时候有1种情况,乙出4的时候有2种情况,乙出2的时候有4种情况,从而共7种情况.所以甲的总得分小于2的概率为11122-=.所以甲的总得分不小于2的概率为44113712A +++=.四、解答题.15.【答案】(1)3π(2)【解析】:(1)22222cos cos 24a b c ab C C C π+-==⇒=⇒=由sin C B =得:1cos 23B B π==⇒=(2)由(1)得:512A B C ππ=--=,422==316,22a cbc +∴==111sin 322222S ab C c c +∴==⋅⋅⋅=+c ∴=16.【答案】(1)12e =(2)1:2l y x =或332y x =-【解析】:(1)(0,3)A 和3(3,2P 代入椭圆方程得22220919941a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:22129a b ⎧=⎨=⎩.12c e a ∴===.(2)如图,设点(0,3)A 到l 的距离为d①当l 斜率不存在时,:3l x =3(3,3,32B PB d ∴-==1933922ABP S ∆=⨯⨯=≠,不满足条件.②当l 斜率存在时,设3:(3)2l y k x -=-记11(,)P x y ,22(,)B x y 联立223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得:2222(43)(2412)3636270k x k k x k k +--+--=由韦达定理可得:2122212223124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩PB ∴=d =192ABP S PB d ∆∴=⋅==解得:12k =或32k =1:2l y x ∴=或332y x =-17.【答案】(1)见解析(2)AD =【解析】:(1)证明:PA ⊥底面ABCD ,AD ⊂平面ABCDPA AD∴⊥,,,AD PB PA PB P PA PB ⊥⋂=⊂ 平面PABAD ∴⊥平面PABAB ⊂ 平面PAB ,AD AB∴⊥在ABC ∆中,222,AB BC AC AB BC+=∴⊥,,,A B C D 四点共面,//AD BC∴BC ⊂ 平面PBC ,AD ⊄平面PBC//AD ∴平面PBC(2)如图,延长CB 至点E ,使得EA AC ⊥.以AE 为x 轴,AC 为y 轴,AP 为z 轴建立坐标系.设ACD θ∠=,则22cos (2cos sin ,2cos ,0)AD D θθθθ=⇒-(0,2,0)C ,(0,0,2)P ,则平面ACP 的法向量是1(1,0,0)n = 2(0,2,2),(2cos sin ,2cos ,2)PC PD θθθ=-=-- 则平面PCD 的法向量是2(tan ,1,1)n θ=-则12cos ,n n <>== 解得:3tan 3θ=所以3cos 2θ=故AD =18.【答案】(1)2-(2)见解析(3)2,3⎡⎫-+∞⎪⎢⎣⎭【解析】:(1)由题意:()f x 的定义域为(0,2).b =时,()ln 2x f x ax x=+-,'2111122()0(22(2)(1)1f x a a x x x x x x x =++≥⇒≥-+=-=------+要使22(1)1a x ≥---+恒成立,必须max 22(2(1)1a x ≥-=---+所以a 的最小值是2-.(2)()f x 的定义域为(0,2).332()(2)ln ln (2)(1)(1)22x x f x f x ax a x b x b x a x x-+-=+++-+-+-=-.故曲线()f x 关于点(1,)a 对称.(3)由(2)知()f x 关于点(1,)a 对称..()2f x >- 当且仅当12x <<.()2f x ∴≤-当且仅当01x <≤.由于()f x 的连续性,(1)2f a ∴==-.3()ln (1)22x f x ax b x x∴=++->--对(1,2)x ∀∈恒成立.(1)2,f =-又2'222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-=+-+-=+-=-+⎢⎥---⎣⎦'(1)0,f =又''2211()6(1)(2)f x b x x x =-++--''(1)0,f =又'''3322()6(2)f x b x x =++-'''(1)46f b=+令'''(1)460f b =+≥,得:23b ≥-此时4'22222(1)()(1)3(1)20(2)(2)(2)x f x x b x x x x x x x ⎡⎤⎡⎤-=-+≥--=≥⎢⎥⎢⎥---⎣⎦⎣⎦故()f x 在(1,2)上单调递增所以对(1,2)x ∀∈,()2f x >-恒成立.综上:b 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.19.【答案】(1)(1,2),(1,6),(5,6)(2)见解析(3)见解析.【解析】:(1)(1,2),(1,6),(5,6)(2)证明:当3m =时,注意到{}{}{}1471036912581114,,,,,,,,,,,a a a a a a a a a a a a 三组的4个数都能构成等差数列,故3m =时,1242,,,m a a a + 是(2,13)-可分数列.当3m >时,前面的3组按照3m =时的分法,即{}{}{}1471036912581114,,,,,,,,,,,a a a a a a a a a a a a ,剩余的部分每4个相邻项分一组,即{}43444546,,,,3,4,,1r r r r a a a a r m ++++=- .综上所述:3m ≥时,1242,,,m a a a + 是(2,13)-可分数列.(3),,,p q r s a a a a 成等差,,,p q r s ⇔成等差.故1242,,,m a a a + 是(,)i j -可分数列1,2,,42m ⇔+ 是(,)i j -可分数列.①情形一:1,2,,42m + 是(41,42),0k r k r m ++≤≤≤可分数列.具体构造:前1,2,,4k 项每4个相邻项分一组(0k =时不存在该组),中间42,,41k r ++ 每4个相邻项分一组(k r =时不存在该组),后面43,,42r m ++ 每4个相邻项分一组(r m =时不存在该组).此种分组显然满足题意.此时共211(1)(1)(2)2m C m m m +++=++种.②情形二:1,2,,42m + 是(42,41),0k r k r m ++≤<≤,且2r k -≥是可分数列.记2q r k =-≥具体构造:前1,2,,4k 项每4个相邻项分一组(0k =时不存在该组),后面4 3.44,,42r r m +++ 每4个相邻项分一组(r m =时不存在该组).中间41,43,44,,41,4,42k k k r r r +++-+ 共4()4r k q -=项.要说明41,43,44,,41,4,42k k k r r r +++-+ 可分为q 组,只需考虑1,3,4,,41,4,42q q q -+ 是可分的.将1,3,4,,41,4,42q q q -+ 分为{}1,1,21,13q q q +++,{}3,3,23,33q q q +++{}4,4,24,34q q q +++{}5,5,25,35q q q +++,{},,2,3,4q q q q {},2,22,32,42q q q q ++++共q 组,且满足条件.此时的(42,41)k r ++的数目等于(,)(,),2k r k k p p =+≥的数目.此时共211(1)2m C m m m +-=-种.故22224211(1)(2)(1)11122(21)(41)8618m m m m m m m m m m P C m m m m ++++-++++≥==>++++.。
2024年普通高等学校招生全国统一考试 新课标Ⅰ卷数学试卷1.已知集合,,则( ).A. B. C. D.2.若,则( ).A. B. C. D.3.已知向量,,若,则( ).A.-2B.-1C.1D.24.已知,,则( ).A. B. C. D.5.,则圆锥的体积为( ).A.B. C. D.6.已知函数在R 上单调递增,则a的取值范围是( ).A. B. C. D.7.当时,曲线与的交点个数为( ).A.3 B.4C.6D.88.已知函数的定义域为R ,,且当时,,则下列结论中一定正确的是( ).A. B. C. D.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入X 服从正态分布,假设失去出口后的亩收入Y 服从正态分布,则( ).(若随机变量Z{}355A x x =-<<∣{3,1,0,2,3}B =--A B = {1,0}-{2,3}{3,1,0}--{1,0,2}-1i 1z z =+-z =1i --1i -+1i -1i+(0,1)a = (2,)b x = (4)b b a ⊥- x =cos()m αβ+=tan tan 2αβ=cos()αβ-=3m -3m-3m3m22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩(,0]-∞[1,0]-[1,1]-[0,)+∞[0,2π]x ∈sin y x =π2sin 36y x ⎛⎫=- ⎪⎝⎭()f x ()(1)(2)f x f x f x >-+-3x <()f x x =(10)100f >(20)1000f >(10)1000f <(20)10000f <2.1X =20.01S =()21.8,0.1N ()2,N X S服从正态分布,则)A. B. C. D.10.设函数,则( ).A.是的极小值点B.当时,C.当时,D.当时,11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点的距离与到定直线的距离之积为4,则( ).A.B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点在C 上时,12.设双曲线(,)的左右焦点分別为,,过作平行于y 轴的直线交C 于A ,B两点,若,,则C 的离心率为_________.13.若曲线在点处的切线也是曲线的切线,则_________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,()2,N μσ()0.8413P Z μμ<+≈(2)0.2P X >>()0.5P X Z ><()0.5P Y Z >>()0.8P Y Z ><2()(1)(4)f x x x =--3x =()f x 01x <<()2()f x f x <12x <<4(21)0f x -<-<110x -<<(2)()f x f x ->(2,0)F (0)x a a =<2a =-()00,x y 0042y x ≤+2222:1x y C a b-=0a >0b >1F 2F 2F 113F A =||10AB =e x y x =+(0,1)ln(1)y x a =++a =ABC △sin C B =.(1)求B ;(2)若的面积为,求c .16.已知和为椭圆上两点.(1)求C 的率心率;(2)若过P 的直线l 交C 于另一点B ,且的面积为9,求l 的方程.17.如图,四棱锥中,底面,,,(1)若,证明:平面PBC ;(2)若,且二面角,求AD .18.已知函数.(1)若,且,求a 的最小值;(2)证明:曲线是中心对称图形;(3)若,当且仅当,求b 的取值范围.19.设m 为正整数,数列,,…,是公差不为0的等差数列,若从中删去两项和后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列,,…,是——可分数列.222a b c +-=ABC △3+(0,3)A 33,2P ⎛⎫ ⎪⎝⎭2222:1(0)x y C a b a b +=>>ABP △P ABCD -PA ⊥ABCD 2PA PC ==1BC =AB =AD PB ⊥//AD AD DC ⊥A CP D --3()ln (1)2x f x ax b x x =++--0b =()0f x '≥()y f x =()2f x >-12x <<1a 2a 42m a +i a ()j a i j <1a 2a 42m a +(,)i j(1)写出所有的,,使数列,,…,是——可分数列;(2)当时,证明:数列,,…,足——可分数列;(3)从1,2,…,中一次任取两个数i 和,记数列,,…,足——可分数列的概率为,证明:.(,)i j 16i j ≤<≤1a 2a 6a (,)i j 3m ≥1a 2a 42m a +(2,13)42m +()j i j <1a 2a 42m a +(,)i j m P 18m P >参考答案1.A解析:,选A.2.C解析:3.D解析:,,,,,选D.4.A解析:,,,选A.5.B解析:设它们底面半径为r ,圆锥母线l ,,,,,选B.6.B解析:在R 上↗,,,选B.7.C{1,0}A B =- 4(2,4)b a x -=- (4)b b a ⊥- (4)0b b a ∴-= 4(4)0x x ∴+-=2x ∴=cos cos sin sin sin sin 2cos cos m αβαβαβαβ-=⎧⎪⎨=⎪⎩sin sin 2cos cos m m αβαβ=-⎧∴⎨=-⎩cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-2ππrl ∴=l ∴==3r ∴=1π93V =⋅⋅=()f x 00e ln1a a -≥⎧⎨-≤+⎩10a ∴-≤≤解析:6个交点,选C.8.B解析:,,,,,,,,,,,,,,,,,选B.9.BC解析:,,,,A 错.,B 对.,,C 对.,D 错,所以选BC.10.ACD解析:A 对,因为;B 错,因为当时且,所以;C 对,因为,,,时,(1)1f =(2)2f =(3)(2)(1)3f f f >+=(4)(3)(2)5f f f >+>(5)(4)(3)8f f f >+>(6)(5)(4)13f f f >+>(7)(6)(5)21f f f >+>(8)(7)(6)34f f f >+>(9)(8)(7)55f f f >+>(10)(9)(8)89f f f >+>(11)(10)(9)144f f f >+>(12)(11)(10)233f f f >+>(13)(12)(11)377f f f >+>(14)(13)(12)610f f f >+>(15)(14)(13)987f f f >+>(16)1000f >(20)1000f ∴>()2~ 1.8,0.1X N ()2~ 2.1,0.1Y N 2 1.820.12μσ=+⨯=+(2)(2)()10.84130.1587P X P X P X μσμσ>=>+<>+=-=(2)( 1.8)0.5P X P X ><>=2 2.10.1μσ=-=-(2)( 2.1)0.5P Y P Y >>>=(2)()()0.84130.8P Y P Y P Y μσμσ>=>-=<+=>()3(1)(3)f x x x '=--01x <<()0f x '>201x x <<<()2()f x f x <2(21)4(1)(25)0f x x x -=--<2(21)44(2)(21)0f x x x -+=-->2223(2)()(1)(2)(1)(4)(1)(22)2(1)f x f x x x x x x x x --=------=--+=--11x -<<,,D 对.11.ABD解析:A 对,因为O 在曲线上,所以O 到的距离为,而,所以有,那么曲线的方程为.B 对,因为代入知满足方程;C 错,因为,求导得,那么有,,于是在的左侧必存在一小区间上满足,因此最大值一定大于1;D 对,因为.12.解析:由知,即,而,所以,即,代回去解得,所以.13.解析:14.解析:甲出1一定输,所以最多3分,要得3分,就只有一种组合、、、.得2分有三类,分别列举如下:(1)出3和出5的赢,其余输:,,,(2)出3和出7的赢,其余输:,,,;,,,,,,,(3)出5和出7的赢,其余输:,,,;,,,;,,,;,,,;,,,;,,,;,,,(2)()0f x f x -->(2)()f x f x ->x a =a -2OF =242a a -⋅=⇒=-(4x +=2224(2)()2y x f x x ⎛⎫=--= ⎪+⎝⎭332()2(2)(2)f x x x '=---+(2)1f =1(2)02f '=-<2x =(2,2)ε-()1f x >()22220000004442222y x y x x x ⎛⎫⎛⎫=--≤⇒≤ ⎪ ⎪+++⎝⎭⎝⎭32||10AB =25F A =2225b c a a a-==121F F F A ⊥1212F F =6c =4a =32e =ln 21218-32-54-76-16-32-54-78-14-32-58-76-18-32-56-74-16-32-58-74-12-38-54-76-14-38-52-76-18-34-52-76-16-38-52-74-18-36-52-74-16-38-54-72-18-36-54-72-共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为15.(1)(2)解析:(1)已知,根据余弦定理,可得:.因为,所以.又因为,即,解得.因为,所以.(2)由(1)知,,则.已知的面积为,且,则,.又由正弦定理,可得.则,,同理.所以解得16.(1)(2)见解析12π3B =c =222a b c +-=222cos 2a b c C ab +-=cos C ==(0,π)C ∈π4C =sin C B =πsin4B =B =1cos 2B =(0,π)B ∈π3B =π3B =π4C =ππ5πππ3412A B C =--=--=ABC △3+1sin 2ABC S ab C =△1πsin 324ab =132ab =2(3ab =+sin sin sin a b c A B C ==sin sin sin sin a C b C c A B==π5πsin sin 412c a =5πsin 12πsin 4c a =πsin 3πsin 4c b =2225ππsin sin 421232(3π1sin 42c c ab ⎝⎭===+c =12解析:(1)将、代入椭圆,则.(2)①当L 的斜率不存在时,,,,A 到PB 距离,此时不满足条件.②当L 的斜率存在时,设,令、,,消y 可得,17.(1)证明见解析(2)解析:(1)面,平面,又,,平面PAB面,平面,(0,3)A 33,2P ⎛⎫ ⎪⎝⎭22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩22129a b ⎧=⎨=⎩c =12c e a ∴===:3L x =33,2B ⎛⎫- ⎪⎝⎭3PB =3d =1933922ABP S =⨯⨯=≠△3:(3)2PB y k x -=-()11,P x y ()22,B x y 223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩()()22224324123636270k x k k x k k +--+--=2122212224124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩PB =AD =PA ⊥ABCD AD ⊂ABCD PA AD∴⊥AD PB ⊥ PB PA P = ,PB PA ⊂AD ∴⊥PAB AB ∴⊂PAB AD AB∴⊥中,,,B ,C ,D 四点共面,又平面,平面PBC平面PBC .(2)以DA ,DC 为x ,y 轴过D 作与平面ABCD 垂直的线为z 轴建立如图所示空间直角坐标系令,则,,,,设平面ACP 的法向量不妨设,,设平面CPD 的法向量为不妨设,则,,二面角,.18.(1)-2(2)证明见解析(3)ABC △222AB BC AC +=AB BC∴⊥A //AD BC∴BC ⊂ PBC AD ⊄//AD ∴D xyz-AD t =(,0,0)A t (,0,2)P t (0,0,0)D DC =()C()1111,,n x y z = 1x =1y t =10z =)1,0n t = ()2222,,n x y z = 2200n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩ 222200tx z +=⎧∴=2z t =22x =-20y =2(2,0,)n t =- A CP D --121212cos ,n n n n n n ⋅=== t ∴=AD ∴=23b ≥-解析:(1)时,,对恒成立而,当且仅当时取“=”,故只需,即a 的最小值为-2.(2)方法一:,关于中心对称.方法二:将向左平移一个单位关于中心对称平移回去关于中心对称.(3)当且仅当,对恒成立令,必有(必要性)当时,对,对恒成立,符合条件,综上:.19.(1),,(2)证明见解析(3)证明见解析解析:(1)以下满足:,,0b =()ln 2x f x ax x =+-11()02f x a x x'=++≥-02x ∀<<11222(2)a a a x x x x ++=+≥+--1x =202a a +≥⇒≥-(0,2)x ∈(2)()f x f x -+332ln (2)(1)ln (1)22x x a x b x ax b x a x x-=+-+-+++-=-()f x ∴(1,)a ()f x 31(1)ln(1)1x f x a x bx x+⇒+=+++-(0,)a ()f x ⇒(1,)a ()2f x >- 12x <<(1)22f a ∴=-⇒=-3()ln 2(1)22x f x x b x x∴=-+->--12x ∀<<222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-'=+-+-=+-=-+⎢⎥---⎣⎦2()3(2)g x b x x =+-∴2(1)2303g b b =+≥⇒≥-23b ≥-(1,2)x ∀∈32()ln 2(1)()23x f x x x h x x ≥---=-2222(1)1()2(1)2(1)10(2)(2)x h x x x x x x x ⎡⎤-'=--=-->⎢⎥--⎣⎦(1,2)x ∀∈()(1)2h x h ∴>=-23b ≥-(1,2)(1,6)(5,6)(,)i j (1,2)(1,6)(5,6)(2)易知:,,,等差等差故只需证明:1,3,4,5,6,7,8,9,10,11,12,14可分分组为,,即可其余,,按连续4个为一组即可(3)由第(2)问易发现:,,…,是可分的是可分的.易知:1,2,…,是可分的因为可分为,…,与,…,此时共种再证:1,2,…,是可分的易知与是可分的只需考虑,,,…,,,记,只需证:1,3,5,…,,,可分去掉2与观察:时,1,3,4,6无法做到;时,1,3,4,5,6,7,8,10,可以做到;时,1,3,4,5,6,7,8,9,10,11,12,14时,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,,,满足故,可划分为:,,,,…,,,共p 组事实上,就是,,且把2换成p a q a r a s a ,,,p q r s ⇔(1,4,7,10)(3,6,9,12)(5,8,11,14)k a 1542k m ≤≤+1a 2a 42m a +(,)i j 1,2,42m ⇔+ (,)i j 42m +(41,42)k r ++(0)k r m ≤≤≤(1,2,3,4)(43,42,41,4)k k k k ---(4(1)1,4(1),4(1)1,4(1)2)r r r r +-+++++(41,4,41,42)m m m m -++211C (1)(1)(2)2m m m m +++=++42m +(42,41)k r ++(0)k r m ≤<≤1~4k 42~42r m ++41k +43k +44k +41r -4r 42r +*N p r k =-∈41p -4p 42p +1~42p +41p +1p =2p =3p =4p =(1,5,9,13)(3,7,11,15)(4,8,12,16)(6,10,14,18)2p ∀≥(1,1,21,31)p p p +++(3,3,23,33)p p p +++(4,4,24,34)p p p +++(5,5,25,35)p p p +++(,2,3,4)p p p p (2,22,32,42)p p p p ++++(,,2,3)i p i p i p i +++1,2,3,,i p = 42p +此时,均可行,共组,,…,不可行综上,可行的与至少组故,得证!(,)k k p +2p ≥211C (1)2m m m m +-=-(0,1)(1,2)(1,)m m -(42,41)k r ++(41,42)k r ++11(1)(1)(2)22m m m m -+++()222224212221112C (21)(41)8618m m m m m m m m P m m m m +++++++≥==>++++。
2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}M N x x =-<<I ,即选B . 【提示】集合的运算用数轴或者Venn 图可直接计算。
【提示】判断三角函数的符号可先确定角所在的象限。
【考点】同角三角函数的关系。
3.【答案】B【解析】根据复数运算法则可得:111111(1)(1)222i i z i i i i i i i --=+=+=+=-++-,由模的运算可得:||2z =【提示】复数的除法用分母实数化,求复数的模用公式z =【提示】求离心率关键在于寻找a b ,或者a c ,之间的关系,用公式e =或者ce a=。
【考点】复数的运算。
5.【答案】C【解析】由()f x ,()g x 函数的定义域为R ,且()f x 是奇函数,()g x 是偶函数,可得:|()|f x 和|()|g x 均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C .【提示】判断函数的奇偶性先看定义域是否关于原点对称,再用性质或者定义或者图像判断。
【提示】向量运算抓住两条线,坐标法和转化法。
【提示】求函数的周期可画图,也可用定义或公式直接计算。
【考点】三角函数的图象和性质。
8.【答案】B【解析】根据三视图的法则:长对正,高平齐,宽相等。
可得几何体如下图所示。
【提示】三视图还原成实物图,掌握常见几何体的三视图的特征。
【提示】算法问题根据题目一步一步写出运行的结果。
【考点】算法的循环结构。
10.【答案】A【提示】抛物线的焦点弦问题注意转化:到焦点的距离和到准线的距离可以互相转化【提示】线性规划问题,根据条件画出可行域,把目标直线平移,找到最优解。
a<时,z无最小值。
故选B【提示】函数的零点问题转化为方程有解或者两个函数的图像有交点的问题。
【考点】线性规划的应用。
【提示】求解概率问题可用列举法。
2014年普通高等学校招生全国统一考试一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1s in ta n c o s βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x yD x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x yD x y ∃∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4F P F Q =,则||QF =A .72 B .52C .3D .2 11. 已知函数()f x =3231a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4二.填空题:本大题共四小题,每小题5分。
2014新课标高考压轴卷数学(理)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()2. 复数的共轭复数是a+bi(a,b∈R),i是虛数单位,则点(a,b)为()3. 的值为()4. 函数f(x)=log2(1+x),g(x)=log2(1﹣x),则f(x)﹣g(x)是()5.在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A. B. C. D.6.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π7. 已知函数的图象(部分)如图所示,则ω,φ分别为()8. “”是“数列{a n}为等比数列”的()9. 在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是()10. 等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为().11.定义域为R 的偶函数f (x )满足∀x ∈R ,有f (x+2)=f (x )﹣f (1),且当x ∈[2,3]时,f (x )=﹣2x 2+12x ﹣18.若函数y=f (x )﹣log a (x+1)至少有三个零点,则a 的取值范围是( ) ,))12. 设双曲线﹣=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若=λ+μ(λ,μ∈R ),λμ=,则该双曲线的离心率为( )13. 函数22631y x x =++的最小值是14.执行如图所示的程序框图,则输出的结果S 是________.15.已知平行四边形ABCD 中,点E 为CD 的中点,=m,=n(m•n≠0),若∥,则=___________________.16. 设不等式组表示的平面区域为M ,不等式组表示的平面区域为N .在M 内随机取一个点,这个点在N 内的概率的最大值是________________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知(3,cos())a x ω=-,(sin(b x ω=,其中0ω>,函数()f x a b =⋅的最小正周期为π. (1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c.且()2A f =,a =,求角A 、B 、C 的大小.18.某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm ,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm 以上(包括185cm )定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm 以上(包括190cm )的只有两个人,且均在甲队.(Ⅰ)求甲、乙两队运动员的总人数a 及乙队中成绩在[160,170)(单位:cm )内的运动员人数b ;(Ⅱ)在甲、乙两队所有成绩在180cm 以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X 的分布列及期望.19.等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足12AD CE DB EA == (如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --为直二面角,连结11A B AC 、 (如图2).(Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.20.在平面直角坐标系xOy 中,从曲线C 上一点P 做x 轴和y 轴的垂线,垂足分别为N M ,,点)0,(),0,(a B a A -(a a ,0>为常数),且02=+⋅ON BM AM λ(0≠λ)(1)求曲线C 的轨迹方程,并说明曲线C 是什么图形;(2)当0>λ且1≠λ时,将曲线C 绕原点逆时针旋转︒90得到曲线1C ,曲线C 与曲线1C 四个交点按逆时针依次为G F E D ,,,,且点D 在一象限①证明:四边形DEFG 为正方形; ②若D F AD ⊥,求λ值. 21. 已知21(),()2f x lnxg x ax bx ==+ (0),()()().a h x f x g x ≠=- (Ⅰ)当42a b ==,时,求()h x 的极大值点;(Ⅱ)设函数()f x 的图象1C 与函数()g x 的图象2C 交于P 、Q 两点,过线段PQ 的中点做x 轴的垂线分别交1C 、2C 于点M 、N ,证明:1C 在点M 处的切线与2C 在点N 处的切线不平行.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.已知AB 是圆O 的直径,C 为圆O 上一点,CD ⊥AB 于点D , 弦BE 与CD 、AC 分别交于点M 、N ,且MN = MC(1)求证:MN = MB ; (2)求证:OC ⊥MN 。
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
2014年普通高等学校招生全国统一考试全国课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ). A .[]2,1-- B .[)1,2- C .[]1,1- D .[)1,22.32(1)(1)i i +=-( ). A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ).A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()g x f x 是奇函数D .()()f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ). A .3 B .3 C .3m D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C .58D .786如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A .203B . 72C . 165D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A .32παβ-=B . 32παβ+=C .22παβ-=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( ).A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =( ). A .72 B . 3 C .52D .2 11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ).A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( ).A .62B .6C .42D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必 须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分.13.8()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案)14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为 .15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由.18.(本小题满分12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间()187.8,212.2的产品件数,利用(i )的结果,求EX .附:15012.2≈,若Z ~2(,)N μδ,则()0.6826P Z μδμδ-<<+=,(22)0.9544P Z μδμδ-<<+=.19.(本小题满分12分)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB BC =,求二面角111A A B C --的余弦值.20.(本小题满分12分)已知点()0,2A -,椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的右焦 点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.(本小题满分12分) 设函数1()ln x xbe f x ae x x -=+,曲线()y f x =在点()1,(1)f 处的切线方程为(1)2y e x =-+.(Ⅰ)求,a b ;(Ⅱ)证明:()1f x >.请考生从第(22)、(23)、(24)三题中任选一题作答。
注意:只能做所选定的题目。
如 果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框 涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE ∆为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.24. (本小题满分10分)选修4—5:不等式选讲若0,0a b >>,且11a b+=. (Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.参考答案一、选择题ADCAD CDCBB CB二、填空题13. 20- 14. A 15.π216.三、解答题 17.(1)证明:由题意得112111n n n n n n a a S a a S λλ++++=-⎧⎨=-⎩ 所以1211n n n n n a a a a a λ++++-=又因为0n a ≠所以10n a +≠所以2n n a a λ+-=(2)解:假设存在λ,使得{}n a 为等差数列.由(1)知121311a a a a a λλ=-⎧⎨-=⎩ 因为11a =所以2311a a λλ=-⎧⎨=+⎩ 因为1322a a a +=所以()221λλ+=-所以4λ=故24,n n a a +-=所以{}21n a -是首项为1,公差为4的等差数列,2143;n a n -=-{}2n a 是首项为3,公差为4的等差数列,24 1.n a n =-所以121, 2.n n n a n a a +=--=因此存在4λ=,使得{}n a 为等差数列.18.解:(1)抽取产品的质量指标值的样本平均数1700.021800.091900.222000.33x =⨯+⨯+⨯+⨯2100.242200.082300.02+⨯+⨯+⨯200=()()()2222300.02200.09100.22s =-⨯+-⨯+-⨯22200.33100.24200.08300.02+⨯+⨯+⨯+⨯ 150=(2)(1)由(1)知,()~200,150Z ,从而()()187.8212.220012.220012.20.6826P Z P Z <<=-<<+=(2)由(1)知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826 依题意知()~100,0.6826X B ,所以1000.682668.26EX =⨯=19.解:(1)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1B O CO =,故1AC AB =(2)因为1AC AB ⊥且O 为1B C 的中点,所以AO CO =又因为AB BC =,所以BOA BOC ≅故OA OB ⊥,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -.因为160CBB ∠=,所以1CBB 为等边三角形.又AB BC =,则30,0,3A ⎛⎫ ⎪ ⎪⎝⎭,()1,0,0B ,130,,03B ⎛⎫ ⎪ ⎪⎝⎭,30,,03C ⎛⎫- ⎪ ⎪⎝⎭ 1330,,33AB ⎛⎫=- ⎪ ⎪⎝⎭,1131,0,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭, 1131,,03B C BC ⎛⎫==-- ⎪ ⎪⎝⎭设(),,n x y z =是平面11AA B 的法向量,11100n AB n A B ⎧⋅=⎪⎨⋅=⎪⎩即33033303y z x z ⎧-=⎪⎪⎨⎪-=⎪⎩所以可取()1,3,3n = 设m 是平面111A B C 的法向量,则111100m B C m A B ⎧⋅=⎪⎨⋅=⎪⎩ 同理可取()1,3,3m =-则1cos ,7n mn m n m ⋅== 所以二面角111A A B C --的余弦值为17.20.解:(1)设(),0F c ,由条件知,2233c =,得3c =又32c a =,所以2a =,222b a c =-1= 故E 的方程为2214x y +=. (2)依题意设直线l :2y kx =-将2y kx =-代入2214x y +=得 ()221416120k x kx +-+=当()216430k ∆=->,即234k >时,1,22841k x k ±=+从而12PQ x =-= 又点O 到直线PQ的距离d =,所以OPQ 的面积21241OPQ S d PQ k =⋅=+t =,则0t >,24444OPQ t S t t t==++ 因为44t t+≥,当且仅当2t =,即k =0∆> 所以当OPQ 的面积最大时,l 的方程为2y x =-. 21.解:(1)函数()f x 的定义域为()0,+∞,()112ln x x x x a b b f x ae x e e e x x x --'=+-+, 由题意可得()12f =,()1f e '=故1, 2.a b ==(2)由(1)知,()12ln x x f x e x e x -=+从而()1f x >等价于2ln x x x xe e ->-. 设函数()ln g x x x =,则()1ln g x x '=+. 所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0g x '>. 故()g x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为 11g e e ⎛⎫=- ⎪⎝⎭.设函数()2x h x xe e-=-,则()()1x h x e x -'=-. 所以当()0,1x ∈时,()0h x '>;当()1,x ∈+∞时,()0h x '<.故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x 在()0,+∞的最大值为()11h e=-. 综上,当0x >时,()()g x h x >,即()1f x >.22.(1)由题设得,,,,A B C D 四点共面,所以D CBE ∠=∠由已知得,CBE E ∠=∠ ,所以D E ∠=∠(2)设BC N 中点为,连接MN ,则由MB MC =,知MN BC ⊥所以O 在MN 上,又AD 不是O 的直径,M 为AD 中点,故OM AD ⊥即MN AD ⊥所以AD //BC ,故A CBE ∠=∠.又CBE E ∠=∠,故A E ∠=∠由(1)知D E ∠=∠所以ADE △为等边三角形。