常用材料及热处理名词解释
- 格式:doc
- 大小:122.00 KB
- 文档页数:4
第一部分材料结构的基本知识原子结合键:材料在凝聚态(液、固态)下其原子之间形成的相互作用键。
结合键的强弱可用键能的大小表示,一次键的键能较二次键大得多。
一次键:通过原子外层电子的转移或共享而形成。
(离子键,共价键,金属键)离子键:由原子通过相互得失价电子形成正、负离子,正、负离子的相互吸引而形成的键。
一般在金属元素和非金属元素之间形成,如NaCl、MgO等。
(无方向性)共价键:通过相邻原子间形成共用电子的方式使每个原子的最外层电子数都达到稳定的八个,其形成的键为共价键。
一般在非金属元素之间形成,如金刚石、SiC等。
(共价键具有方向性和饱和性。
)金属键:金属很容易失去最外层的价电子而形成正离子和自由电子,当许多金属结合时,失去价电子的金属正离子常在空间整齐排列,而自由电子则在正离子之间自由运动,依靠这种方式结合起来的键称金属键。
二次键:通过原子间的偶极而使分子之间结合在一起的键。
(氢键,范德瓦尔斯键)范德瓦尔斯键:1.分子间的作用2.具有普遍性3.键能非常小。
氢键:1.氢键一般表达式:X--H----Y 2.与氢的特殊作用有关,不具普遍性3. 并非所有含氢的分子都存在氢键4.本质上为范德瓦尔斯键,但键能要大得多。
晶体:其基本粒子(原子、分子、原子团等)在三维空间内周期性地重复排列的材料。
具有各向异性。
可分为金属晶体、离子晶体、共价晶体和分子晶体四种。
非晶体:其基本粒子的排列处于无序状态,实际为一种过冷液体。
(具有各向同性)结晶:由液体转变为晶体的过程。
有体积的突变。
通过形核和长大两个过程实现。
凝固:由液体转变为非晶体的过程。
无体积的突变。
单晶体:由一个晶核生长而形成的晶体称为单晶体。
多晶体:由许多个晶核同时生长而形成的许多个微小单晶体组成的。
单晶体具有各向异性而多晶体具有伪各向同性。
第二部分材料中的晶体结构晶格与晶胞:为表达空间点阵排列的几何规律,人为地将点阵用一系列相互平行的直线连接形成空间格架,称为晶格。
常用材料及热处理名词解释常用铸铁牌号常用钢材牌号热处理名词解释钢的临界点(1)Ac1 钢加热时,开始形成奥氏体的温度。
(2)Ac3 亚共析钢加热时,所有铁素体都转变为奥氏体的温度。
(3)Ac4 低碳亚共析钢加热时,奥氏体开始转变为δ相的温度。
(4)Accm 过共析钢加热时,所有渗碳体和碳化物完全溶入奥氏体的温度。
(5)Arl 钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度。
(6)Ar3 亚共析钢高温奥氏体化后冷却时,铁素体开始析出的温度。
(7)Ar4 钢在高温形成的δ相在冷却时,开始转变为奥氏体的温度。
(8)Arcm 过共析钢高温完全奥氏体化后冷却时,渗碳体或碳化物开始析出的温度。
(9)A1 也写做Ae1,是在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度,也就是一般所说的下临界点。
(10)A3 也写做Ae3,是亚共析钢在平衡状态下,奥氏体和铁素体共存的最高温度,也就是说亚共析钢的上临界点。
(11)A4 也写做Ae4,是在平衡状态下,δ相和奥氏体共存的最低温度。
(12)Acm 也写做Aecm,是过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,也就是过共析钢的上临界点。
(13)Mb 马氏体爆发形成温度,以Mb表示(Mb≤MS)。
当奥氏体过冷至MS点以下时,瞬间爆发式形成大量马氏体,并伴有响声,同时释放相变潜热,使温度回升。
(14)Md 马氏体机械强化稳定化临界温度。
(15)MF 马氏体相变强化临界温度。
(16)Mf 有的文献以Mf表示奥氏体转变为马氏体的终了温度。
(17)MG 奥氏体发生热稳定化的一个临界温度。
(18)MS 钢奥氏体化后冷却时,其中奥氏体开始转变为马氏体的温度,符号中的“S”是“始”字汉语拼音第一个字母,也就是俄文书籍中的MH和英文书籍中的MS。
(19)MZ 奥氏体转变为马氏体的终了温度,符号中的“Z”是“终”字的汉语拼音第一个字母,也就是俄文书籍中的MK和英文书籍中的Mf。
热处理名词解释在材料科学与工程领域,热处理是一种常见的工艺,用以改变材料的性能和结构。
热处理通过加热和冷却材料,经过一系列精确控制的温度和时间过程,使材料达到特定的力学、物理和化学性能要求。
热处理的主要目的是改善材料的硬度、强度、韧性、耐磨性、耐腐蚀性、导电性等性能。
通过独特的热处理工艺,可以改变材料的晶体结构、组织相态和晶粒大小,从而实现更好的性能和特性控制。
以下是几个常见的热处理名词解释:1. 固溶处理:固溶处理是指将材料加热到固溶温度,使其形成均匀固溶体,然后经过迅速冷却固定固溶体结构。
这一过程常用于合金材料中,通过固溶处理可以增加材料的硬度、强度和耐磨性等性能。
2. 调质处理:调质处理是指将已经固溶处理的材料加热到特定温度,然后保温一段时间,最后通过适当的冷却速度实现材料的调质。
调质后的材料具有较高的韧性和耐腐蚀性能。
3. 淬火:淬火是指将材料加热到临界温度以上,然后迅速冷却,以快速固定材料的晶体结构。
淬火可使材料获得高硬度和高强度,但可能会降低材料的韧性。
不同的淬火介质和工艺条件会产生不同的效果,如水淬、油淬、盐淬等。
4. 回火:回火是指将已经淬火的材料加热到较低的温度,并通过保温一段时间实现材料的组织和性能调整。
回火可以减轻淬火过程中的残余应力,改善材料的塑性和韧性,并提高抗脆性。
5. 等温处理:等温处理是将材料在一个特定温度下保持一段时间,以达到特定的组织结构和性能要求。
等温处理常用于合金材料,通过控制温度和时间,可形成特定的相变组织,并提高材料的强度和韧性。
总结:热处理是一种通过改变材料的加热和冷却过程,以实现目标性能要求的工艺。
通过各种热处理方法,如固溶处理、调质处理、淬火、回火和等温处理,可以改善材料的力学性能、物理性能和化学性能。
热处理对于提高材料的硬度、强度、韧性、耐腐蚀性和耐磨性等方面有着重要的作用,广泛应用于航空航天、汽车制造、医疗设备等领域。
热处理的参数选择和控制对于最终材料性能的影响至关重要,需要在实际应用中进行准确的测试和优化。
金属材料与热处理名词解释(总26页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除名词解释沸腾钢:1 只用一定量的弱脱氧剂锰铁对钢液脱氧,因此钢液含氧量较高。
2 在沸腾钢的凝固过程中,钢液中碳和氧发生反应而产生大量气体,造成钢液沸腾,这种钢由此而得名。
3 沸腾钢钢锭宏观组织的特点是,钢锭内部有大量的气泡,但是没有或很少有缩孔。
钢锭的外层比较纯净,这纯净的外层包住了一个富集着杂质的锭心。
4 沸腾钢钢锭的偏析较严重,低温冲击韧性不好,钢板容易时效,钢的力学性能波动性较大。
镇静钢:1 镇静钢在浇注之前不仅用弱脱氧剂锰铁而且还使用强脱氧剂硅铁和铝对钢液进行脱氧,因而钢液的含氧量很低。
2 强脱氧剂硅和铝的加入,使得在凝固过程中,钢液中的氧优先与强脱氧元素铝和硅结合,从而抑制了碳氧之间的反应,所以镇静钢结晶时没有沸腾现象,由此而得名。
3 在正常操作情况下,镇静钢中没有气泡,但有缩孔和疏松。
与沸腾钢相比,这种钢氧化物系夹杂含量较低,纯净度较高。
镇静钢的偏析不像沸腾钢那样严重,钢材性能也较均匀。
树枝状偏析:(枝晶偏析)1依据相图,钢在结晶时,先结晶的枝干比较纯净,碳浓度较低,而迟结晶的枝间部分碳浓度较高。
2研究指出,在钢锭心部等轴晶带中枝晶偏析的特点是,在枝干部分成分变化很小,这部分占有相当宽的范围,在枝晶或者两个相邻晶粒之间,富集着碳、合金元素和杂质元素,而且达到很高的浓度。
枝干结晶时,在相当宽的范围内造成碳和合金元素、杂质元素的贫化(选择结晶),这种贫化成了枝晶间浓度特高的前提。
3为减少枝晶偏析的程度,可对铸钢和钢锭进行扩散退火。
区域偏析:在整个钢锭范围内发生的偏析因为选择结晶,杂质元素和合金元素被富集在晶枝近旁的液相中。
在凝固速度不是很高的情况下,枝晶近旁液相中杂质元素能够借扩散和液体的流动而被转移到很远的地方。
随着凝固的进展,杂质元素在剩余的钢液中不断富集,各种元素在整个钢锭或铸件的范围内发生了重新分布,即产生了区域偏析。
名词解释热处理
热处理是一种通过加热来改变材料内部性质的过程,是工业生产中广泛使用的一种技术。
在热处理过程中,热量被传递到材料表面或内部,从而改变材料原子的结构和化学性质,使材料表面或内部产生不同的物理或化学性质。
热处理通常用于改变材料的温度、硬度、韧性、脆性、耐磨性、耐腐蚀性等性质。
常见的热处理工艺包括高温保温、低温退火、高温回火、淬火和回火等。
热处理工艺的选择取决于需要改变的材料的化学成分、物理性质、生产用途等因素。
例如,在汽车制造中,热处理工艺常用于提高汽车发动机零件的耐磨性和耐腐蚀性,以及改善零件的强度和韧性。
除了用于工业生产,热处理技术也被广泛应用于军事、航空航天、医学等领域。
在军事领域,热处理技术常用于制造枪支、炮弹、导弹等武器,以及改善士兵的身体条件和战斗能力。
在航空航天领域,热处理技术常用于制造飞机零件、火箭发动机等,以提高零件的强度和韧性,降低材料成本。
在医学领域,热处理技术常用于制造手术器械、医疗设备等,以提高它们的强度和耐久性。
热处理技术是一种非常重要的工业技术,它在工业生产中发挥着重要的作用,同时也在军事、航空航天、医学等领域有着广泛的应用。
随着科学技术的不断发展,热处理技术也在不断地创新和改进,以满足社会对高品质、高性能材料的需求。
工程材料热处理名词解释热处理(Heat Treatment)是指通过加热和冷却的方式对工程材料进行物理或化学变化,以改变其结构和性能的一种工艺。
在工程中,热处理常被用于提高材料的硬度、强度、耐磨性、韧性等性能,以适应不同的应用要求。
下面将对热处理过程中涉及的一些关键名词进行解释。
一、回火(Tempering)回火是热处理中的一种常见操作,通过在固溶体形成的基体中加热一段时间后再快速冷却,以减轻冷加工或淬火造成的内部应力,提高材料的韧性和塑性。
这一过程实际上是通过退火来改善冷加工或淬火后的材料性能。
二、淬火(Quenching)淬火是指将材料加热至临界温度以上,然后迅速冷却,使材料内部达到亚稳状态,并实现马氏体的转变。
这一过程将提高材料的硬度和强度,但在同时也会引入较大的内部应力。
三、正火(Normalizing)正火是对低碳钢进行的一种热处理方法。
它将材料加热至适当温度,使其达到均匀奥氏体的状态,并通过空冷或风冷的方式使其冷却。
正火能够提高材料的强度和硬度,同时还能改善材料的韧性和塑性。
四、时效硬化(Aging)时效硬化是一种重要的热处理方法,适用于某些合金材料,例如铝合金或镍基合金。
材料会被加热至较高温度保持一段时间,然后在适当条件下冷却。
这一过程能够改变材料的组织结构,提高其强度和硬度。
五、固溶处理(Solution Treatment)固溶处理是针对某些固溶体型合金或不锈钢的一种热处理方法。
通过加热到高温,使溶质原子完全溶解在基体中,然后迅速冷却以固定成分。
这一过程能够消除材料中的析出物和相分离,提高强度和耐蚀性。
六、表面处理(Surface Treatment)表面处理是指对材料表面进行一系列工艺措施的过程,以改善其耐腐蚀性、耐磨性和装饰性。
常见的表面处理方法包括镀层、涂装、氮化和氧化等。
这些方法通过改变材料表面的化学特性和结构,增加其使用寿命和性能。
七、自由冷却(Air Cooling)自由冷却是一种常见的冷却方式,即将加热后的材料在室温下自然散热至环境温度。
工程材料热处理名词解释工程材料热处理是指通过一系列的加热、冷却和控制过程来改善材料的性能和结构。
在工程实践中,热处理是一项常用的技术,旨在提高材料的硬度、韧性、耐腐蚀性和机械性能,以满足不同应用领域的需求。
1. 固溶处理(Solution Treatment)在固溶处理中,固态合金中的溶质原子被均匀地溶解在固溶体基体中。
这一过程通过高温加热,使溶质原子尽可能地溶解在基体中。
固溶处理经常用于改善合金材料的机械性能,如提高强度和硬度。
2. 强化处理(Strengthening)强化处理是通过对固溶处理后的材料进行冷却或热处理来增加材料的强度和硬度。
这种处理方式可以通过产生细小的晶粒、形成强化相或通过固溶体中的位错增加材料的强度。
强化处理常用于提高合金的强度和耐磨性。
3. 淬火(Quenching)淬火是将材料迅速冷却至室温或低温的过程。
通过迅速的冷却速度,使材料中的相转变受限,从而产生固溶体和极细的马氏体组织。
这样的处理可以提高材料的硬度和强度,但可能导致材料脆性增加。
4. 回火(Tempering)回火是在淬火处理后的材料上进行加热并适度冷却的过程。
回火旨在减少淬火过程中引起的脆性,并提高材料的韧性和延展性。
回火的温度和时间可以根据所需的性能来进行调整,以达到最佳的性能组合。
5. 热轧(Hot Rolling)热轧是一种通过将材料加热至高温并通过机械力进行形变的方法来制造板材、薄板等产品。
热轧过程中,材料的晶粒会发生改变,结构变得紧凑,内部应力得以减少,从而增加材料的强度和韧性。
6. 冷变形(Cold Working)冷变形是一种通过对已经在室温下固化的材料进行塑性变形的方式。
冷变形可以显著提高材料的硬度和强度,同时也能提高材料的表面质量和精度。
通过冷变形,材料的晶粒也会发生细化,提高材料的机械性能。
7. 等温处理(Isothermal Treatment)等温处理是一种通过将材料在恒定温度下保温一段时间来改变材料的组织和性能。
热处理的名词解释
热处理是一种通过将金属制品加热到一定温度下进行处理的工艺,目的是改变金属的组织结构和性能,以提高其力学性能、耐磨性、耐腐蚀性等。
热处理主要分为四个步骤:加热、保温、冷却和清洗。
根据处理的目的和金属的特性,可以采用不同的热处理方法,如退火、正火、淬火、调质、沉淀硬化等。
退火是最常见的热处理方法之一,通过加热金属至一个适当的温度,然后缓慢冷却,以减少金属的硬度和提高其塑性。
退火可以改善金属的加工性能,减小内应力,并提高材料的韧性。
正火是一种使金属充分加热到适当温度后迅速冷却的热处理方法。
正火可以提高金属的硬度和强度,但会降低其塑性。
正火常用于钢材的热处理,例如生产弹簧、刀具等。
淬火是一种迅速冷却金属的方法,使其快速形成马氏体组织。
通过淬火,金属可以获得高硬度和高强度,但会导致金属变脆。
油淬、水淬和盐淬等是常用的淬火方法,不同淬火介质的选择会对金属的性能产生影响。
调质是一种在淬火后加热金属至适当温度后冷却的热处理方法。
调质可以提高金属的韧性和耐磨性,同时保持相对较高的硬度和强度。
调质常用于制造机械零件、汽车零件等。
沉淀硬化是一种通过加热金属至适当温度后冷却,使其产生弥
散分布的沉淀物,从而提高金属的硬度和强度的热处理方法。
沉淀硬化常用于合金材料的处理,例如高强度铝合金。
热处理工艺对于提高金属材料的性能至关重要。
通过热处理,可以改变金属的晶粒结构、调整相的比例和分布、消除内应力、提高金属的机械性能和抗腐蚀能力。
热处理广泛应用于航空航天、汽车、机械制造、电子等行业,对于改善产品的质量和性能具有重要意义。