第三章 DSP技术.ppt
- 格式:ppt
- 大小:2.63 MB
- 文档页数:120
DSP总结:以下总结仅针对宁波大学DSP芯片技术及应用(通信类非控制类)这门课,个人根据重点、考点总结的,用于期末复习(请结合课本以及PPT的例子),不足之处请见谅,基本能过就是,如若其中有错请联系QQ:493288964。
还是建议您平时学点,理解为先!!!将该文章用于百度等兑换积分的行为是可耻的!第一章绪论(简介)1、DSP芯片特点:采用哈佛结构;多总线结构;流水线技术;专用的硬件乘法器;特殊的DSP指令;快速的指令周期;硬件配置强;支持多处理器结构1)CPU是冯.诺伊曼结构;DSP是数据和地址空间分开的哈佛结构。
冯.诺依曼结构:单存储空间;统一的程序和数据空间;共享的程序和数据总线;程序指令只能串行执行单指令周期:100ns,现在单指令周期为:10ns哈佛结构:双存储空间;程序存储器和数据存储器分开;程序总线和数据总线分开;独立编址、独立访问改进型哈佛结构:双存储空间、多条总线;多条数据总线;高速缓冲器(重复指令,只需读入一次)2)采用多总线结构:TMS320C54X:4组总线;单机器周期内可完成的操作;3)流水线操作4)专用的硬件乘法器硬件乘法累加器是DSP区别于通用微处理器的一个重要标志MAC(乘累加)单元(独立的乘法器和加法器;单周期内完成一次乘法和一次加法运算;MPY,MAC,MACA, MACSU等指令)分类:工作时钟和指令类型:静态和一致性DSP芯片;用途分:通用和专用型;数据格式分:定点和浮点型2、DSP按数据格式分为定点型和浮点型定点DSP芯片:数据长度16位/24位TMS320C2000/5000/6000价格便宜、功耗较低、但运算精度稍低。
浮点DSP芯片:数据长度32位/40位MS320C3X/4X/VC33/C67X/C8X价格稍贵、功耗较大、但运算精度高。
3、芯片简介TMS320VC5416PGE160 主处理器芯片的性能:频率:160MHz 速度:160MIPS 周期:6.25ns第二章:TMS320C54X的硬件结构1、C54X:为低功耗,高性能而专门设计的16位定点DSP芯片C54基本结构:中央处理器(CPU)、内部总线结构、存储器、片内外设。
第三章DSP开发工具T提供了软件集成开发调试及软件仿真平台CCS。
通过使用CCS,用户可以避免复杂的编译连接命令,方便的进行硬件仿真和软件仿真。
一、软件开发过程※二、汇编语言程序编写方法三、COFF的概念四、编译器链接命令文件软件开发过程大体要经过化等几个主要过程。
1)编辑:编辑源程序(.ASM或.C)和链接器命令文件(.CMD)。
源程序可以用汇编或C语言来设计,当然也可以进行混合编程。
2)编译: 将原程序编译成为公共目标格式文件(COFF 格式的.OBJ)、存储器映像文件(.MAP)和列表文件(.LST),对于C程序首先要由C编译器编译成为汇编程序,然后再生成OBJ文件。
3)链接成可执行代码:将用户的多个COFF文件连同所引用的库文件一起组合成为可执行代码。
4)调试:通过软仿真或硬件仿真方式对程序进行调试5)固化:将执行代码烧写进ROM中,实现脱机运行。
第三章DSP开发工具一、软件开发过程二、汇编语言程序编写方法※三、COFF的概念四、编译器链接命令文件1)文件扩展名为.ASM2)汇编语言源程序的句法:如START: STM #0,SWWSR ;SWWSR=0不插入等待时间[标号][:] 助记符[操作数] [;注释]标号:标号和冒号都是可选项,代表段程序计数器(SPC)的值。
所有标号必须从第一列开始写,最多可达32字符(A~Z,a~z,0~9 …_‟,…$‟),第一字母不能数字。
如果不用标号,则第一字母必须为空格、分号或星号。
助记符:可以是助记符指令、汇编指令、宏指令和宏调用。
助记符指令一般大写。
汇编命令和宏命令均以“.”开始,并且小写。
汇编命令可以定义常量和变量,用于控制汇编和链接过程,可以不占存储空间。
注意:汇编命令不能写在第一列。
操作数:指令中的操作数或汇编命令中定义的内容,操作数之间必须以逗号隔开,也有一些指令没有操作数。
如NOP。
注释:注释前必须加分号,一般用于标注指令的执行信息,使程序增加可读性。
目录一引言与概述_________________________________________________________ 2 1.1 DSP介绍 _______________________________________________________________ 2 1.2DSP的应用:____________________________________________________________ 2 1.3问题描述_______________________________________________________________ 3 1.4 DSP2407简介 ___________________________________________________________ 3 1.5事件管理器的引脚说明___________________________________________________ 4 1.6比较单元_______________________________________________________________ 4 1.7 PWM基本原理__________________________________________________________ 4二系统总体设计与工作原理_____________________________________________ 6 2.1总体设计与分析_________________________________________________________ 6 2.2基本理论_______________________________________________________________ 7三各单元硬件设计及工作原理__________________________________________ 12四软件设计与说明____________________________________________________ 12 4.1程序文件说明__________________________________________________________ 12 4.2主程序(pwm.c) _________________________________________________________ 13 4.3向量表程序(vectors.asm) _________________________________________________ 14 4.4存储器配置(2407CMD.cmd) ______________________________________________ 14五调试结果及其操作说明______________________________________________ 15 5.1 CCS 集成开发环境_____________________________________________________ 15 5.2 CCS 的调试操作_______________________________________________________ 15六参考文献__________________________________________________________ 16一引言与概述1.1 DSP介绍数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
DSP技术绪论:P1-P21.DSP与DSP技术。
2.CPU、MCU、DSP区别与联系。
3.DSP技术发展的两个领域。
4.DSP的理论基础。
P15.DSP的实现方法。
P2第一章数字信号处理和DSP系统P2-P6 1.1实时出资信号处理技术的发展。
数字信号处理器的应用领域。
1.2数字信号处理器的特点P21.2.2流水线1.2.3 硬件乘法累加单元1.2.4零开销循环1.2.5特殊的寻址方式1.2.6高效的特殊指令1.2.7丰富的片内外设DSP最重要的特点DSP芯片是高性能系统的核心P31.3德州仪器公司的DSP产品P3-P41.C2000系列简介2.C5000系列简介3.C6000系列简介1.4DSP芯片的选择P5-P61.4.1运算速度1.4.2算法格式和数据宽度1.4.3存储器1.4.4功耗P51.4.5开发工具1.5DSP应用系统设计流程P6第二章TMS320C55x的硬件结构P7-P16 2.1TMS320C55x DSP的基本结构2.1.1C55x的CPU体系结构P72.1.2指令缓冲单元2.1.3程序流程单元2.1.4地址流程单元P82.1.5数据计算单元2.1.6指令流水线P92.2TMS320VC55A的主要特性P102.2.1VC5509A的主要特性1.CPU部分2.存储器系统3.片上外设2.2.2VC5509A的引脚功能2.3TMS320C55x存储空间结构P11 2.3.1存储器映射P112.3.2程序空间2.3.2数据空间P122.3.4I/O空间P132.4中断系统P132.4.1中断系统概述1.中断分类2.中断处理一般过程2.4.2中断标志寄存器和中断屏蔽寄存器P142.4.3接收应答及处理中断2.4.5中断向量(地址)P15第三章DSP的数据运算基础P17-19第四章TMS320C55x的指令系统P21-P29 4.1寻址方式4.1.1绝对寻址模式4.1.2直接寻址模式P221.DP直接寻址2.SP直接寻址3.寄存器位寻址P234.PDP直接寻址3.1.3间接寻址模式P231.AR间接寻址模式2.双AR简介寻址模式P244.系数间接寻址模式P254.2TMS320C55x的指令系统4.2.1C55x指令的并行执行1.指令并行的特征2.指令并行的规则P264.2.2TMS320C55x DSP的汇编指令P26第四章C55x处理器的软件设计P31-P42 4.1C55x处理器程序基本结构4.1.1自我调度程序的基本结构4.1.2应用嵌入式操作系统P321.不可剥夺型内核2.可剥夺型内核4.2C语言程序开发及优化4.2.1c语言中的数据类型4.2.2对I/O空间进行寻址P334.2.3interrupt关键字4.2.4onchip关键字4.2.5C语言的优化4.3C语言与汇编语言的混合编程P344.3.1在C语言中直接嵌套汇编语句4.3.2C语言调用汇编模块的接口1.C/C++中的寄存器规则2.函数调用规则P353.被调用函数的响应4.C/C++与汇编语言的接口P364.4公共目标文件格式——COFF4.4.1COFF文件中的段P374.4通用目标文件格式P374.4.1C/C++和汇编语言中段的分配4.4.2寄存器模式设置P381.小存储器模式2.大存储器模式3.C/C++系统堆栈4.动态内存分配P395.结构的对齐4.4.3 链接命令文件4.5汇编源程序的编辑、汇编和链接过程P39 4.5.1编辑4.5.2汇编器1.汇编器的功能2.汇编器的调用3.列表文件P404.5.3连接器1.连接器的功能2.连接器的调用3.多个文件的链接P40-P414.6C55x处理器的数字信号处理库和图像、视频处理库P414.6.1C55x的数字信号处理库4.6.2C55x的图像、视频处理库P42第五章TMS32C55Xde 片内集成外设开发及测试P43-P735.1C55x片内外设与芯片支持库简介1.时钟与定时器2.外部设备链接接口3.信号采集4.通信接口5.其他外设5.2时钟发生器P445.2.1时钟模式寄存器5.2.2工作模式P451.旁路模式2.锁定模式5.2.3CLKOUT输出5.2.4使用方法1.省点2.DSP复位3.失锁5.2.5使用方法及实例5.2.6时钟发生器的调试5.3通用定时器P465.3.1结构框图5.3.2工作原理5.3.3使用方法P471.初始化定时器2.停止/启动定时器3.DSP复位5.3.4通用定时器的应用5.3.4通用定时器的调试P485.4外部存储器接口5.4.1功能与作用5.4.2外部寄存器接口硬件连接与配置P491.异步存储器接口2.同步突发静态存储器P513.同步突发动态存储器P525.4.3外部寄存器接口的软件设置P545.5主机接口(EHPI)P555.5.1EHPI接口的非复用连接方式5.5.2EHPI接口的复用连接方式P565.5.3EHPI口的寄存器5.6多通道缓冲串口McBSP P575.6.1概述5.6.2组成框图5.6.3采样率发生器1.采样率发生器的输出时钟和桢同步信号P582.同步5.6.4多通道选择1.接收多通道选择P592.发送多通道选择5.6.5异常处理1.接收数据溢出2.同步桢同步信号错误3.发送数据重写4.发送寄存器空P605.发送帧同步脉冲错误5.6.6MCBSP寄存器1.收发通道寄存器2.时钟和帧同步寄存器(1)串口控制寄存器(2)收发控制寄存器P61(3)采样率发生寄存器(4)引脚控制寄存器3.多通道选择寄存器P62(1)通道控制寄存器(2)收发通道使能寄存器5.6.7多通道缓冲串口的应用5.6.8MCBSP串口的测试P641.DSP内部链接测试2.外部设备连接测试5.7通道输入/输出端口GPIO P655.7.1GPIO概述5.7.2上电模式设定5.7.3驱动程序开发P665.7.4通用输入/输出GPIO的测试1.输入口测试2.输出口测试5.8DMA控制器5.8.1概述5.8.2通道和端口P675.8.3HPI的配置5.8.4DMA传输配置P681.数据传输单位2.数据打包3.端口4.数据源和目的地址5.8.5DMA控制器的寄存器1.DMA全局控制寄存器P692.DMA通道控制寄存器3.源和目的参数寄存器4.起始地址寄存器P50【我标错了实际应该是P70】5.单元索引寄存器和桢索引寄存器5.8.6使用方法及实例5.9I²C总线P515.9.1I²C总线简介1. I²C总线数据传输P522.仲裁3.时钟产生和同步P534. I²C模块的终端和DMA同步事件5. I²C模块的禁止与使能5.9.2I²C寄存器5.9.3 I²C模块的使用5.10通用串行总线(USB)P545.10.1通用串行总线简介5.11.2USB的DMA控制器P551.主机-DMA模式P56B模块的中断5.10.3USB模块的寄存器1.DMA内容寄存器P572.通用端点描述寄存器3.控制端点描述寄存器P584.中断寄存器P595.11.4USB模块的应用5.11模块转换器(ADC)P605.11.1模数转换器结构和时序5.11.2模数转换器的寄存器P615.11.3使用方法及实例P625.12实时时钟(RTC)5.12.1基本结构P635.12.2内部寄存器5.12.3应用P645.13看门狗定时器(Watchdog)P655.13.1工作方式5.13.2寄存器说明5.13.3应用P665.14一步串口(UART)P665.14.1基本结构1.异步串口发送部分P672.异步串口接收部分3.波特率产生器4.异步串口的中断申请与DMA事件的产生P685.FIFO工作模式6.供电和仿真P695.14.2异步串口寄存器1.接收缓冲寄存器(URRBR)P702.发送保持寄存器(URTHR)3.分频数锁存寄存器(URDLL和URDLM)4.中断使能寄存器(URIER)5.中断标志寄存器(URIIR)6.FIFO控制寄存器(URFCR)P717.线路控制寄存器(URLCR)8.循环模式控制寄存器(URMCR)P729.线路状态寄存器(URLSR)10.供电和仿真控制寄存器(URPECR)P735.14.3异步串口的应用P73第七章TMS320C55X硬件设计实例p75-P93 7.1DSP最小系统设计7.1.1C55x的电源设计7.1.2复位电路设计P767.1.3时钟电路设计P777.1.4JTAG接口电路设计7.1.5程序加载部分1.并行外部存储器(EMIF)加载P782.标准串口加载p793.串行外设接口(SPI)加载p804.EHPI口加载程序P817.2A/D与D/A设计P827.2.1串行多路A/D设计P837.2.2高速并行A/D设计P857.2.3并行D/A设计P867.3C55X在语音系统中的应用P877.4C55x在软件无线电中的应用P89第八章TMS320C55X软件设计实例P95-P1138.1卷积算法8.1.1卷积算法8.1.2卷积算法的MATLAB实现8.1.3卷积算法的DSP实现8.2有限冲击响应滤波器的特点和结构P97 8.2.1有限冲击响应滤波器的特点和结构8.2.2MATLAB设计8.2.3DSP实现P988.3无线冲击响应滤波器(IIR)的实现8.3.1无线冲击响应滤波器的结构8.3.2无线冲击响应滤波器的MATLAB设计P998.3.3DSP实现8.4快速傅里叶变换(FFT)P1018.4.1快速傅里叶变换(FFT)算法8.4.2DSP实现8.5语音信号编码解码(G.711)P1038.5.1语音信号编码解码原理1.G.711语音编码标准2.PCM编码3.A律压扩标准8.5.语音信号编码解码的DSP实现P104 8.6数字图像的锐化8.7Viterbi译码P106 CCS集成开发环境p115-P123 S集成开发环境简介1.1CCS安装及设置(1)CCS2.0系统的安装(2)系统配置(3)系统启动1.2CCS的窗口、菜单和工具条1)CCS的窗口2)CCS的菜单P1163)CCS的工具栏1.3CCS的工程管理1)典型工程文件记录的信息2)创建和管理工程1.4调试1.5通用扩展语音GEL p117S应用举例S仿真P1204.DSP/BIOS简介P123。
DSP技术DSP(数字信号处理)是目前在信号处理领域中广泛应用的一种技术。
它通过对数字信号进行算法处理,实现信号的采集、滤波、去噪、解调等功能。
在众多领域中,如音频、图像、通信等方面,DSP技术发挥着重要的作用。
本文将介绍DSP技术的原理、应用以及发展趋势。
原理DSP技术的原理基于对离散时间信号的处理和算法实现。
主要包括以下几个方面:1.采样和量化:将连续时间信号转换为离散时间信号,通过采样将连续信号离散化,并通过量化将采样值转换为有限的离散级别。
2.离散变换:通过离散傅里叶变换(DFT)、离散余弦变换(DCT)等将时域信号转换到频域进行处理。
3.滤波:通过数字滤波器对信号进行滤波,包括低通、高通、带通、带阻滤波等。
4.编码和解码:对数字信号进行编码和解码,用于数据的传输和存储。
5.算法实现:基于以上原理,通过算法实现对信号的处理和分析,如噪声抑制、信号解调、信号增强等。
应用DSP技术广泛应用于各个领域,以下是一些常见的应用场景:音频处理在音频处理中,DSP技术用于音频信号的采集、处理和合成。
它可以实现音频的去噪、均衡、变速、混响等效果,广泛应用于音频设备、音乐制作和声音效果处理等领域。
图像处理图像处理是DSP技术的另一个重要应用领域。
通过数字图像处理算法,可以实现图像的增强、滤波、分割、特征提取等操作。
图像处理在医学影像、计算机视觉、图像识别等方面具有广泛的应用。
通信系统在通信系统中,DSP技术用于信号的调制和解调、误码控制、信道估计、自适应滤波等。
它可以提高通信质量,降低信号的传输误差,保证数据的可靠性。
视频处理视频处理是DSP技术的重点应用领域之一,包括视频编解码、视频压缩、视频增强、视频分析等。
在视频监控、视频会议和视频广播等方面,DSP技术可以提供高质量的视频处理功能。
发展趋势随着科技的不断进步,DSP技术也在不断发展。
以下是DSP技术的一些发展趋势:1.高性能和低功耗:随着芯片技术和算法的不断改进,DSP芯片具有越来越高的性能和低功耗,可以满足对于处理能力和能耗的双重需求。