当前位置:文档之家› 第四章 船舶稳性

第四章 船舶稳性

第四章 船舶稳性
第四章 船舶稳性

第四章船舶稳性

第一节船舶稳性的基本概念

(一)船舶平衡的3种状态

1、稳定平衡

>0

G点在M点之下,GM>0,M

R

2、随遇平衡

G点与M点重合,GM=0,M

=0

R

3、不稳定平衡

<0

G点在M点之上,GM<0,M

R

(二)稳性的定义

船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。

(三)稳性分类

分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水

┏破舱稳性

稳性┫┏初稳性(小倾角稳性)

┃┏横稳性┫┏静稳性

┗完整稳性┫┗大倾角稳性┫

┗纵稳性┗动稳性

其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。

第二节船舶初稳性(1)

(一)船舶初稳性的基本标志

1.稳心M 与稳心距基线高度KM

船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。

稳心M距基线的垂向坐标称为稳心距基线高度。

2.初稳性的衡准指标

稳心M至重心G的垂距称为初稳性高度GM。

初稳性高度GM是衡准船舶是否具有初稳性的指标。初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。

3.初稳性中的假设(对于任一给定的吃水或排水量)

(1)小倾角横倾(微倾);

(2)在微倾过程中稳心M和重心G的位置固定不变;

(3)在微倾过程中浮心B的移动轨迹是一段以稳心为圆心的圆弧;

(4)在微倾过程中倾斜轴过漂心。

(二)初稳性高度GM的表达式

GM=KB+BM-KG=KM-KG

第二节 船舶初稳性(2)

(三) 初稳性高度的求取

1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。

2、 KG 的计算

式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,t

Z i —— 载荷P i 的重心距基线高度,m

3、Z i 确定

(1)舱容曲线图表查取法

船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下:

i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。

ii )对于积载因素相近、合理积载的件杂货,根据所装货物的体积,在下横轴找到相应点向上做垂线,交舱容曲线得A 点,过A 点做水平线交舱容中心距基线高度曲线得B 点,过B 点向上做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。

)

2.3()m (Z P KG i

i ?

*∑

=

(2)舱容中心高度法

无论舱内载荷匀质与否和数量多少,均以该舱的几何中心高度作为该舱载荷的重心距基线高度Z i 。

该方法的优点有二:一是查取方便,船舶资料中通常有各个货舱和液舱的舱容中心高度数据可查;二是结果高于实际值,偏于安全。缺点是当舱内货物较少时误差较大。 (四)自由液面对GM 的影响 1、自由液面(Free surface)

船舶的液体舱柜中装有液体但未满舱时的液面。 2、自由液面的影响结果

自由液面的存在 使初稳性高度GM 恒减小。 3、自由液面计算公式

i x --自由液面对过液面中心倾斜轴的面积惯性矩(m 4)。 4、自由液面惯性矩i x 的求取 (1)查取船舶资料求取i x

“各液舱自由液面惯性矩i x 表”,“各液舱自由液面对初稳性高度修正值表” (2)利用公式法计算i x

自由液面的形状为矩形、三角形

矩形:k=1/12;直角三角形:k=1/36;等腰三角形:k=1/48 自由液面的形状为梯形

直角梯形:k=1/36;等腰梯形:k=1/48

5、减小自由液面影响的措施

设置水密纵隔壁

减少甲板上浪和存水,及时排出积水

液体舱柜应根据实际情况尽量装满或排空

航行中,应逐舱使用油水并尽量减少同时存在自由液面的液舱数。

液体散货船装载货物时,尽量少留部分装载舱。部分装载舱应选择舱室宽度较小的货舱。保证液体舱柜内的纵向水密隔壁的完整性

?

=

∑x

f

i

GM

ρδ)

(01f f GM KG KM GM GM GM δδ+-=-=3

b k i x =)

)((2

22121b b b b k i x ++=

第三节载荷变动对稳性的影响

(一)载荷移动

1、船内重物水平移动

2、船内重物垂移

载荷下移,重心下移,Z取“+”,GM1增加;

载荷上移,重心上移,Z取“-”,GM1减小

(二)重量增减

1、重量大量增减

2、重量少量增减

假定条件:(1)载荷变动时,稳心距基线高度KM保持不变;

(2)载荷变动时,自由液面对初稳性的影响保持不变。(三)货物悬挂

悬挂重物对稳性的影响:相当于将其重心从实际位置上移到悬挂点。

GM1=GM--

(四)船舶倾斜试验

1、试验目的

确定船舶的空船重心高度KG

0和空船初稳性高度GM

2、试验条件

GM

Py

tg

??

=

θ

?

?

=

Z

P

GM

δGM

GM

GMδ

=

-

1

i

i

i

P

Z

P

KG

KG

±

?

±

??

=

1

1

1

1KG

KM

GM-

=

)4.3(

)

m

(

P

)

Z

KG

(

P

G M

G M

1

P

1

1

2+

?

-

*

+

=

?

?

=Z

P

GM

δ

GM

δ

新建船舶或经重大改建的船舶在出场前应进行倾斜试验。

3、进行倾斜试验的注意事项

试验现场风力不大于2级,水面平静无流,无来往船只

船舶应尽量保持正浮空船状态,并系牢可移动物

尽量减少自由液面的存在

船上多余重量或不足重量对于空船排水量大于3000t的船舶,应不大于0.5%Δ

L 倾斜角θ一般为2?~ 4?,但不得小于1?

试验时缆绳应处于不受力状态

第四节 船舶大倾角静稳性

(一)大倾角静稳性基本概念 1、大倾角稳性和初稳性的区别

横倾角的范围不同

船舶在大倾角横倾时,横稳心点M 不再是定点。M 点变为浮心B 的渐近线,随横倾角的变化而变化。

船舶大倾角横倾时倾斜轴不再过初始水线面漂心F 。

大倾角稳性不能用GM 作衡量标志。 2、大倾角静稳性的基本标志

船舶在大倾角倾斜时稳性力矩的计算公式为: GZ :静稳性力臂(复原力臂或扶正力臂)作为衡量大倾角静稳性的基本标志 (二)静稳性力臂的求算 1、基点法

KN :形状稳性力臂 KH :重量稳性力臂 2、假定重心法求取GZ 3、稳心点法

MS --剩余稳性力臂 (三)静稳性曲线

1、定义:静稳性力矩M R 或静稳性力臂GZ 与船舶横倾角θ的关系曲线图。

M R ~θ的关系曲线图称为静稳性力矩曲线

GZ ~θ的关系曲线图称为静稳性力臂曲线 2、绘制

根据公式GZ=KN-KGsin θ及KN 曲线图可得。

GZ

M s ??=θsin KG KN KH KN GZ -=-=θ

sin GM MS GZ +=

将经自由液面对大倾角稳性影响修正后的复原力臂GZ随横倾角变化关系画成静稳性曲线如图3-3所示。

3、静稳性曲线图的主要特征

静平衡位置

静平衡角(静倾角)θS

甲板浸水角

θ

曲线反曲点对应的角度。甲板浸水后稳性增长减缓。该点的曲线斜率最大。

最大复原力臂GZ max

最大复原力矩M R.max

极限静倾角θS.max

稳性消失角θv

0~θ

v

的范围定义为船舶的稳性范围。曲线原点处的斜率等于初稳性高度GM 4、影响静稳性曲线的因素

(1)船宽B

(2)干舷F:对初稳性没有影响。

(3)重心高度KG

若排水量一定,则:

(4)排水量(吃水):若KG相同,则:

(5)自由液面

v

s

GZ

KN

θ

θ,

甲max

.

max

?

,θ

θ

θ

v

s

GZ

KG

max

.

max

?

v

s

GZθ

θ

θ,

甲max

.

max

自由液面的影响可以看作船舶重心高度KG 增大,所以影响结果同KG 的影响。 (6) 初始横倾(常定横倾): 船舶重心偏离纵中剖面。

↓↑v GZ KG θ,,max

第五节船舶动稳性

(一)船舶动平衡及动倾角

1.船舶动平衡:研究船舶横倾过程中,功之间的平衡关系。

动平衡条件:

2.动倾角(动平衡角):船舶达到动平衡时的横倾角

(二)船舶动稳性的基本标志

船舶动稳性的大小取决于船舶复原力矩所作功M

d

(动稳性力矩)的大小。

动稳性力矩M d在数值上等于静稳性力矩M R曲线下的面积。

动稳性力臂l d在数值上等于静稳性力臂GZ曲线下的面积。

(三)最小倾覆力矩M

h.min

1 定义

●船舶在动平衡条件下能够承受的横倾力矩的极限值。

●能使船舶倾覆的最小外力矩。

●船舶在动平衡条件下,稳性所允许的最大横倾力矩。

2 结论

●船舶在动力作用下不致倾覆的条件:M h≤M h.min

●船舶在静力作用下不致倾覆的条件:M h≤M R.max

(四)动稳性曲线图

1、定义

动稳性力矩曲线:W R~θ的关系曲线图。

动稳性力臂曲线:l d ~θ的关系曲线图。

2、绘制

动稳性力矩曲线为M R曲线的积分曲线

动稳性力臂曲线为GZ曲线的积分曲线

Ws

W

h

3、动稳性曲线的特征

曲线过原点

曲线反曲点对应角为极限动倾角θ

d.max

曲线极值点对应角为稳性消失角θ

v 4、动稳性曲线的用途

已知恒定外力矩M

h ,求动倾角θ

d

;求取M

h.min

和θ

d.max

5、初始横摇角及船舶进水角θ

j 对M

h.min

的修正

5.1 初始横摇角θ

i

的修正

风浪联合作用的不利条件下求取M

h.min

5.2 船舶进水角θ

j 对M

h.min

的修正

进水角(Angle of flooding):船舶横倾至非水密开口时的横倾角。法定规则规定,当船舶横倾至进水角后,船舶将被视为稳性丧失。

第六节 对船舶稳性的要求

(一)、中国船级社法定规则对船舶稳性的基本要求 1、稳性衡准基本要求 *稳性衡准数K 的计算

A W --船舶正浮时水线上船体和甲板货的侧面积投影(m 2); P W --单位计算风压(kPa),根据Z W 和限定航区查取P W 曲线图; Z W --计算风力作用力臂(m),A W 的中心至水线的垂直距离。 2、临界稳性高度GM C 和极限重心高度KG max

GM C

从初稳性、大倾角稳性及动稳性的要求出发提出的对初稳性高度的下限限制值,即

同时满足《法定规则》对船舶稳性衡准的五点要求时,船舶初稳性高度的最低值。

极限重心高度KG max

从初稳性、大倾角稳性及动稳性的要求出发提出的对重心高度的上限限制值,即 同时足《法定规则》对船舶稳性衡准的五点要求时,船舶重心高度的最大值。

3、稳性特殊要求

集装箱船舶的稳性衡准

木材船的稳性衡准

液货船的稳性衡准

散装谷物船舶的稳性衡准 (二)IMO 对船舶稳性的要求

1、IMO 对普通货船完整稳性的基本要求

m

GM 15.0≥初稳性:????

????≥?

≥?≥≥≥?

s s m

GZ m GZ j

θθθθθ(第一峰值),,大倾角稳性1

≥K 动稳性:稳性衡准数w

h w h M M K min .min .==w

w w w Z A P M ??=001.0C

GM GM ≥max

KG KG ≤

大倾角稳性

2、对动稳性的要求(天气衡准要求)

对L BP ≥24m 的船舶,应满足天气衡准。即船舶在各种装载状态下,具有抵抗横风和横 摇(风浪)联合作用的能力。

3、船舶受稳定风压的作用,产生稳定风压倾侧力臂l w1,同时产生静横倾角θ0 。

P W =0.0514t/m 2; A W --横向受风面积(m 2); Z W --A W 的中心至水下船体侧面积中心或d/2处

4、IMO 对特殊船舶的稳性要求

集装箱船舶的稳性衡准

木材船的稳性衡准

散装谷物船舶的稳性衡准

液货船的稳性衡准

注:以上特种船舶的稳性衡准要求是独立的衡准条件。

m GM 15.0≥初稳性:;

rad m A .055.030~0≥??;rad m A j .090.0},40min{~0≥??θ;.030.0},40min{~30rad m A j ≥??θ;

m GZ 20.030≥?=θ?

≥?≥2530max .,至少s

θ?

??=?=

w

w w w w Z A P M 11

第七节 船舶稳性检验与调整

(一) 稳性过小或稳性过大对船舶安全的影响

1. 稳性过小

船容易导致船舶倾覆,舶操纵困难,主辅机工况不良,对船员心理产生影响

2.稳性过大

对船员生活工作不利

对航海仪器的使用不利

对船舶结构不利

货物容易发生移动 (二)船舶稳性的实用范围

1、普通货船适宜的稳性范围

2、保证适宜稳性范围的经验方法

二层甲板船,二层舱的装货量应占全船载货总重量的35%,底舱占65%;

若需装载部分甲板货,其重量一般不超过10%,且堆积高度不超过1/5~1/6B 。

三层甲板船,上二层舱占20%,下二层 舱占25%,底舱占55%。 (三)船舶稳性的检验及判断

1、测定船舶横摇周期

● IMO 稳性规则中的公式:

● L≤70m 的船舶,IMO 的建议简化公式:

根据经验,万吨轮最适宜的横摇周期为15s ~16s 。

2.船上载荷横移或横向不对称增减 1)载荷横向移动产生横倾角

s

T C GM GM h GM 9=≤≤+θ

GM

KG B f

T 2

2458.0+=θGM

CB T 01.2=

θ2

)(θ

T fB

GM =

2)横向不对称加减载荷产生横倾角

3、观察征状法 1) 稳性过大的征状

● 稍有风浪即摇摆剧烈,恢复较快。 2) 稳性过小的征状

● 风浪较小,横倾较大,且恢复缓慢; ● 用舵转向、拖轮拖顶时横倾异常;

● 甲板上浪、货舱进水、油水使用左右不均等产生较大的横倾角或出现永倾角; ● 在装卸过程中横倾异常。 (四)稳性的调整

1、载荷垂移(船内问题)

单向移动载荷(适于不满舱)

双向轻重货等体积对调(适于满舱)

2、载荷增减(船外问题)

● 注意:δGM=要求的GM 值-调整前的GM 值

● 注意:因为通常情况下是少量载荷变动 调整稳性,所以可假定KM 值不变。 (五)船舶初始横倾调整

θ

tg Y P GM ???=

θ

tg P Py GM )(±?=Z

GM P ?

?=

δZ

GM P ?

?=

δ??

??=?=-L

L H H L H F S P F S P P P P ..P

KP KG P GM ±?-?±=

)

1、初始横倾的原因:

● 货物配置左右不均;货物装卸左右不均; ● 油水使用左右不均;压载水左右不均; ● 舱内货物横向移动;使用船吊装卸重大件货物。 2、初始横倾角的存在对稳性的影响 使复原力矩减小,稳性降低。 3、初始横倾的调整

● 从产生的原因上加以消除。横向移动载荷或侧翼压载。

(六)保证船舶适度稳性的措施 1.了解船舶状况及航线情况 2.合理配载 3.合理调整船舶稳性

4.货物紧密堆垛,防止大风浪航行中位移

5.合理平舱

6.尽量减少自由液面影响

7.消除船舶初始横倾

8.航行中做好货物检查和加固 9.改变船舶与波浪的相对位置 10.船长的责任

y

GMtg P θ

?=

011)(θθtg GM tg GM P y P P ?=+?+?0

010θθtg GM y P P ?=?,则=若

第六节 对船舶稳性的要求

第六节对船舶稳性的要求 1.某船舶的宽深比为1.8,稳性衡准数为1.2,按我国法定规则的规定,该船的极限静倾角均可适当减小()。 A.0.8° B.1.5° C.3° D.0° 2.我国《船舶与海上设施法定检验规则》对船舶稳性的要求应()。 A.开航时必须满足 B.航行途中必须满足 C.到港时必须满足 D.整个航程必须满足 3.根据《船舶与海上设施法定检验规则》,对国内航行普通货船完整稳性的基本要求,均应为()后的数值。 A.进行摇摆试验 B.经自由液面修正 C.计及横摇角影响 D.加一稳性安全系数 4.稳性衡准数是()的指标。 A.动稳性 B.初稳性 C.大倾角静稳性 D.纵稳性 5.极限静倾角是()的指标。 A.动稳性 B.初稳性 C.大倾角静稳性 D.纵稳性 是()的指标。 6.GZ 30o A.动稳性 B.初稳性 C.大倾角静稳性 D.纵稳性 7.GM是()的指标。 A.动稳性 B.初稳性 C.大倾角静稳性

D.纵稳性 8.当风压倾侧力矩等于最小倾覆力矩时,稳性衡准数()。 A.等于1 B.大于1 C.小于1 D.以上均有可能 9.《IMO稳性规则》中规定:船舶受稳定横风作用时的风压倾侧力矩可用公式 M W =P W A W Z W 来计算,其中Z W 是指()。 A.A W 的中心至水下侧面积中心的垂直距离 B.A W 的中心至船舶水线的垂直距离 C.A W 的中心至船舶吃水的一半处的垂直距离 D.A或C 10.当风压倾侧力矩小于最小倾覆力矩时,稳性衡准数()。 A.等于1 B.大于1 C.小于1 D.以上均有可能 11.根据《船舶与海上设施法定检验规则》对船舶完整稳性的要求,国内航行的普通货船,在各种装载状态下的稳性衡准数应()。 A.小于1 B.大于1 C.等于1 D.B+C 12.某船舶的宽深比为2.4,稳性衡准数为1.5,按我国法定规则的规定,该船的极限静倾角均可适当减小()。 A.5° B.4° C.3° D.2° 13.我国《船舶与海上设施法定检验规则》对下列()船舶既提出基本稳性衡准要求,又提出特殊衡准要求。 ①散粮船;②集装箱船;③杂货船;④拖轮;⑤油轮;⑥冷藏船;⑦矿石专用船。A.①②③④⑤⑥⑦ B.①②④⑤⑥ C.①②④⑥ D.①②④ 14.我国《海船法定检验技术规则》对国内航行船舶完整稳性的基本要求共有()

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

第三章 稳性

第三章稳性 第一节稳性的基本概念 (一)船舶平衡的3种状态 1、稳定平衡 >0 G点在M点之下,GM>0,M R 2、随遇平衡 G点与M点重合,GM=0,M =0 R 3、不稳定平衡 <0 G点在M点之上,GM<0,M R (二)稳性的定义 船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。 (三)稳性分类 分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水 ┏破舱稳性 稳性┫┏初稳性(小倾角稳性) ┃┏横稳性┫┏静稳性 ┗完整稳性┫┗大倾角稳性┫ ┗纵稳性┗动稳性 其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。

第二节 稳性指标的计算 (一) 船舶初稳性的基本标志 1.稳心M 与稳心距基线高度KM 船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。 稳心M 距基线的垂向坐标称为稳心距基线高度。 2.初稳性的衡准指标 稳心M 至重心G 的垂距称为初稳性高度GM 。 初稳性高度GM 是衡准船舶是否具有初稳性的指标。初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。 3.初稳性中的假设(对于任一给定的吃水或排水量) (1)小倾角横倾(微倾); (2)在微倾过程中稳心M 和重心G 的位置固定不变; (3)在微倾过程中浮心B 的移动轨迹是一段以稳心为圆心的圆弧; (4)在微倾过程中倾斜轴过漂心。 (二)初稳性高度GM 的表达式 GM=KB+BM-KG=KM-KG (三) 初稳性高度的求取 1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。 2、 KG 的计算 式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,t Z i —— 载荷P i 的重心距基线高度,m 3、Z i 确定 (1)舱容曲线图表查取法 船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下: i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ) 2.3()m (Z P KG i i ? *∑=

稳性的基本概念

第一节 稳性的基本概念 一、稳性概述 1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行 回复到原来平衡位置的能力。 2. 船舶具有稳性的原因 1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、 船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。 2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心 的相对位置等因素。 S M G Z =?? (9.81)kN m ? 式中: G Z :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。 ◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时, 船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。 3. 横稳心(Metacenter)M : 船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。 4. 船舶的平衡状态 1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。 2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。 3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。 如下图所示

例如: 1)圆锥在桌面上的不同放置方法; 2)悬挂的圆盘 5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具 有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。 6. 稳性大小和船舶航行的关系 1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易 受损、舱内货物容易移位以致危及船舶安全。 2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时 间斜置于水面,航行不力。 二、稳性的分类 1. 按船舶倾斜方向分为:横稳性、纵稳性 2. 按倾角大小分为:初稳性、大倾角稳性 3. 按作用力矩的性质分为:静稳性、动稳性 4. 按船舱是否进水分为:完整稳性、破舱稳性 三、初稳性 1. 初稳性假定条件: 1)船舶微倾前后水线面的交线过原水线面的漂心F; 2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。2.初稳性的基本计算 初稳性方程式:M R = ??GM?sinθ GM = KM - KG

第四章保证船舶具有适当的吃水差模拟题规范标准答案

,. 第四章保证船舶具有适当的吃水差模拟题 2011-3-13 第一节航行船舶对吃水差和吃水的要求 1.船舶纵倾后浮心向()移动。 A.船中 B.中前 C.中后 D.倾斜方向 2.根据经验,万吨级货船在满载时适宜的吃水差为尾倾(m。)2.5 ~ 2.0A.1.9 .B0.9~0.8 0.6~C.0.5 ~D.0.3 3.。从最佳纵倾的角度确定吃水差,目的是使船舶的()A.所受阻力最小B.装货量最大C.燃油消耗率最小D.吃水最合适 ,. 4.某万吨货轮某航次轻载出港时吃水差t=-0.5m,则根据经验将会对船舶产生()影响。 A.航速减低

B.舵效变差 C.操纵性变差 D.A、B、C均有可能 5.某万吨货船某航次满载出港时吃水差t=-2.3m,则根据经验将会对船舶产生()影响。 A.船首部底板易受波浪拍击 B.甲板上浪 C.操纵性变差 D.A和C均有可能 6.某万吨货轮某航次半载出港时吃水差t=-0.7m,则根据经验将会对船舶产生()影响。 A.提高航速 B.提高船舶舵效 C.减少甲板上浪 D.A、B、C均有可能 )影响。普通船舶首倾航行时,可能会产生下述(7. ,. .首部甲板易上浪,强度易受损A .出现飞车现象B .船舶操纵困难,航速

降低C均有可能、CD.A、B )。8.按我国定义,船舶吃水差是指船舶( A.首尾吃水之差B.装货前后吃水差C.满载与空载吃水之差D.左右舷吃水之差 。)9.船舶在空载航行时必须进行压载的原因是(A.稳性较差B.受风面积大,影响航速C.螺旋桨的推进效率低均是、B、CD.A ),10.当泊位水深受限时船舶出港时的吃水差应为(。A.正值B.负值0 .C.以上均可D. ,. 11.当船舶装载后其重心纵坐标与正浮时浮心纵坐标不同时,船舶将会()。A.横倾 B.正浮 C.纵倾 D.任意倾斜 12.船舶纵倾后()。 A.重心与浮心共垂线 B.漂心与重心共垂线 C.重心不与正浮时漂心共垂线 D.重心不与浮心共垂线

第四章船舶堵漏

第四章船舶堵漏 当船舶发生海损事故造成船体破损进水时,及时采取正确的抢险措施和进行堵漏,才能避免沉没,把利用船舶专用器材堵塞破损漏洞的各种应急措施,称为船舶堵漏。 内河船舶由于尺度小、隔舱少,储备浮力不大,一旦破舱进水来不及堵漏即将沉没,因此,根据内河航道的特点,多采取就近冲滩搁浅的原则,以挽救船舶完全沉没水中或倾覆,但仍需进行自救。船舶堵漏工作亦称进水抢险工作,进水抢险的任务由驾驶人员和轮机人员共同来承担。 第一节船舶堵漏器材 根据船舶破损情况及堵漏方法的不同,船舶堵漏器材也不一样,内河船舶常用的堵漏器材有:堵漏毯、堵漏板、水泥、黄沙、木板、木撑、木塞、铁钉、棉絮等。 一、堵漏器材的种类 1.堵漏毯 堵漏毯又称防水席。船舶破损时,用以从舷外遮挡破洞,限制进水流量,是为进一步采取堵漏措施的临时应急器材。堵漏毯有轻型和重型两类。尺度规格一般有2 m×2 m,2.5 m×2.5 m,3 m×3 m等。轻型堵漏毯,是由三层2号帆布重叠,按经纬缝法制成。四周有白棕绳,并嵌有眼圈供连接绳索用。备有四根钢管,必要时可插入堵漏毯中特制的夹袋内,使用时防止堵漏毯被压吸入破洞。重型堵漏毯是用钢丝编制成的正方形网,两面都用帆布缝牢,其中一面有绳绒附着物,四周有钢丝绳。使用时以绳绒一面紧贴漏洞用以增加水密程度。重型堵漏毯大而重,操作不便。一般船上多备2.5 m×2.5 m的轻型堵漏毯,如图4~1所示。 图4—1 堵漏毯 2.堵漏板

堵漏板是用以堵挡周围平整的中小型破洞、裂口的各种板件。由两层木板以纹理纵横交叉的方式重叠钉成。规格大小不一,但宽度须小于肋骨间距,厚度应随规格的增大而增厚,一般船舶备有300 mm×300mm×10 mm以下的木板制成的堵漏板。堵漏时,应在板和破洞间放置软垫,以增加水密程度。也可在板中先钻好孔,然后用堵漏螺丝杆扣紧在破损部位。因结构不同,有软边堵漏板、活页堵漏板等。图4~2所示为软边堵漏板,图4—3所示为活页堵漏板。 3.堵漏盒 堵漏盒是用木材或钢板制成的无底方盒。开口的四周镶有橡皮垫,上盖板中间开有小孑L以便与螺丝杆连接。适用于船舶破洞向舱内翻卷的洞口。使 用时将堵漏盒盖住洞口,并用支柱或螺丝杆固定。钢板堵漏盒必要时可用角铁焊牢在船体上,如图4—4所示。 4.堵漏螺丝杆 堵漏螺丝杆是在船舶破损堵漏时,用以固定和扣紧堵漏板或堵漏盒的螺杆夹紧器。有下列几种: 1)活动堵漏螺丝杆 在螺杆一端装设活动横杆。使用时,可以折合后插进不同形状的破洞。一般螺丝杆与横杆的长度均为600 mm。特点是操作方便。 2)T形堵漏螺丝杆 其用途与活动螺丝杆相似。横杆固定垂直于螺杆。一般长度仅5。O mm。缺点是横杆不能活动,操作不便,堵塞漏洞的大小亦受限制。 3)钩头堵漏螺丝杆 螺杆前端弯成钩形。使用时,先用结实木板或铁板,并垫上软垫子,选几个适当的位置钻孔,将钩头穿出孔外,钩在漏洞外周围的船壳钢板上,拧紧蝶形螺帽。特点是便于堵塞卷边向舷外的漏洞。图4—5所示为三种堵漏螺丝杆。 b.堵’桶木基 堵漏木塞是以质软、不易劈裂的橡木或杉木制成,用来堵塞5~150 mrn的圆形或近似圆形的破洞、铆钉孔或破损管的器材。使用时便于打紧,被水浸泡膨胀后将卡得更紧,不易滑脱。堵漏木塞分平头和尖头两种。木塞顶角不得超过5。为宦,如图4—6所示。 6.堵漏木楔 堵漏木楔是以垫塞支撑柱两端和船体结构间的空隙,加固堵漏器材或堵塞船体裂缝的木楔。用松木等轻质木料制成,分尖头和平头两种。木楔角度不宜过大,一般以5。左右为宜,否则能使缝隙继续扩展,并且在受到震动或在水的压力下容易发生松脱,如图4—7所示。 7.支撑柱 支撑柱是用于临时支撑堵漏器材的木柱。一般与堵漏垫木、堵漏木楔等配合使用。支撑 柱一般选用松木制成圆形或方形的长条木材。要求干燥、无裂缝、无虫伤、端部平整,如图4—8所示。 8.堵漏垫板 堵漏垫板是垫在堵漏器材背面或下面的木板。一般厚为25~50 mm。其作用是加强堵漏用具的强度,并使支撑柱顶端的力平均分布在堵漏用具上;或使支撑柱底端力平均分布在甲板及其他支撑结构上。 二、堵漏器材的保管要求

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

第四章 船舶稳性

第四章船舶稳性 第一节船舶稳性的基本概念 (一)船舶平衡的3种状态 1、稳定平衡 >0 G点在M点之下,GM>0,M R 2、随遇平衡 G点与M点重合,GM=0,M =0 R 3、不稳定平衡 <0 G点在M点之上,GM<0,M R (二)稳性的定义 船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。 (三)稳性分类 分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水 ┏破舱稳性 稳性┫┏初稳性(小倾角稳性) ┃┏横稳性┫┏静稳性 ┗完整稳性┫┗大倾角稳性┫ ┗纵稳性┗动稳性 其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。

第二节船舶初稳性(1) (一)船舶初稳性的基本标志 1.稳心M 与稳心距基线高度KM 船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。 稳心M距基线的垂向坐标称为稳心距基线高度。 2.初稳性的衡准指标 稳心M至重心G的垂距称为初稳性高度GM。 初稳性高度GM是衡准船舶是否具有初稳性的指标。初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。 3.初稳性中的假设(对于任一给定的吃水或排水量) (1)小倾角横倾(微倾); (2)在微倾过程中稳心M和重心G的位置固定不变; (3)在微倾过程中浮心B的移动轨迹是一段以稳心为圆心的圆弧; (4)在微倾过程中倾斜轴过漂心。 (二)初稳性高度GM的表达式 GM=KB+BM-KG=KM-KG

第二节 船舶初稳性(2) (三) 初稳性高度的求取 1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。 2、 KG 的计算 式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,t Z i —— 载荷P i 的重心距基线高度,m 3、Z i 确定 (1)舱容曲线图表查取法 船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下: i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ii )对于积载因素相近、合理积载的件杂货,根据所装货物的体积,在下横轴找到相应点向上做垂线,交舱容曲线得A 点,过A 点做水平线交舱容中心距基线高度曲线得B 点,过B 点向上做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ) 2.3()m (Z P KG i i ? *∑ =

第四章 船舶稳性教案

第四章船舶稳性 (一)课程导入 (二)新授课 第一节、稳性的基本概念 船舶平衡的3种状态: 1.船舶的平衡状态 船舶漂浮于水面上,其重力为W,浮力为△,G为船舶重心,B为船舶初始位置的浮心。在某一性质的外力矩作用下船舶发生倾斜,由于倾斜后水线下排水体积的几何形状改变,浮心由B移至B1点,当外力矩消失后船舶能否恢复到初始平衡位置,取决于它处在何种平衡状态(下图)。 (1)稳定平衡。如图(a)所示,船舶倾斜后在重力W和浮力△作用下产生一稳性力矩,在此力矩作用下,船舶将会恢复到初始平衡位置,称该种船舶初始平衡状态为稳定平衡状态。 (2)随遇平衡。如图2-1所示,船舶倾斜后重力W和浮力△仍然作用在同一垂线上而不产生力矩,因而船舶不能恢复到初始平衡位置,则称该种船舶初始平衡状态为随遇平衡状态。 (3)不稳定平衡。如图2-1(c)所示,船舶倾斜后重力W和浮力△作用下产生一倾覆力矩,在此力矩作用下船舶将继续倾斜,称称该种船舶初始平衡状态为不稳定平衡状态。 2.船舶平衡状态的判别 为对船舶的平衡状态进行判别,将船舶正浮时浮力作用线和倾斜后浮力作用线的交点定义为稳心,以M表示。由于船舶倾斜后的浮心位置或浮力作用线与船舶吃水(或排水量)、船舶倾角有关,稳心位置也随船舶吃水(或排水量)、船舶倾角不同而变化。 进一步分析表明,船舶处于何种平衡状态与重心G和稳心M的相对位置有关。船舶稳定平衡时,重心G位于稳心M之下;船舶不稳定平衡时,重心G位于稳心M

之上;船舶随遇平衡时,重心G 和稳心M 重合。因此,为了使船舶在受到一外力矩作用下具有一定的复原能力从而保证船舶安全,船舶重心必须在相应倾角时的稳心之下。 处于稳定平衡状态的船舶,其复原能力的大小取决于倾斜后产生的稳性力矩或复原力矩s M 的大小。由图(a )可见,该稳性力矩大小为 s M GZ =?? 式中:GZ ──静稳性力臂 (m ),是船舶重心G 至倾斜后浮力作用线的垂直距离,通常简称作稳性力臂或复原力臂。 船舶稳性的分类: 船舶在外力矩作用下偏离其初始平衡位置而倾斜,当外力矩消失后船体能自行恢复到初始平衡状态的能力称为船舶稳性。 船舶稳性通常可按以下方法分类: 1.按船舶倾斜方向分类。可分为横稳性和纵稳性。横稳性指船舶绕纵向轴(x 轴)横倾时的稳性,纵稳性指船舶绕横向轴(y 轴)纵倾时的稳性。由于纵稳性力矩远大于横稳性力矩,故实际营运中不可能因纵稳性不足而导致船舶倾覆。 2.按倾角大小分类。可分为初稳性和大倾角稳性。初稳性(小倾角稳性)指船舶微倾时所具有的稳性,微倾在实际营运中将倾斜角扩大至10°~15°;大倾角稳性指当倾角大于10°~15°时的稳性。 3.按作用力矩的性质分类。可分为静稳性和动稳性。静稳性指船舶在倾斜过程中不计及角加速度和惯性矩时的稳性;动稳性指船舶在倾斜过程中计及角加速度和惯性矩时的稳性。 4.按船舱是否进水分类。可分成完整稳性和破舱稳性。船体在完整状态时的稳性称为完整稳性,而船体破舱进水后所具有的稳性则称为破舱稳性。 第一节 船舶初稳性 船舶初稳性的基本标准: 理论证明:船舶在微倾条件下,倾斜轴过初始水线面的面积中心即初始漂心F ;过初始漂心F 微倾后船舶排水体积不变;当排水量一定时,船舶的稳心M 点为一定点。船舶初稳性是以上述结论为前提进行研究和表述的。 船舶在小倾角条件下,稳性力矩M s 和稳性力臂GZ 可表示为 M s =ΔGM sin θ GZ =GM sin θ 式中:GM ───船舶重心与稳心间的垂直距离,称为初稳性高度(m ); θ───船舶横倾角(°)。 由上式可见,在排水量及倾角一定情况下,静稳性力矩大小取决于重心和稳心的相对位置,即取决于GM 大小。当M 点在G 点之上,GM 为正值,此时船舶具有稳性力矩并与GM 值成正比;当M 点在G 点之下,GM 为负值,此时船舶具有倾覆力矩亦与GM 值成正比;当M 点和G 点重合,GM 为零,此时稳性力矩为零。 由此分析可知,GM 可以作为衡量船舶初稳性大小的基本标志。欲使船舶具有稳性,必须使GM >0。 初稳性高度GM 的计算: 1.由装载排水量查取横稳心距基线高度KM ;

第二节 船舶初稳性

第二节船舶初稳性 1.在舱容曲线上可以()。 A.由货物容积查取货面距基线高度 B.由货面距基线高度查容积中心高度 C.由货物容积直接查取容积中心高度 D.以上均可 2.某轮空船排水量为2000t,空船重心高度为5.5m;船舶载荷重量为8000t,其重心高度为3.50m;查得船舶初稳心距基线高度KM为4.70 m。该轮的初稳性高度GM为()m。 A.0.8 B.1.2 C.1.5 D.1.82 3.当货舱装满时,通常按货物实际重心求得的GM比按舱容中心求得的GM()。A.大 B.小 C.相等 D.以上均有可能 4.当货舱装满时,通常按货物实际重心距基线高度比舱容中心距基线高度()。A.大 B.小 C.相等 D.以上均有可能 5.某轮某两个航次No.1货舱分别装满货物A、B,积载因数分别为S.F A 、S.F B ,该 舱的重心高度分别为Z A 、Z B ,则()。 A.Z A <Z B B.Z A >Z B C.Z A =Z B D.关系无法确定 6.某轮某底舱货舱容积为2710m3,双层底高1.48m,舱高7.32m,计划配装两种货物:下层焦宝石1000t(S.F=0.74m3 /t),上层花生果500t(S.F=3.28m3 /t),则两种货物的重心高度分别为()m。 A.2.48;4.15 B.2.48;5.70 C.2.00;4.53 D.1.85;4.21 7.某轮某底舱货舱容积为2710 m3,双层底高1.48m,舱高7.32m,计划配装两种

货物:下层焦宝石1000t(S.F=0.74 m3/t),上层花生果500t(S.F=3.28 m3/t),则该舱的重心高度为()m。 A.2.78 B.3.12 C.3.55 D.5.96 8.在船舶的重心处装载部分货物,则()将可能改变。 A.KB B.KG C.KM D.A和C 9.某货舱下层、上层分别装有重心距基线高为2.04m和4.18m的两种货物,它们的重量分别是2630t和367t,双层底高1.1m,则该舱重心高度为()。 A.2.06m B.2.14m C.2.30m D.2.49m 10.在估算各类货物的重心高度时,对于首尾部位的货舱,货物的重心可取为货堆高度的()。 A.40% B.50% C.54%~58% D.75%~80% 11.对于近长方形货舱,舱容曲线为(),容积中心高度曲线为()。A.直线;直线 B.直线;曲线 C.曲线;直线 D.曲线;曲线 12.船舶重心距基线高度KG随船舶排水量的减小而()。 A.增大 B.减小 C.不变 D.变化趋势不定 13.舱容曲线的垂向坐标为(), 横坐标为()。 A.货面距基线高度;舱容和容积中心高度 B.舱容和容积中心高度;货面距基线高度 C.舱容;货面距基线高度和容积中心高度 D.以上均不对

船舶初稳性高度计算

船舶初稳性高度计算 船舶初稳性高度计算 1.船舶装载后的初稳性高度GM: GM=KM--KG {KM--为船舶横稳心距基线高度(米) KG--为船舶装载后重心距基线高(米) KM--可由船舶资料静水曲线图按平均吃水查得} 2.舶装载后重心距基线高KG: KG=( DZg+∑PiZi) /Δ { D--空船重量(吨);查船舶资料得; Zg--空船重心距基线高度(米);查船舶资料得; Pi--包括船舶常数,货物总重量,船员及供应品,备品,油水重量(吨);Zi--载荷Pi的重心高度(米); ?--船舶排水量(吨);} 3.自由液面的影响δGMf : δGMf=∑ρix/Δ {ρ—舱内液体的密度(克/立方米) ix---液舱内自由液面对液面中心轴的面积横矩(M4)} 4.经自由液面修正后的初稳心高度GoM: GoM=KM--KG--δGMf 5.船舶横摇周期T?: T?=0.58f√(B+4KG)/GoM {0.58为常数; f—可由B/d查出; B—船舶型宽; d—船舶装载吃水;}

6.例题:某船装载货物后Δ=18500吨,全船垂向重量力矩∑PiZi= 143375吨.米,现有1号燃油舱自由液面对液面中心轴的面积横矩∑ρix= 58.7四次方米。淡水舱自由液面对液面中心轴的面积横矩∑ρix= 491.1四次方米。两舱均未装满,其中燃油密度ρ=0.97克/立方厘米。试计算经自由液面修正后的初稳性高度GoM(根据Δ查得KM=8.58米)。 解:1)求KG KG=( DZg+∑PiZi) /Δ=143375/18500=7.75米 2)计算自由液面影响的减小值δGMf : δGMf=∑ρix/Δ=(0.97*58.7+1.0*491.1)/18500 =0.03米 3)计算 GoM: GoM=KM—KG--δGMf =8.58-7.75-0.03 =0.80米

船舶完整稳性规则

附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则 说明与要求 1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。 2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。详见本法规第4篇附则2《际高速船安全规则》。 3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。 349

第1章一般规定 1.1 宗旨 关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。 1.2 适用范围 1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具: ——货船; ——装载木材甲板货的货船; ——装载散装谷物的货船; ——客船; ——渔船; ——特种用途船; ——近海供应船; ——海上移动式钻井平台; ——方驳; ——动力支承船; ——集装箱船。 1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。 1.3 定义 下列定义适用于本规则。对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。 1.3.1 主管机关:系指船旗国政府。 1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。 1.3.3 货船:系指非客船的任何船舶。 1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。 1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。 1.3.6 近海供应船:系指主要从事运送物品、材料和设备至近海设施上,并在船前部设计有居住处所和桥楼、在船后部有为在海上装卸货物的露天装货甲板的船舶。 1.3.7海上移动式钻井平台(MODU)或平台:系指能够为勘探或开采诸如液态或气态碳氢化合物、 硫或盐等海床之下的资源而从事钻井作业的海上建筑物: .1柱稳式平台:系指用立柱将主甲板连接到水下壳体或沉箱上的平台; .2浮式平台:系指有单体或多体结构船型或驳船型排水船体、用于漂浮状态下作业的平台; .3自升式平台:系指有活动桩腿能够将其壳体升至海面以上的平台。 1.3.8动力支承船(DSC):系指能够在水面或超出水面航行的船舶,其具有的特性与适用现行国际公约,特别是SOLAS公约和LL载重线公约的普通排水量船舶大不相同,以致要采取其他措施来获得同等安 350

对船舶稳性的要求

对船舶稳性的要求 一、IMO对普通货船的稳性要求 1、船舶在各种装载情况下的初稳性高度GM≥0.15m 2、横倾角在0~30°之间静稳性曲线下的面积≥0.055m 3、在0~40°(或小于40°的进水角θf)之间静稳性曲线下的面积不小于0.09m?rad. 4、30°~40°(或小于40°的θf)之间静稳性曲线下的面积≥0.03m?rad. 5、θ≥30°处的复原力臂不小于0.02m. 6、最大复原力臂对应的角度最好大于30°,至少不少于25° 7、满足天气蘅准数的要求 二、我国“海船稳性规范”对普通货船的稳性衡准数要求 1、经自由液面修正后的GM≥0.15m 2、θ=30°或θf处的GZ≥0.20m 3、Gzmax对应的角度θmax≥30°或当静稳性曲线有两个峰值时,第一个峰值对应的角度不小于25° 4、稳性消失角θv不小于55°,即θv≥55° 5、船舶在各种装载状态下的稳性衡准数不小于1,如图所示,即Mhmin/Mw≥1;Mhmi n的求取要经过横摇角θi和进水角θf的修正;Mw为风压力矩Mw=ρw?Aw?Zw,ρw-风压,Aw-横风受风面积,Zw-吃水一半到Aw中心的垂直距离 (1) 求取Mhmin时经过横倾角θi的修正 MR P K M L 静N 稳Mhmin θ 性O θdmax θi

H MR θi Mhmin 动 A 稳 性θ O θdmax 57°.3 (2) 求取Mhmin时经过横倾角θf的修正(如果曲线在θf处中断) MR P K M 静N 稳Mhmin θ性O θf θi H

MR θi Mhmin 动 A 稳 性θ O θf 57°.3 三、散粮船,油船,集装箱船的GM≥0.30m,且散粮船的静倾角不能大于12° 四、木材船的GM≥0.10m

第四节 船舶大倾角稳性

第四节船舶大倾角稳性 1.液舱自由液面对静稳性力臂GZ的影响()。 A.随横倾角的增大而增大 B.随横倾角的增大而减小 C.不随横倾角变化 D.以上均可能 2.静稳性曲线的纵坐标是()。 A.复原力臂 B.形状稳性力臂 C.复原力矩 D.A或C 3.某船Δ=15000t,GM=2.3m,查得横倾角θ=20 °时的形状稳性力臂MS为0.64m,则静稳性力力矩为()t·m。 A.2250 B.15000 C.21450 D.42000 4.()表示船舶重心G至浮力作用线的垂直距离。 A.GZ B.GM C.KN D.KH 5.船舶横倾角在通常范围内增加时,其重量稳性力臂()。 A.增大 B.不变 C.减小 D.以上均有可能 6.液舱自由液面对静稳性力臂GZ的影响是()。 A.使静稳性力臂减小 B.使静稳性力臂保持不变 C.使静稳性力臂增大 D.以上均有可能 7.液舱自由液面对静稳性力矩M S的影响是()。 A.使静稳性力矩减小 B.使静稳性力矩保持不变 C.使静稳性力矩增大 D.以上均有可能

8.液舱自由液面对静稳性力矩M S的影响与()有关。 A.液面大小 B.液面形状 C.横倾角 D.以上均是 9.液舱自由液面对静稳性力臂GZ的影响与()有关。 A.液面大小 B.液面形状 C.横倾角 D.以上均是 10.通常情况下,横倾角不同时液舱自由液面对静稳性力臂GZ的影响()。A.不同 B.相同 C.与横倾角无关 D.以上均对 11.通常情况下,横倾角不同时液舱自由液面力矩()。 A.不同 B.相同 C.与横倾角无关 D.以上均对 12.已知船舶形状稳性力臂KN|θ=30°=5.25m,船舶重心高度KG=8.20m,自由液面对初稳性的修正值为0.20m,则船舶的静稳性力臂GZ为()m。 A.0.95 B.1.05 C.1.15 D.1.20 13.某船装载后△=18000t,未经自由液面修正的KG0=7.3m,查得30°时的形状稳性力臂KN=4.5m和自由液面倾侧力矩为1080×9.81kN·m,则此时复原力臂为()m。 A.0.79 B.0.82 C.0.85 D.0.88 14.已知船舶排水量为25000t,形状稳性力臂KN| θ=30°=5.25m,船舶重心高度KG=8.20m,自由液面对大倾角稳性的修正力矩为2500t·m,则船舶的静稳性力臂GZ为()m。 A.1.05

船舶静力学计算及稳性衡准系统

船舶静力学计算及稳性衡准系统 4.1 2009年1月最新版 船舶静力学计算及稳性衡准系统V4.1_0901"(cyzwx) 是由中国船级社武汉规范研究所研制开发。 11全模块:静水力性能、舱容曲线、自由液面、完整稳性、倾斜试验、破舱稳性、随浪稳性、纵向下水、干舷吨位、总纵强度、应急响应 4.1.1 系统界面介绍 Windows应用程序的界面主要有三种,即单文档界面、多文档界面和资源管理器样式界面。顾名思义,单文档界面指只有一个窗体的界面,其应用程序只能打开一个文档,想要打开另一个文档时,必须先关闭已打开的文档。多文档界面指在主窗口中包含多个子窗口的界面,其应用程序允许用户同时显示多个文档,每个文档显示在它自己的窗口中,子窗口被包含在主窗口中(同时有两个或更多的窗口时,只有一个是活动的,用户可以用鼠标单击窗口的可见部分来将它激活),主窗口为应程序中的所有的子窗口提供工作空间。资源管理样式界面是包括有两个窗格(或者区域)的一个单独的窗口,通常是由右半部分的一个树形(或者层次型)的视图和右半部分的一个显示区所组成,其应用程序类似Windows资源管理器,左边窗格为主题,而右边窗格为选中的主题细节。 本程序系统采用多文档界面,同时具有资源管理器样式界面的风格,如图4.1所示。 计算功能

“船舶静力学计算及稳性衡准系统”的功能包括静水力性能计算、舱容曲线计算、自由液面修正计算、倾斜试验计算、完整稳性计算、可浸长度曲线计算、破舱稳性计算和下水计算等功能,在此基础上还将开发吨位计算、干舷计算和随浪稳性计算等功能。 1.3.1 静水力性能计算 1. 计算内容: 静水力曲线、邦戎曲线、费尔索夫曲线、横截曲线、进水角曲线和极限静倾角曲线。 2. 计算方法: 费尔索夫曲线、横截曲线、进水角曲线和极限静倾角曲线采用等体积法计算;静水力曲线和横截曲线可计入初始纵倾角的影响。 1.3.2 舱容曲线计算 1. 计算内容: 舱室要素和舱容曲线。 2. 计算方法: 采用特征点坐标描述舱室形状,自定义计算水线数目。 1.3.3 自由液面修正计算 1. 计算内容:

船舶初稳性高度计算

船舶初稳性高度计算 1.船舶装载后的初稳性高度GM: GM=KM--KG {KM--为船舶横稳心距基线高度(米) KG--为船舶装载后重心距基线高(米) KM--可由船舶资料静水曲线图按平均吃水查得} 2.舶装载后重心距基线高KG: KG=( DZg+∑PiZi) /Δ { D--空船重量(吨);查船舶资料得; Zg--空船重心距基线高度(米);查船舶资料得; Pi--包括船舶常数,货物总重量,船员及供应品,备品,油水重量(吨);Zi--载荷Pi的重心高度(米); ?--船舶排水量(吨);} 3.自由液面的影响δGMf : δGMf=∑ρix/Δ {ρ—舱内液体的密度(克/立方米) ix---液舱内自由液面对液面中心轴的面积横矩(M4)} 4.经自由液面修正后的初稳心高度GoM: GoM=KM--KG--δGMf 5.船舶横摇周期T?:

T?=0.58f√(B+4KG)/GoM {为常数; f—可由B/d查出; B—船舶型宽; d—船舶装载吃水;} 6.例题:某船装载货物后Δ=18500吨,全船垂向重量力矩∑PiZi= 143375吨.米,现有1号燃油舱自由液面对液面中心轴的面积横矩∑ρix= 四次方米。淡水舱自由液面对液面中心轴的面积横矩∑ρix= 四次方米。两舱均未装满,其中燃油密度ρ=0.97克/立方厘米。试计算经自由液面修正后的初稳性高度GoM (根据Δ查得KM=8.58米)。 解:1)求KG KG=( DZg+∑PiZi) /Δ=143375/18500=7.75米 2)计算自由液面影响的减小值δGMf : δGMf=∑ρix/Δ=*+*/18500 =0.03米 3)计算 GoM: GoM=KM—KG--δGMf =0.80米

相关主题
文本预览
相关文档 最新文档