长沙理工大学电磁场(冯慈璋版)作业答案
- 格式:doc
- 大小:2.38 MB
- 文档页数:15
工程电磁场(冯慈璋)书后思考题————————————————————————————————作者:————————————————————————————————日期:1—1 试回答下列各问题:(1)等位面上的电位处处一样,因此面上各处的电场强度的数值也句话对吗,试举例说明。
L』J米处吧议g=u,囚此那里Bg电场C=一vg=一V 0=0。
对吗?(3)甲处电位是10000v,乙处电位是10v故甲处的电场强度大于乙处的电场强度。
对吗?答此三问的内容基本一致,均是不正确的。
静电场中电场强度是电位函数的梯度,即电场强度E是电位函数甲沿最大减小率方向的空间变化率。
P的数值大小与辽的大小无关,因此甲处电位虽是10000v,大于乙处的电位,但并不等于甲处的电场强度大于乙处的电场强度。
在等位面上的电位均相等,只能说明沿等位面切线方向,电位的变化率等于零,因此等位面上任一点的电场强度沿该面切线方向的分量等于军,即fl=0。
而电位函数沿等位面法线方向的变化宰并不一定等于零,即Zn不一定为零,且数值也不一定相等。
即使等位面上g;0,该面上任一点沿等位面法线方向电位函数的变化串也不一定等于零。
例如:静电场中导体表面为等位面,但导体表面上电场强度召垂直于导体表面,大小与导体表面各点的曲率半径有关,曲率半径越小的地方电荷面密度越大.电场强度的数值也越大o1—2 电力线是不是点电荷在电场中的运动轨迹(设此点电荷陈电场力外不受其它力的作用)?答电力线仅表示该线上任—点的切线方向与该点电场强度方向一致,即表示出点电荷在此处的受力方向,但并不能表示出点电荷在该点的运动方向,故电力线不是点电荷在电场中的运动轨迹。
1—3 证明:等位区的充要条件是该区域内场强处处为零。
证明若等位区内某点的电场强度不为零,由厦;一v9可知v9乒0.即此点的电位函数沿空间某方向的空间变化率不为零,则在此方向上电位必有变化.这与等位区的条件矛盾。
若等位区内处处电位相等,则等位区内任—数的空间变化率为零,即仟·点的电场强度为零。
长沙理工大学考试试卷一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。
(B)如果高aazxzzxxss 斯面内无电荷,则高斯面上E处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。
(B)场强相等,电位移相等。
(C)场强相等,电位移不等。
(D)场强、电位移均不等。
[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。
1—2—2、求下列情况下,真空中带电面之间的电压。
(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。
解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。
对此圆柱体的外表面应用高斯通量定理,得l S D sτ=⋅⎰d考虑到此问题中的电通量均为r e即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是l rD l τπ=2即 r e rD πτ2=, r e r E02πετ= 由此可得 a b r e e r r E U ba r rb aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。
内导体的半径为a ,其值可以自由选定但有一最佳值。
因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。
另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。
试问a 为何值时,该电缆能承受最大电压?并求此最大电压。
(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。
某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。
解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=, aE πετ2max = 而内外导体之间的电压为abr r r E U ba ba ln 2d 2d πετπετ⎰⎰===或 )ln(max ab aE U =0]1)[ln(a d d max =-+=abE U 即 01ln =-a b , cm 736.0e==ba V)(1047.1102736.0ln 55max max ⨯=⨯⨯==ab aE U1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
第一章 1.3 证:941(6)(6)50=0A B A B A B A B =⨯+⨯-+-⨯=∴⨯∴和相互垂直和相互平行1.11 (1)22220.50.50.522220.50.50.52272(2)(2272)124sAx Ay AzA divA x y z x x y x y zAd s Ad dz dy x x y x y z dzττ---∂∂∂∇==++∂∂∂=++=∇=++=⎰⎰⎰⎰⎰由高斯散度定理有1.18(1) 因为闭合路径在xoy 平面内, 故有:222()()8(2)(22)()2()8x y z x y x z x sA dl e x e x e y z e dx e dy xdx x dy A dl S XOY A ds e yz e x e dxdy xdxdy A ds →→→→•=+++=+∴•=∇•=+=∇•=∴⎰⎰因为在面内, 所以,定理成立。
1.21(1) 由梯度公式(2,1,3)|410410x y z x y zx y z u u uu e e e x y ze e e e e e ∂∂∂∇=++∂∂∂=++=++1方向:()(2)最小值为0, 与梯度垂直1.26证明00u A ∇⨯∇=∇∇=书上p10 1.25 第二章 2.13343sin 3sin 4qa V e wr qwr J V e aρρρπθθρπ===•=2.3''2222'30222,40=l l l dl d R Er R ez z ea a ez z ea aEr r z z a P ez z ea aE d z a ea πρραϕραϕπε===--==+-=+⎰用圆柱坐标系进行求解场点坐标为P(0,0,z).线电荷元可以视为点电荷,其到场点的距离矢量得所以点的电场强度为()2'''03222cos sin 020l zex ey ea d zE e z a πϕϕϕραε+∴=∴=+⎰()2235222023522322225052(1)4()()44()35=044()=()0351()=()0352r>b 4()8()4152()=401srs sbr b E d s r E r b r rEq b r r dr EqE d s b r r r E r b r rE r E d s r E r Eq b r r dr bEq bE r r πππεππεεππππε≤==-=--∴-==-==⎰⎰⎰⎰⎰时由高斯定理有即()时由高斯定理有250r ε222122212212221,22()2(2)121122(2r r r r r r b l Eb r l b e a e Eb Ea b e a e E Eb Ea r l Eb r l r e Eb a e Ea E επρπερρεερεεπρπερερερε∑∴=∴==∴=-=-∑∴===∴=⎰⎰0000000当r1>b 则,E=Eb-EaqEb ds=同理:r1r2r1r2对于r1<b 且在空腔外,E=Eb-EaqEb ds=,而r22211212121)(3)112,2212(12)222r r r r r r r r a e r e r b r e r e Ea r e r e E Eb Ea r e r e ερρεερρρεεε--<∑∴=∴=-=-=-⎰00000r2且在空腔内 E=Eb-Ea qE ds=,Eb=222200(1)0()cos ()sin (2)2cos r a E A a A a AA A r rA aϕϕϕϕφρεεϕ<=-∇∅=-∇∅=-∇•--+-∂==-∂2r s 时,ar>a 时 E=(r-)cos r=e e 圆柱是由导体制成的表面电荷2.20能求出边界处即z=0处的E2 根据D 的法向量分量连续12(5)103r r Z Z z E E εε⇒+=⇒=(1) 2ln22,ln ln66ln(2)62ln lne e lrbl a l rr sr s E e rbu E dl a u uE e bb r a au J E e b r aJdsI u g e ds b b uuu r a aρρρπερπεπερπδ=====∴======⎰⎰⎰设内外导体单位长度带电量分别为+和-,利用高斯定理可以求得导体介质的电场为:得到(1)=0 =000,2=00B B er arB a B J H μμ∇∴∇=≠∇=∇⨯=取圆柱坐标系,若为磁场,根据磁场连续性方程,有所以不是磁场()取直角坐标,所以是磁场。
1-8,1-9,1-101-19,1-20 1-211-28,1-31,1-32,真空中一点电荷C q 610-=,放在距离金属球壳(半径为5cm )的球心15cm 处,求:(1)球面上各点的ϕ、E 表达式。
何处场强最大,数值如何?(2)若将球壳接地,情况如何?(3)若将该点电荷置于球壳内距球心3cm 处,求球内的ϕ、E 表达式。
P解:(1)利用点电荷对导体系统的镜像方法原理,可知在球壳内有-q’的镜像电荷,位于距中心b 处,q da q =',d ab 2=。
由于金属球壳呈电中性,则在位于点电荷一侧导体球表面上的感应电荷为负值,而另一侧表面上的感应电荷为正值,且导体球表面上的正、负感应电荷的总量应等于零。
为了满足电荷守恒定律,必须在原导体球内再引入一个镜像电荷q '',且q q '=''。
由于点电荷q 和镜像电荷-q '、q ''共同作用的合成电场必须保证球面边界是一个等位面的条件,因此镜像电荷q ''必定位于球心。
本题目就可简化为均匀介质内三个点电荷的电场问题,利用叠加原理可以计算。
由于C q 610-=,故C q q d a q q 3101556-==='='' 由于点电荷q 和镜像电荷q '-在球壳上形成的电位为零,球壳的电位仅有镜像电荷q ''产生,即为:4212601061051085814343104⨯=⨯⨯⨯⨯⨯⨯=''=---..a q πεϕ=60kV 球壳上任意点P 的电场强度为:32120220210444r r r P aq r q r qe e e E πεπεπε''+'-= 在球表面点A 处场强最大,其值为:()[]()⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-⎥⎦⎤⎢⎣⎡⨯⎪⎪⎭⎫ ⎝⎛-⨯+⨯-=------22622262260max 10510311015551031105151041πεE =61042⨯.V/m (2)球壳接地,则镜像电荷只有q '-,于是球面上:0=ϕ2122021044r r P r q r qe e E πεπε'-=在球表面点A 处场强最大,其值为:()[]⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯⎪⎪⎭⎫ ⎝⎛-⨯+⨯-=----22262260max 1015551031105151041πεE =61063⨯.V/m (3)按照题意,给定的点电荷位于球壳内是点电荷与导体球问题的逆问题,进行逆向处理后,得到金属球壳在接地条件下球外的镜像电荷q '-,然后按照球壳为电中性条件,引入均匀分布于球壳表面S ,总量为q 的镜像电荷q '',以保证S 面上的边界条件不变。
1-8,1-9,
1-10
1-19,
1-20 1-21
1-28,
1-31,
1-32,真空中一点电荷C q 6
10-=,放在距离金属球壳(半径为5cm )的球心15cm 处,求:
(1)球面上各点的ϕ、E 表达式。
何处场强最大,数值如何?
(2)若将球壳接地,情况如何?
(3)若将该点电荷置于球壳内距球心3cm 处,求球内的ϕ、E 表达式。
P
解:(1)利用点电荷对导体系统的镜像方法原理,可知在球壳内有-q’的镜像电荷,位于距中
心b 处,q d
a q =',d a
b 2
=。
由于金属球壳呈电中性,则在位于点电荷一侧导体球表面上的感应电荷为负值,而另一侧表面上的感应电荷为正值,且导体球表面上的正、负感应电荷的总量应等于零。
为了满足电荷守恒定律,必须在原导体球内再引入一个镜像电荷q '',且q q '=''。
由于点电荷q 和镜像电荷-q '、q ''共同作用的合成电场必须保证球面边界是一个等位面的条件,因此镜像电荷q ''必定位于球心。
本题目就可简化为均匀介质内三个点电荷的电场问题,利用叠加原理可以计算。
由于C q 610-=,故C q q d a q q 3101556
-==='='' 由于点电荷q 和镜像电荷q '-在球壳上形成的电位为零,球壳的电位仅有镜像电荷q ''产生,即为:
4212601061051085814343104⨯=⨯⨯⨯⨯⨯⨯='
'=---..a q πεϕ=60kV 球壳上任意点P 的电场强度为:
32120220210444r r r P a
q r q r q
e e e E πεπεπε''+'-
= 在球表面点A 处场强最大,其值为:
()[]()
⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-⎥⎦⎤⎢⎣⎡⨯⎪⎪⎭⎫ ⎝⎛-⨯+⨯-=------22622262260max 10510311015551031105151041πεE =61042⨯.V/m (2)球壳接地,则镜像电荷只有q '-,于是球面上:
0=ϕ
2122021044r r P r q r q
e e E πεπε'-=
在球表面点A 处场强最大,其值为:
()[]
⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯⎪⎪⎭⎫ ⎝⎛-⨯+⨯-=----22262260max 1015551031105151041πεE =61063⨯.V/m (3)按照题意,给定的点电荷位于球壳内是点电荷与导体球问题的逆问题,进行逆向处理后,得到金属球壳在接地条件下球外的镜像电荷q '-,然后按照球壳为电中性条件,引入均匀分布于球壳表面S ,总量为q 的镜像电荷q '',以保证S 面上的边界条件不变。
镜像电荷q '-(q a
d q =')位于球外,其位置距球心d (b a d 2
=),同时,为满足边界条件不变,q d s
=⋅⎰S D ,在球壳处应为叠加呈均匀分布的总量为q 的电荷效应,因此球内的电位和电场强度分别为:
a
q r q a d r q 01020444πεπεπεϕ+-= 1221022044r r r q r q
e e E πεπε'-=
式中1r 、2r 分别为所设定的球内电荷q 与镜像电荷q '-至球壳内任意场点p 处的距离。
1-33,
1-38,
2-2,2-3,2-4,
2-9,
3-7,
3-32,
5.1-5.3
5-5,
5-6,。