小学奥数 换元法.教师版
- 格式:doc
- 大小:783.54 KB
- 文档页数:6
奇妙的换元法一、引入所谓换元法,就是在一个比较复杂的数学式子中,把整个式子的一部分看作一个量,然后用一个字母去代替它,从而简化复杂式子的结构,使问题易于解决。
今天这一讲我们着重学习换元法的应用。
二、例题选讲例1. 把1)1(2)(2-++-+n m n m 分解因式分析:在原式中,重复出现了m+n ,不妨把m+n 看成u解:设m+n = u1)1(2)(2-++-+n m n m= 1)1(22-+-u u 换元= 322--u u= )1)(3(+-u u 回代= )1)(3(++-+n m n m*此例通过换元使原多项式的形式简洁了,分解容易了。
因而,在因式分解中,换元法有较为普遍的应用。
例2.分解因式 8)43)(33(22-++-+x x x x分析:此式展开后是n 的四次多项式,若将其展开,一定复杂。
根据本题特征,可设 y x x =+32。
通过换元,将x 的四次多项式转化为y 的二次多项式,化繁为简,变难为易。
解:设y x x =+32,则原式 = 8)4)(3(-+-y y 换元= 202-+y y= )5)(4(+-y y = )53)(43(22++-+x x x x 回代= )53)(4)(1(2+++-x x x x*本题除了可设y x x =+32换元以外,还有其它的换元方法(可设y x x =-+332或y x x =++432均可)例3. 分解因式2)1()2)(2-+-+-+xy y x xy y x ( 分析:直接分解因式较困难,观察所给式子,发现式子中只有x+ y 和xy ,若将x+ y 和xy 换元成a 和b ,则原式可以化为2)1()2)(2-+--b a b a (的形式,分解因式后再将a 、b 用x+ y 与xy 代入即可。
解:设x+ y = a ,xy = b 则原式 = 2)1()2)(2-+--b a b a (= 1242222--++--b b b ab a a= 1)22()2(22++-++-b a b ab a= 1)(2)(2+---b a b a= 2)1(--b a = 2)1(--+xy y x= 2)]1()1([y y x --- = 2)]1)(1[(y x --= 22)1()1(--y x*从本题特征看,把x+ y 、xy 各看作一个整体换元可使问题简化,事实上本题解法较多,同 学们可以自己在课后加以研究。
换元法对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 【考点】换元法 【难度】2星 【题型】计算【解析】 令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯= 【答案】16【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 【考点】换元法 【难度】2星 【题型】计算【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++) 例题精讲教学目标【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
换元法教学目标对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.例题精讲【例1】计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a=--+1()6a b =-16611=⨯=【答案】16【巩固】11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯=【答案】【巩固】9计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法【难度】2星【题型】计算【解析】设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】【巩固】0.054321计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法【难度】2星【题型】计算【关键词】希望杯,2试【解析】换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】(10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____。
换元法讲解:将复杂的式子化繁为简
换元法是数学学习中的一种常见方法。
对结构比较复杂的多项式,把其中某些部分看成一个整体,用新字母代替,从而将复杂的式子化成简单明了的形式。
实质就是,
用一个符号代表一堆复杂的东西,计算起来比较省力。
来看下面这个例题
【例1】计算3+9+27+81+243+729+2187
分析:这题是等比数列求和,公比是3,共有7项。
采用错位相减法,让等式乘以它的公比。
令A=3+9+27+81+243+729+2187;
则 3A=9+27+81+243+729+2187+6561;
两式相减,
3A-A=2A=6561-3
2A=6558
A=6558÷2=3279
所以,
3+9+27+81+243+729+2187=3279
在计算【例1】中,
细心的你会发现,
G老师令A=3+9+27+81+243+729+2187;
这一步,
就叫做换元。
用字母A代表3+9+27+81+243+729+2187的和。
当然,
也可以不用A,
用B、C、D、E、F、G……都行,
喜欢哪个字母就用哪个。
注意:用换元法解答,在解题的最后一定要记得把元还回来,就像G老师在【例1】中写的最后一步“所以,3+9+27+81+243+729+2187=3279”。
更多小学数学重难点知识讲解,来和“G老师讲奥数”一起学习吧。
换元法解题过程嘿,咱今儿个就来说说这换元法解题过程呀!这换元法,就像是一把神奇的钥匙,能打开好多难题的门锁呢!你想想看,有时候那些数学题就像一团乱麻,让你摸不着头脑。
可一旦用上换元法,嘿,那就不一样啦!就好像突然找到了线头,能一点点把这团乱麻给理顺咯。
比如说,有个题目里有个超级复杂的式子,里面有个部分老是捣乱。
这时候,咱就可以大胆地把这个捣乱的部分设成一个新的变量,比如设成“小X”。
这就好比给这个捣乱的家伙起了个名字,咱对付起来就方便多啦!然后呢,把题目里涉及到这个捣乱部分的地方都用“小X”来替换。
哇塞,一下子,原来那复杂得让人头疼的式子是不是就变得简单多啦?就好像是把一个大怪兽变成了一只小猫咪,好对付多了吧!接下来,就按照正常的解题步骤去解这个变简单了的式子。
等求出“小X”的值后,可别忘记了再把它换回到原来的式子中去,这样才能得到最终的答案呀!换元法就像是一个魔法,能把难题变得不再可怕。
它就像你在解题路上的好帮手,关键时刻总能帮你一把。
你再想想,生活中是不是有时候也需要这样的“换元法”呢?当我们遇到一些棘手的问题,感觉无从下手的时候,是不是也可以试着换个角度,换个方式去思考呢?也许就会有新的发现和解决办法呢!就像走在路上遇到了一堵高墙,直接撞上去肯定不行呀,那得多疼!但如果我们绕个路,或者找个梯子翻过去,不就可以继续前进啦?这和换元法解题不是很像吗?所以啊,同学们,可别小看了这换元法解题过程哟!它可是我们在数学世界里探索的好工具呢!好好掌握它,让那些难题都乖乖投降吧!以后遇到难题的时候,就大胆地去尝试用换元法吧,说不定会有意外的惊喜呢!相信自己,一定能行!这换元法,真的是太好用啦,你们说是不是呀?。
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.” 三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 【考点】换元法 【难度】2星 【题型】计算【解析】 令1111246a +++=,111246b ++=,则: 原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯= 【答案】16例题精讲教学目标换元法【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 【考点】换元法 【难度】2星 【题型】计算【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)= 【答案】15【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+) 【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,六年级,二试【解析】 设0.120.23a +=,0.120.230.34b ++=原式()()110.34a b b a b a =+⨯-+⨯=-= 【答案】0.34【巩固】 计算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭【考点】换元法 【难度】2星 【题型】计算【关键词】迎春杯【解析】 ⑴ 该题相对简单,尽量凑相同的部分,即能简化运算.设0.450.56a =+,0.450.560.67b =++,有原式=(1a +)b ⨯-(1b +)0.67a b ab a ab b a ⨯=+--=-=⑵ 设621739458126358947a ⎛⎫=++ ⎪⎝⎭,739458358947b ⎛⎫=+ ⎪⎝⎭原式378378378621378()9207207207126207a b a b a b ⎛⎫⎛⎫=⨯+-+⨯=-⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【答案】⑴0.67 ⑵9【巩固】 计算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 。
【考点】换元法 【难度】2星 【题型】计算 【关键词】走美杯,初赛,六年级【解析】 设573123217a =++、733217b =+,则有441313444()131313455131239a b a ba b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=-=-=⨯=原式 【答案】539【例 2】 计算:1111111111112200723200822008232007⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-+++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】3星 【题型】计算【解析】 令111232007a =+++,111232008b =+++, 原式()()1112008a b b a b ab a ab b a =+⨯-+⨯=+--=-=【答案】12008【巩固】 111111111111111111213141213141511121314151213141⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111111213141a +++=,111213141b ++=, 原式115151a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭ 115151ab a ab b =+--1()51a b =-1115111561=⨯=【答案】1561【巩固】 计算1111111111111111())()5791179111357911137911+++⨯+++-++++⨯++()(【考点】换元法 【难度】2星 【题型】计算【关键词】清华附中【解析】 设111157911A +++=,1117911B ++=,原式111313A B A B ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭ 111313A B A A B B =⨯+-⨯-()113A B =-11113565=⨯= 【答案】165【巩固】 计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111112345A ++++=,11112345B +++=原式=1166A B A B ⎛⎫⎛⎫⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=1166A B A A B B ⨯+⨯-⨯-⨯=1166A B ⨯-⨯ 16=⨯(A B -)16=【答案】16【例 3】 计算:212391239112923912341023410223103410⎛⎫⎛⎫⎛⎫⎛⎫+++++++++⨯-++++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【关键词】迎春杯【解析】 设123923410t =++++,则有22211111(1)222222t t t t t t t t t ⎛⎫⎛⎫+⨯-+-=+-+--= ⎪ ⎪⎝⎭⎝⎭【答案】【例 4】 计算11112111311143114120092009++++++++++【考点】换元法 【难度】4星 【题型】计算【解析】 设3N =+11412009++. 原式=112N++11111N++=121N N++111N N ++=112121N N N N ++=++. 【答案】1【例 5】 计算:22222811811811111118118118811⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-+÷++⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎣⎦【考点】换元法 【难度】3星 【题型】计算【解析】 (法一)设811x =,则原式2211881111288x x x x x x x x +--==⎛⎫⎛⎫++⨯-+⨯⎪ ⎪⎝⎭⎝⎭. (法二)设811118x =+,那么222228112118x =++,所以222228112118x +=-.而2222211112811811111228118118118118888x x ⨯⨯⎛⎫⎛⎫⎛⎫-=+-=+-⨯=+-⨯ ⎪ ⎪ ⎪⨯⎝⎭⎝⎭⎝⎭. 这样原式转化为()()222228888121288x x x x x x x x ----=⨯=--+-⨯. 在这里需要老师对于()()()()a b c d a b c a b d ac bc ad bd +⨯+=+⨯++⨯=+++的计算进行简单的说明. 【答案】88【例 6】 计算:22010200920111⨯+【考点】换元法 【难度】2星 【题型】计算【解析】 设a =2009,原式2221)211+2121a a a a a a a +++===+++(()【答案】1【巩固】 计算200820092007200820091+⨯⨯-(4级)【考点】换元法 【难度】2星 【题型】计算【解析】 设2008a =原式(1)(1)(1)1a a a a a ++-=+-22111a a a a +-=+-= 【答案】1。