2020年高考全国二卷理科数学试卷
- 格式:docx
- 大小:233.24 KB
- 文档页数:4
绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3,2,1,0,1,2{--=U ,},1,0,1{-=A },2,1{=B 则=)(B A C U ( )A .}3,2{-B .}3,2,2{-C .}3,0,1,2{--D .}3,2,0,1,2{--2.若α为第四象限角,则A .02cos >αB .02cos <αC .02sin >αD .02sin <α3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天 积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块5.若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A .55B .552C .553D .554 6.数列}{n a 中,21=a ,n m n m a a a =+,若515102122-=++++++k k k a a a ,则=kA .2B .3C .4D .57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于E D 、两ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .329设函数12ln 12ln )(--+=x x x f ,则)(x fA .是偶函数,且在),21(+∞单调递增B .是奇函数,且在)21,21(-单调递减C .是偶函数,且在)21,(--∞单调递增D .是奇函数,且在)21,(--∞单调递减10. 已知ABC △是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为π16,则球O 到平面ABC 的距离为( ) A .3B .23 C .1 D .23 11. 若y x y x ---<-3322,则( ) A. 0)1ln(>+-x yB .0)1ln(<+-x yC .0ln >-y xD .0ln <-y x12.0-1周期序列在通信技术中有着重要应用,若序列⋯⋯n a a a 21满足),2,1)(1,0(⋯=∈i a i ,且存在正整数m ,使得),2,1(⋯==+i a a i m i 成立,则称其为0-1周期序列,并称满足),2,1(⋯==+i a a i m i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列⋯⋯n a a a 21,∑=+-⋯==mi k i i m kaa mk C 1)1,,2,1(1)(是描述其性质的重要指标.下列周期为5的0-1序列中,满足)4,3,2,1(51)(=≤k k C 的序列是A .11010…B .11011…C .10001…D .11001…二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知单位向量b a ,的夹角为45°,k b a -与a 垂直,则=k _______.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15.设复数21,z z 满足i z z z z +=+==322121,,则=-21z z ______. 16.设有下列四个命题: 1P :两两相交且不过同一点的三条直线必在同一平面内. 2P :过空间中任意三点有且仅有一个平面. 3P :若空间两条直线不相交,则这两条直线平行. 4P :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥.则下述命题中所有真命题的序号是________. ①41p p ∧②21p p ∧③32p p ∨⌝④ 43p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △中,222sin sin sin sin sin A B C B C --=.(1)求A ;(2)若3BC =,求ABC △周长的最大值.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=i y x i i ,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160i i x ,∑==2011200i i y ,()∑==-201280i i x x ,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.19.(12分)已知椭圆1C :()012222>>=+b a by a x 的右焦点F 与抛物线2C 的焦点重合,1C 的中心与的2C 的顶点重合. 过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且AB CD 34=.(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点,若5=MF ,求1C 与2C 的标准方程.如图,已知三棱柱111C B A ABC -的底面是正三角形,侧面C C BB 11是矩形,M ,N 分别为BC ,11C B 的中点,P 为AM 上一点,过11C B 和P 的平面交AB 于E ,交AC 于F .(1)证明:MN AA ∥1,且平面F C EB AMN A 111平面⊥;(2)设O 为△111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.21.(12分)已知函数()2sin sin 2f x x x =.(1)讨论()f x 在区间()0,π的单调性; (2)证明:()33f x ≤; (3)设*n ∈N ,证明:22223sin sin 2sin 4sin 24nnn x x x x ≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知曲线1C ,2C 的参数方程分别为1C :224cos 4sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),2C :11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.23.[选修4-5:不等式选讲](10分)已知函数()221f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集; (2)若()4f x ≥,求a 的取值范围.参考答案1.A 2.D3.B4.C5.B6.C7.A8.B9.D10.C11.A12.C13.214.3615. 16.①③④17.解:(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =-. 因为0πA <<,所以2π3A =. (2)由正弦定理及(1)得sin sin sin AC AB BCB C A===,从而AC B =,π)3cos AB A B B B =--=.故π33cos 3)3BC AC AB B B B ++=+=++. 又π03B <<,所以当π6B =时,ABC △周长取得最大值3+18.解:(1)由已知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20)()0.943(iix y y x r --===≈∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样. 理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.19.解:(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.20.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E .由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则1(NQ B a =,故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 所成角的正弦值为10.21.解:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为33()3f π=,最小值为33()3f 2π=.而()f x 是周期为π的周期函数,故33|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx xx333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以22223333sin sin 2sin 2()4n nnn x xx ≤=.22.解:(1)1C 的普通方程为4(04)x y x +=≤≤.由2C 的参数方程得22212x t t =++,22212y t t=+-,所以224x y -=. 故2C 的普通方程为224x y -=.(2)由224,4x y x y +=⎧⎨-=⎩得5,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 的直角坐标为53(,)22. 设所求圆的圆心的直角坐标为0(,0)x ,由题意得220059()24x x =-+,解得01710x =. 因此,所求圆的极坐标方程为17cos 5ρθ=. 23.解:(1)当2a =时,72,3,()1,34,27,4,x x f x x x x -≤⎧⎪=<≤⎨⎪->⎩因此,不等式()4f x ≥的解集为311{|}22x x x ≤≥或.(2)因为222()|||21||21|(1)f x x a x a a a a =-+-+≥-+=-,故当2(1)4a -≥,即|1|2a -≥时,()4f x ≥.所以当a ≥3或a ≤-1时,()4f x ≥.当-1<a <3时,222()|21|(1)4f a a a a =-+=-<, 所以a 的取值范围是(,1][3,)-∞-+∞.。
2020年全国统一高考数学试卷(理科)(全国新课标II)_`选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =-2, -1, 0, 1, 2, 3}, A = -1, 0, 1}, B = 1, 2},则C u(AUB)=A.-2,3}【答案】:AB.-2, 2,3}C.-2, -1, 0, 3}【解析】:·:AUB={-1,0,1,2},:.Cu(AUB)={-2,3} 2.若a为第四象限角,则A.cos2a > 0B.cos2a < 0C.sin2a > 0【答案】:D【解析】:,..·冗-—+2k 冗<戊<2k 冗,...-7l+4k 冗<2a<4k7l.2 :. 2a 是第三或四象限角,...sin2a <0 D.-2, -1, 0, 2, 3}<D. sin2a<03.在新冠肺炎疫情防控期间,某超市开通网上销信业务,每天能完成1200份订单的配货,由于订单星大幅增加,导致订单积斥.为解决困难,许多志愿者踊跃报名参加配货工作已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A. 10名B..18名C. 24名D. 32名【答案】:R【解析l ;因为公司可以完成配货1200份订单,则至少需要志愿者为1600 + 500-1200 = 18名so4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B.3474块C.3402块'\_、(...D.3339块。
2020年普通高等学校招生全国统一考试(全国II卷理科)数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。
本试卷满分150分。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A B=( )U A.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3} 2.若α为第四象限角,则( )A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块 B.3474块 C.3402块 D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230--=的距离为( )x yA .5B .5C .5D .56.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =( )A .2B .3C .4D .57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增 D .是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D .11.若2x -2y <3−x -3−y ,则( )A .ln(y-x+1)>0B .ln(y-x+1)<0C .ln ∣x-y ∣>0D .ln ∣x-y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A .11010B .11011C .10001D .11001二、填空题(本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(理科)(新课标Ⅱ)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知集合,则()A. B.C. D.2.若为第四象限角,则()A. B. C. D.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A. 3699块B. 3474块C. 3402块D. 3339块5.若过点的圆与两坐标轴都相切,则圆心到直线的距离为( )A. B. C. D.6.数列中,,,若,则()A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为( )A.B.C.D.8.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )A. 4B. 8C. 16D. 329.设函数,则( )A. 是偶函数,且在单调递增B. 是奇函数,且在单调递减C. 是偶函数,且在单调递增D. 是奇函数,且在单调递减10.已知是面积为的等边三角形,且其顶点都在球的表面上,若球的表面积为,则球到平面的距离为()A. B. C. D.11. 11.若,则()A. B. C. D.12.0-1周期序列在通信技术中有着重要应用,若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标.下列周期为5的0-1序列中,满足的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…二、填空题(本大题共4小题,共20.0分)13.已知单位向量的夹角为45°,与垂直,则_______.14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15.设复数满足,则______.16.设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中所有真命题的序号是________.①②③④三、解答题(本大题共7小题,共82.0分)17.中,.(1)求;(2)若,求周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.19.已知椭圆:的右焦点与抛物线的焦点重合,的中心与的的顶点重合.过且与轴垂直的直线交于,两点,交于,两点,且.(1)求的离心率;(2)设是与的公共点,若,求与的标准方程.20.如图,已知三棱柱的底面是正三角形,侧面是矩形,,分别为,的中点,为上一点,过和的平面交于,交于.(1)证明:,且平面;(2)设为△的中心,若,且,求直线与平面所成角的正弦值.21.已知函数.(1)讨论在区间的单调性;(2)证明:;(3)设,证明:.22.已知曲线,的参数方程分别为:(为参数),:(为参数).(1)将,的参数方程化为普通方程;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系.设,的交点为,求圆心在极轴上,且经过极点和的圆的极坐标方程.23.已知函数.(1)当时,求不等式的解集;(2)若,求的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查集合的运算,属基础题.先求出,再求补集.【解答】解:,故选A.2.【答案】D【解析】【分析】本题考查三角函数在各象限的正负,属于基础题.根据所给角是第四象限角,写出角的范围,求出的范围,进而可判断出三角函数值的正负.【解答】解:∴是第三象限或第四象限角或终边在y轴的非正半轴上,故选D.3.【答案】B【解析】【分析】本题考查对概率的理解,通过条件容易得出第二天需配送的总订单数,进而可求出所需至少人数.【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为名.故选B.4.【答案】C【解析】【分析】本题考查等差数列前n项和的性质,属于中档题.由成等差数列,可得每一层的环数,通过等差数列前n项和公式可求得三层扇形石板的总数.【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差,,由等差数列性质知成等差数列,且,则,得,则三层共有扇形面石板为故选C.5.【答案】B【解析】【分析】本题考查直线与圆的位置关系及点到直线的距离计算,属基础题.由圆与坐标轴相切,可得圆心坐标及半径,再用点到直线的距离公式求解即可.【解答】解:设圆心为,则半径为,圆过点,则,解得或,所以圆心坐标为,圆心到直线的距离都是故选B.6.【答案】C【解析】【分析】本题考查等比数列的判定及等比数列前n项求和,属基础题.取m=1,知数列是等比数列,再由等比数列前n项和公式可求出k的值.【解答】解:取,则,又,所以,所以是等比数列,则,所以,得故选C.7.【答案】A【解析】【分析】本题三视图,考查空间想象能力,属基础题.由三视图,通过还原几何体,观察可知对应点.【解答】解:该几何体是两个长方体拼接而成,如图所示,显然选A.8.【答案】B【解析】【分析】本题主要考查双曲线的几何性质及双曲线的渐近线,属于中档题.【解答】解:双曲线C的两条渐近线分别为,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到,则, ,即,所以焦距.故选B.9.【答案】D【解析】【分析】本题主要考查函数的奇偶性、单调性,属于中档题.【解答】解:函数,则为奇函数,时,,单调递增;时,,单调递减.故选D.10.【答案】C【解析】【分析】本题主要考查点到平面的距离求法,属于中档题.【解答】解:设△ABC的外接圆圆心为,设,圆的半径为r,球O的半径为R,△ABC的边长为a,则,可得,于是,由题意知,球O的表面积为,则,由,求得,即O到平面ABC的距离为1.故选C.11.【答案】A【解析】【分析】本题主要考查对数函数与指数函数,考查函数的单调性,属于较难题.【解答】解:,设,则,所以函数在R上单调递增,因为,所以,则,.故选A.12.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,,,不满足,排除;对于B选项,,不满足,排除;对于C选项,,,,,满足;对于D选项,,不满足,排除;故选C.13.【答案】【解析】【分析】本题主要考查平面向量的运算以及向量间的垂直关系,属于基础题.【解答】解:由单位向量的夹角为,与垂直,所以,则.故答案为.14.【答案】36【解析】【分析】本题考查计数原理,属于基础题.【解答】解:由题意可得不同的安排方法有:.答案:36.15.【答案】【解析】【分析】本题考查复数的运算及复数的模,属于基础题.【解答】解:在复平面内,用向量方法求解,原问题即等价于平面向量满足,,求,由,可得,故.故答案为.16.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于:可设与,所得平面为若与相交,则交点A必在平面内.同理与的交点B在平面内,故直线AB在平面内,即在平面内,故为真命题.对于过空间中任意三点,若三点共线,可形成无数个平面,故为假命题.对于空间中两条直线的位置关系有平行,相交,异面,故为假命题.对于若,则m垂直于平面内的所有直线,故,故为真命题.综上可知,为真命题,为真命题,为真命题.故答案为①③④.17.【答案】解:在中,设内角A,B,C的对边分别为a,b,c,因为,由正弦定理得,,即,由余弦定理得,,因为,所以.由知,,因为,即,由余弦定理得,,所以,由基本不等式可得,所以所以当且仅当时取得等号,所以周长的最大值为.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题.直接利用正余弦定理即可求解;利用余弦定理与基本不等式即可求解.18.【答案】解:(1)由题可知,每个样区这种野生动物数量的平均数为,所以该地区这种野生动物数量的估计值为(2)根据公式得(3)为了提高样本的代表性,选用分层抽样法更加合理,因为分层抽样可以按照规定的比例从不同的地块间随机抽样,其代表性较好,抽样误差更小。
第1页(共17页)2020年普通高等学校招生全国统一考试(全国年普通高等学校招生全国统一考试(全国 Ⅱ卷)Ⅱ卷) 理科数学一、选择题一、选择题1.1.已知集合已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}- C.{2,1,0,3}-- D.{2,1,0,2,3}-- 答案答案: : A 解析解析: :∵{1,0,1,2}A B =-,∴,∴ (){2,3}U C A B ⋃=-. 2.2.若若α为第四象限角,则(为第四象限角,则( ) A.cos 20α> B.cos 20α< C.sin 20α> D.sin 20α< 答案答案: : D解析解析: : ∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(,则至少需要志愿者( ) A.10名B.18名C.24名D.32名 答案答案: : B解析解析: :因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名4.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)(含天心石)()A.3699块B.3474块C.3402块D.3339块 答案答案: : C 解析解析: :设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022nS S a ⨯==+⨯=块.5.5.若过点若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A.55 B.255 C.355 D.455答案答案: : B解析解析: :设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是255d =.6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a++++++=-,则k =( )A.2B.3C.4D.5 答案答案: : C 解析解析: :取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a++++++-+++==-=--,得4k =.7.7.右图是一个多面体的三视图,右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为(,则该端点在侧视图中对应的点为()A.EB.FC.GD.H答案答案: : A 解析解析: :该几何体是两个长方体拼接而成,如图所示,显然选A.8.8.设设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为(的焦距的最小值为() A.4 B.8 C.16 D.32 答案答案: : B 解析解析: :双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODESab ∆==,222216c a b ab =+≥=,当且仅当22a b ==时,等号成立,所以min 4c =,焦距min (2)8c =.9.9.设函数设函数()ln |21|ln |21|f x x x =+--,则()f x () A. 是偶函数,且在1(,)2+∞单调递增单调递增 B.B.是奇函数,且在是奇函数,且在11(,)22-单调递减单调递减C. 是偶函数,且在1(,)2-∞-单调递增单调递增D.D.是奇函数,且在是奇函数,且在1(,)2-∞-单调递减单调递减答案答案: : D解析解析: :函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)ln ln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确正确. .10.10.已知已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为(的距离为( ) A.3B.32C.1D.32答案答案: : C解析解析: :设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则239344ABC S a ∆==,可得3a =,于是33a r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1. 11.11.若若2233x y x y ---<-,则(,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -< 答案答案: :A解析解析: :2323x x y y ---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{{}}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i miaa i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m 的01-序列12......n a a a ,11()(1,2,...,1)mi i ki C k a a k m m+===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是(是() A.11010... B.11011... C.10001... D.11001... 答案答案: : C解析解析: :对于A 选项:选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a+===++++=>∑,不满足,排除;,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;,不满足,排除;对于C 选项,选项, 511111(1)(00001)555i i i C a a +===++++=∑, 52111(2)(00000)055i i i C a a +===++++=∑, 53111(3)(00000)055i i i C a a +===++++=∑, 541111(4)(10000)555i i i C a a +===++++=∑,满足;,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x--=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角1011(50)f ++B .0 12222x y Ca b+:在的直线上, 13141516.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -2020年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏) 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
答题卡上,写在本试卷上无效。
3.考一、 选择题:本题共12小题,每小题项中, 1. 3+i 1+i= A .1+2i B .1–2i 2. 设集合A={1,2,4},B={x 2–4x +m=0}A .{1,–3} B .{1,0} 3. 倍加增,共灯三百八十一,A .1盏 B .3盏 C 4. 如图,网格纸上小正方形的边长为A .90π B .63π C .42π D .36π5. 设x 、y 满足约束条件⎩⎨⎧2x+3y–3≤02x–3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15B .–9C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种 7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。
老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩, B .丁可以知道四人的成绩 D .乙、丁可以知道自己的成绩,则输出的S= (x–2)2+y2=4所截得的弦长为C . 2D .23310. 已知直三棱柱ABC–A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1, 则异面直线AB 1与BC 1所成角的余弦值为( )A .32B .155C .105D .3311. 若x=–2是函数f(x)=(x2+ax–1)e x –1的极值点,则f(x)的极小值为( )A .–1B .–2e –3C .5e –3D .1 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-二、填空题:本题共4小题,每小题513. 一批产品的二等品率为0.02100次,X 14. 函数()23sin 4f x x x =+-(15. 等差数列{}n a 的前n 项和为n S ,3a =16. 已知F 是抛物线C:28y x =的焦点,点N .若M 为F N 的中点,则F N 三、解答题:共70为必做题,每个试题考生都必须作答。
2020年全国普通高等学校招生统一考试试卷 全国Ⅱ卷理科数学一、选择题1.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2B =,则()UAB =( )A.{}2,3-B.{}2,2,3-C.{}2,1,0,3--D.{}2,1,0,2,3--2.若α为第四象限角,则( ) A. cos20α>B. cos20α<C. sin20α>D. sin20α<3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) 52535456.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k = ( )A.2B.3C.4D.57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点.若ODE 的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.329.设函数()ln |21|ln |21|f x x x =+--,则()f x ( ) A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减10.已知ABC 93的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) 3 B.32C.1 3 11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln 0x y ->D.ln 0x y -< 12.01-周期序列在通信技术中有着重要应用.若序列12na a a 满足{}0,1(1,2,)i a i ∈=,且存在正整数m ,使得i (1,2,)i m a a i +==成立,则称其为01-周期序列,并称满足i (1,2,)i m a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的01-序列12na a a ,11()(1,2,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标.下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k =的序列是( )A.11010B.11011C.10001D.11001二、填空题13.已知单位向量,a b 的夹角为45°,k -a b 与a 垂直,则k =_______.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有___________种.15.设复数1z ,2z 满足122z z ==,12i z z +=+,则12z z -=_______. 16.设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内. 2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 3p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是_________. ①14p p ∧ ②12p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 三、解答题17.ABC 中,222sin sin sin sin sin A B C B C --=. (1)求A ;(2)若3BC =,求ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,220i i x y i =⋅⋅⋅,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得()()()()22202020202011111601200809000800i ii iiii i i i i x yx x y y x x y y =======-=-=--=∑∑∑∑∑,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()(),1,220i i x y i =⋅⋅⋅,,的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()12211yniii nniii i x x yr x x y y ===--=--∑∑∑,2 1.414≈.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于,A B 两点,交2C 于,CD 两点,且43CD AB =. (1)求1C 的离心率;(2)设M 是1C 与2C 的公共点.若5MF =,求1C 与2C 的标准方程.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ; (2)设O 为111A B C 的中心.若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.21.已知函数()2sin sin 2f x x x =.(1)讨论()f x 在区间()0π,的单调性;(2)证明:()33f x ; (3)设n *∈N ,证明:22223sin sin 2sin 4sin 24nnn x x x x .22.已知曲线12,C C 的参数方程分别为2124cos ,4sin x C y θθ⎧=⎪⎨=⎪⎩:(θ为参数),211x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 23.已知函数2()21f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.参考答案1.答案:A解析:2.答案:D解析:3.答案:B解析:4.答案:C解析:5.答案:B解析:6.答案:C解析:7.答案:A解析:8.答案:B解析:9.答案:D解析:10.答案:C解析:11.答案:A解析:12.答案:C解析:13.解析:14.答案:36解析:15.答案:解析:16.答案:①③④解析:17.答案:(1)由正弦定理和已知条件得222BC AC AB AC AB--=⋅.①由余弦定理可知2222cosBC AC AB AC AB A=+-⋅.②由①,②得1cos2A=-.因为0πA<<,所以2π3A=.(2)由正弦定理及(1)得sin sin sinAC AB BCB C A===,从而AC B=,π)3cosAB A B B B=--=.故π33cos33BC AC AB B B B⎛⎫++=+=++⎪⎝⎭.又0π3B<<,所以当π6B=时,ABC周长取得最大值为3+解析:18.答案:(1)由已知得样本平均数20116020iiy y===∑,从而该地区这种野生动物数量的估计值为6020012000⨯=.(2)样本(),(1,2,,20)i ix y i =的相关系数()()200.943i ix x y yr--===≈∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.解析:19.答案:(1)由已知可设2C的方程为24y cx=,其中c=.不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为22,b b a a -;,C D 的纵坐标分别为2,2c c -,故2||2|,|4b B CD c aA ==.由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫⨯=- ⎪⎝⎭.解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2,a c b =,故22122:143x y C c c+=.设()00,M x y ,则220022143x y c c+=,204y cx =, 故20024134x xc c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而|5MF =|,故05x c =-,代入①得 22(5)4(5)134c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.解析:20.答案:(1)因为,M N 分别为11,BC B C 的中点,所以1//MN CC ,又由已知得11//AA CC ,故1//AA MN .因为111A B C 是正三角形,所以111B C A N ⊥.又11B C MN ⊥,故11B C ⊥平面1A AMN .所以平面1A AMN ⊥平面11EB C F .(2)由已知得AM BC ⊥.以M 为坐标原点,MA 的方向为x 轴正方向,||MB 为单位长,建立如图所示的空间直角坐标系M xyz -,则2AB =,AM =连结NP ,则四边形AONP 为平行四边形,故PM =,1,03E ⎫⎪⎪⎝⎭.由(1)知平面1A AMN ⊥平面ABC .作NQ AM ⊥,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则22123234,(433NQ a B a a ⎫⎛⎫⎛⎫⎪=---- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭,故21123223210,,4,||33B E a a B E ⎛⎫⎛⎫ ⎪=-----= ⎪ ⎪⎪ ⎝⎭⎭⎝. 又(0,1,0)=-n 是平面1A AMN的法向量,故1111π10sin ,cos ,210||||B E B E B E B E ⎛⎫-〈〉=== ⎪⋅⎝⎭n n n n ⋅.所以直线1B E 与平面1A AMN 所成角的正弦值为10. 解析:21.答案:(1)当π0,3x ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当π2π,33x ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2π,π3x ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增.(2)证明见解析; (3)证明见解析.解析:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+ 22sin cos sin 22sin cos2x x x x x =+2sin sin3x x =. 当π2π0,,π33x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭时,()0f x '>;当π2π,33x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.所以()f x 在区间π2π0,,,π33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭单调递增,在区间π2π,33⎛⎫⎪⎝⎭单调递减.(3)因为(0)(π)0f f ==,由(1)知,()f x 在区间[]0,π的最大值为π3f ⎛⎫= ⎪⎝⎭为2π3f ⎛⎫= ⎪⎝⎭,而()f x 是周期为π的周期函数,故33()f x . (3)由于()()()2223332332121321sinsin 2sin 2sin sin 2sin 2|sin |sin sin 2sin 2sin 2sin 2|sin |()(2)2sin 2()(2)2nn n n n n n n x xxx x xx x x x x x x f x f x f x xf x f x f x ---=⋅=⋅⋅= 所以23222333sin sin 2sin 24nn nn x xx ⎛⎫= ⎪ ⎪⎝⎭. 22.答案:(1)1:4C x y +=;222:4C x y -=;(2)17cos 5ρθ=. 解析:(1)1C 的普通方程为()404x y x +=. 由2C 的参数方程得22212x t t =++,22212y t t =+-,所以224x y -=. 故2C 的普通方程为224x y -=.(2)由2244x y x y +=⎧⎪⎨-=⎪⎩得5232x y ⎧=⎪⎪⎨⎪=⎪⎩,,所以P 的直角坐标为53,22⎛⎫ ⎪⎝⎭. 设所求圆的圆心的直角坐标为()0,0x ,由题意得22005924x x ⎛⎫=-+ ⎪⎝⎭,解得01710x =. 因此,所求圆的极坐标方程为17cos 5ρθ=23.答案:(1)32x x ⎧⎨⎩或112x ⎫⎬⎭;(2)(][),13,-∞-+∞.解析:(1)当2a =时,72,3,()1,34,27, 4.x x f x x x x -⎧⎪=<⎨⎪->⎩11因此,不等式()4f x 的解集为31122x x x ⎧⎫⎨⎬⎩⎭∣或. (2)因为222()|21|21(1)f x x a x a a a a =-+-+-+=-, 故当2(1)4a -,即12a -时,()4f x .所以当3a 或1a -时,()4f x . 当-13a <<时,()22221(1)4f a a a a =-+=-<.所以a 的取值范围是(,1][3,)-∞-⋃+∞。
2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x--=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角1011(50)f ++B .0 12222x y Ca b+:在的直线上, 13141516.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
2020年普通高等学校招生全国统一考试(II 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 已知集合}2,1{}1,0,1{}3,2,1,0,1,2{=-=--=B A U ,,,则=)(B A U CA. }3,2{-B. }3,2,2{-C. }3,0,1,2{--D. }3,2,0,1,2{--2. 若α为第四象限角,则A. 02cos >αB. 02cos <αC. 02sin >αD. 02sin <α3. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订 单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某 日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少 需要志愿者A. 10名B. 18名C. 24名D. 32名 4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇形石板构成第 一环,向外每环依次增加9块。
下一层的第一环比上一层的最后一环 多9块,向外每环依次也增加9块。
已知每层环数相同,且下层比中 层多729块,则三层共有扇面形石板(不含天心石) A. 3699块 B. 3474块 C. 3402块 D. 3339块 5. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A.55 B.552 C.553 D.554 6. 数列}{n a 中,n m n m a a a a ==+,21。
若515102122-=++++++k k k a a a ,则=k A. 2 B. 3 C. 4 D.5 7. 右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧 视图中对应的点为 A. E B. FC. GD. H8. 设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于D 、E 两点。
若ODE ∆的面积为8,则C 的焦距的最小值为A. 4B. 8C. 16D. 322020.79. 设函数|12|ln |12|ln )(--+=x x x f ,则)(x fA. 是偶函数,且在),21(+∞单调递增B. 是奇函数,且在)21,21(-单调递减C. 是偶函数,且在)21,(--∞单调递增D. 是奇函数,且在)21,(--∞单调递减10. 已知ABC ∆是面积为439的等边三角形,且其顶点都在球O 的球面上。
若球O 的表面积为π16,则O 到平面ABC 的距离为 A.3B.23 C. 1 D.23 11. 若y x y x ---<-3322,则A. 0)1ln(>+-x yB. 0)1ln(<+-x yC. 0||ln >-y xD. 0||ln <-y x12. 0-1周期序列在通信技术中有着重要应用。
若序列 n a a a 21满足),2,1}(1,0{ =∈i a i ,且存在正 整数m ,使得),2,1( ==+i a a i m i 成立,则称其为0-1周期序列,并称满足),2,1( ==+i a a i m i 的最 小正整数m 为这个序列的周期。
对于周期为m 的0-1序列 n a a a 21,)1,,2,1(1)(1-==∑=+m k a a m k C mi k i i 是描述其性质的重要指标。
下列周期为5的0-1序列中,满足)4,3,2,1(51)(=≤k k C 的序列是A. 11010…B. 11011…C. 10001…D. 11001…二、填空题:本题共4小题,每小题5分,共20分。
13. 已知单位向量a 、b 的夹角为︒45,k a - b 与a 垂直,则k = ___________。
14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同 学,则不同的安排方法共有______种。
15. 设复数21z z ,满足i 32||||2121+=+==z z z z ,,则=-||21z z __________。
16. 设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内。
2p :过空间中任意三点有且仅有一个平面。
3p :若空间两条直线不相交,则这两条直线平行。
4p :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥。
则下述命题中所有真命题的序号是____________。
①41p p ∧②21p p ∧③32p p ∨⌝④43p p ⌝∨⌝三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试 题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17. (12分)ABC ∆中,C B C B A sin sin sin sin sin 222=--。
(1)求A ;(2)若BC = 3,求ABC ∆周长的最大值。
18. (12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加。
为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据)20,,2,1)(,( =i y x i i ,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得60201=∑=i i x ,1200201=∑=i i y ,80)(2012=-∑=i i x x ,9000)(2012=-∑=i iy y,800))((201=--∑=i i i y y x x 。
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本)20,,2,1)(,( =i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。
附:相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,414.12≈。
19. (12分)已知椭圆)0(1:22221>>=+b a by a x C 的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合。
过F 且与x 轴垂直的直线交1C 于A 、B 两点,交2C 于C 、D 两点,且||34||AB CD =。
(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点。
若| MF | = 5,求1C 与2C 的标准方程。
20. (12分)如图,已知三棱柱111C B A ABC -的底面是正三角形,侧面C C BB 11是矩形,M 、N 分别为BC 、11C B 的中点,P 为AM上一点。
过11C B 和P 的平面交AB 于E ,交AC 于F 。
(1)证明:MN AA //1,且平面⊥AMN A 1平面F C EB 11; (2)设O 为111C B A ∆的中心。
若//AO 平面F C EB 11,且 AO = AB ,求直线E B 1与平面AMN A 1所成角的正弦值。
21. (12分)已知函数x x x f 2sin sin )(2=。
(1)讨论)(x f 在区间),0(π的单调性; (2)证明:833|)(|≤x f 。
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计 分。
22. [选修44-:坐标系与参数方程](10分)已知曲线21C C ,的参数方程分别为)(,sin 4,cos 4:221为参数θθθ⎪⎩⎪⎨⎧==y x C ,)(,1,1:2为参数t t t y t t x C ⎪⎪⎩⎪⎪⎨⎧-=+=。
(1)将21C C ,的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系。
设21C C ,的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程。
23. [选修54-:不等式选讲](10分)已知函数|12|||)(2+-+-=a x a x x f 。
(1)当a = 2时,求不等式4)(≥x f 的解集; (2)若4)(≥x f ,求a 的取值范围。