高二数学二项式定理
- 格式:ppt
- 大小:340.50 KB
- 文档页数:14
二项式定理高中
二项式定理是高中数学中的一个重要概念,它是代数学中的一个基本公式,也是组合数学中的一个重要定理。
该定理表明,对于任意实数a和b以及正整数n,有如下公式:
(a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b + C(n,2)*a^(n-2)*b^2 + ... + C(n,n-1)*a*b^(n-1) + C(n,n)*b^n
其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数,其计算公式为:
C(n,k) = n! / (k!*(n-k)!)
二项式定理的应用非常广泛,它可以用于求解各种代数式的展开式,也可以用于计算组合问题中的方案数。
在高中数学中,二项式定理通常是在数学归纳法的证明中使用,也是学习排列组合的基础。
需要注意的是,二项式定理只适用于整数幂,对于非整数幂的情况,需要使用泰勒公式进行展开。
此外,在计算组合数时,需要注意排列和组合的区别,以及重复元素的情况。
总之,二项式定理是高中数学中的一个重要概念,它不仅具有理论意义,还有广泛的应用价值。
在学习过程中,需要认真理解其定义和应用方法,掌握相关的计算技巧,才能更好地应用于实际问题中。
二项式定理所有公式二项式定理啊,这可是高中数学里挺重要的一部分呢!咱们先来说说二项式定理到底是啥。
二项式定理就是指$(a+b)^n$ 展开后的式子。
这里面就有一系列的公式。
比如说,$(a+b)^2 = a^2 + 2ab + b^2$,$(a+b)^3 = a^3 + 3a^2b +3ab^2 + b^3$ 。
那如果是更高次幂呢,像$(a+b)^4$ 、$(a+b)^5$ 等等,展开就会更复杂一些。
咱们来具体看看二项式定理的通项公式:$T_{r+1} = C_{n}^r a^{n-r}b^r$ 。
这里的 $C_{n}^r$ 叫做二项式系数,计算方法是 $C_{n}^r =\frac{n!}{r!(n-r)!}$ 。
给大家讲个我之前遇到的事儿吧。
有一次我在课堂上讲二项式定理,有个学生就特别迷糊,怎么都弄不明白这个系数是怎么来的。
我就给他举了个例子,说假如咱们要从 5 个不同的苹果里选 2 个,有多少种选法?这其实就和二项式系数的计算是一个道理。
咱们先算5 的阶乘,就是 5×4×3×2×1,然后 2 的阶乘是 2×1,3 的阶乘是 3×2×1,用 5 的阶乘除以 2 的阶乘和 3 的阶乘的乘积,就能得到从 5 个里选 2 个的组合数,这就和二项式系数的计算是一样的思路。
这学生听了之后,恍然大悟,后来做这类题就很少出错啦。
再来说说二项式定理的性质。
二项式系数具有对称性,就是说$C_{n}^r = C_{n}^{n-r}$ 。
而且二项式系数的和是 $2^n$ ,也就是当$a = b = 1$ 时,$(1 + 1)^n = 2^n$ 。
在解题的时候,二项式定理用处可大啦。
比如求展开式中的特定项,或者求系数之和等等。
咱们拿个具体的题目来看看。
比如说求 $(2x - 1)^6$ 展开式中$x^3$ 的系数。
那咱们先根据通项公式,$T_{r+1} = C_{6}^r (2x)^{6-r} (-1)^r$ ,要得到 $x^3$ ,那 $6 - r = 3$ ,所以 $r = 3$ 。
二项式定理公式大全一、二项式定理基本公式。
1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。
- 例如,当n = 3时,(a +b)^3=C_3^0a^3b^0+C_3^1a^2b^1+C_3^2a^1b^2+C_3^3a^0b^3。
- 计算各项系数:- C_3^0=(3!)/(0!(3 - 0)!)=1- C_3^1=(3!)/(1!(3 - 1)!)=(3!)/(1!2!)=3- C_3^2=(3!)/(2!(3 - 2)!)=(3!)/(2!1!)=3- C_3^3=(3!)/(3!(3 - 3)!)=1- 所以(a + b)^3=a^3+3a^2b + 3ab^2+b^3。
2. 二项展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k =0,1,·s,n)。
- 例如,在(x + 2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。
当k = 2时,T_3=C_5^2x^5 - 22^2。
- 计算C_5^2=(5!)/(2!(5 - 2)!)=(5×4)/(2×1)=10- 所以T_3=10x^3×4 = 40x^3二、二项式系数的性质。
1. 对称性。
- 在二项式(a + b)^n的展开式中,与首末两端“等距离”的两项的二项式系数相等,即C_n^k=C_n^n - k。
- 例如,在(a + b)^5的展开式中,C_5^1=C_5^4,C_5^2=C_5^3。
- 计算C_5^1=(5!)/(1!(5 - 1)!)=5,C_5^4=(5!)/(4!(5 - 4)!)=5;C_5^2=(5!)/(2!(5 - 2)!)=10,C_5^3=(5!)/(3!(5 - 3)!)=10。
二项式定理1.二项式定理【二项式定理】又称牛顿二项式定理.公式(a+b)n =푛푖=0∁n i a n﹣i•b i.通过这个定理可以把一个多项式的多次方拆开.例 1:用二项式定理估算 1.0110= 1.105.(精确到 0.001)解:1.0110=(1+0.01)10=110+C101•19×0.01+C102•18•0.012≈1+0.1+0.0045≈1.105.故答案为:1.105.这个例题考查了二项式定理的应用,也是比较常见的题型.例 2:把( 3푖―푥)10把二项式定理展开,展开式的第 8 项的系数是.解:由题意T8=C107 × ( 3푖)3 × ( ―1)7 = 120×3 3i=360 3i.故答案为:360 3i.通过这两个例题,大家可以看到二项式定理的重点是在定理,这类型的题都是围着这个定理运作,解题的时候一定要牢记展开式的形式,能正确求解就可以了.【性质】1、二项式定理一般地,对于任意正整数n,都有这个公式就叫做二项式定理,右边的多项式叫做(a+b)n 的二项展开式.其中各项的系数叫做二项式系数.注意:(1)二项展开式有n+1 项;(2)二项式系数与二项展开式系数是两个不同的概念;(3)每一项的次数是一样的,即为n 次,展开式依a 的降幂排列,b 的升幂排列展开;(4)二项式定理通常有如下变形:1/ 2① ;②; (5)要注意逆用二项式定理来分析问题、解决问题.2、二项展开式的通项公式二项展开式的第 n +1 项 叫做二项展开式的通项公式.它体现了二项展开式的 项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定的项及其系数方面有着广泛的应 用.注意:(1)通项公式表示二项展开式的第 r +1 项,该项的二项式系数是∁n r ;(2)字母 b 的次数和组合数的上标相同;(3)a 与 b 的次数之和为 n .3、二项式系数的性质.(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;푛 + 1(2)增减性与最大值:当 k < 时,二项式系数是逐渐增大的.由对称性知,它的后半部分是逐渐减小的,且2푛푛―1 푛+1 在中间取最大值.当 n 为偶数时,则中间一项퐶푛的二项式系数最大;当 n 为奇数时,则中间的两项퐶푛 ,퐶푛相 2 2 2 等,且同时取得最大值.2 / 2。
高二数学二项式定理【本讲主要内容】二项式定理二项式定理、二项展开式的通项公式、二项式系数的性质、二项式系数和【知识掌握】 【知识点精析】1. 二项式定理及其特例: (1)(2)1(1)1n r r n n n x C x C x x +=+++++2. 二项展开式的通项公式:1r n r rr n T C a b -+=3.杨辉三角:()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和。
4. 二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C 。
rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性:与首末两端“等距离”的两个二项式系数相等(证明:m n m n n C C -=)。
直线2nr =是图象的对称轴。
(2)增减性与最大值:当n 是偶数时,中间一项2n nC 取得最大值; 当n 是奇数时,中间两项12n nC-,12n nC+取得最大值。
(3)二项式系数和:0122n r nn n n n n C C C C C =++++++证明:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n r nn n n n n C C C C C =++++++(4)在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式01()()n n nr n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nnn n n n C C C C C -=-+-++-,即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,即在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。
二项式定理与性质•二项式定理:,它共有n+1项,其中(r=0,1,2…n)叫做二项式系数,叫做二项式的通项,用T r+1表示,即通项为展开式的第r+1项.•二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;(2)增减性与最大值:当r≤时,二项式系数的值逐渐增大;当r≥时,的值逐渐减小,且在中间取得最大值。
当n为偶数时,中间一项的二项式系数取得最大值;当n为奇数时,中间两项的二项式系数相等并同时取最大值。
•二项式定理的特别提醒:①的二项展开式中有(n+1)项,比二项式的次数大1.②二项式系数都是组合数,它与二项展开式的系数是两个不同的概念,在实际应用中应注意区别“二项式系数”与“二项展开式的系数”。
③二项式定理形式上的特点:在排列方式上,按照字母a的降幂排列,从第一项起,a的次数由n逐项减小1,直到0,同时字母6按升幂排列,次数由0逐项增加1,直到n,并且形式不能乱.④二项式定理中的字母a,b是不能交换的,即与的展开式是有区别的,二者的展开式中的项的排列次序是不同的,注意不要混淆.⑤二项式定理表示一个恒等式,对于任意的实数a,b,该等式都成立,因而,对a,b取不同的特殊值,可以对某些问题的求解提供方便,二项式定理通常有如下两种情形:⑥对二项式定理还可以逆用,即可用于式子的化简。
二项式定理常见的利用:方法1:利用二项式证明有关不等式证明有关不等式的方法:(1)用二项式定理证明组合数不等式时,通常表现为二项式定理的正用或逆用,再结合不等式证明的方法进行论证.(2)运用时应注意巧妙地构造二项式.证明不等式时,应注意运用放缩法,即对结论不构成影响的若干项可以去掉.方法2:利用二项式定理证明整除问题或求余数:(1)利用二项式定理解决整除问题时,关键是要巧妙地构造二项式,其基本做法是:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)用二项式定理处理整除问题时,通常把底数写成除数(或与除数密切相关的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)一、二项就可以了.(3)要注意余数的范围,为余数,b∈[0,r),r是除数,利用二项式定理展开变形后,若剩余部分是负数要注意转换.方法3:利用二项式进行近似解:当a的绝对值与1相比很少且n不大时,常用近似公式,因为这时展开式的后面部分很小,可以忽略不计,类似地,有但使用这两个公式时应注意a的条件以及对计算精确度的要求.要根据要求选取展开式中保留的项,以最后一项小数位超要求即可,少了不合要求,多了无用且增加麻烦.方法4:求展开式特定项:(1)求展开式中特定项主要是利用通项公式来求,以确定公式中r的取值或范围.(2)要正确区分二项式系数与展开式系数,对于(a-b)n数展开式中系数最大项问题可以转化为二项式系数的最大问题,要注意系数的正负.方法5:复制法利用复制法可以求二项式系数的和及特殊项系数等问题。