大体积砼温度计算
- 格式:docx
- 大小:19.08 KB
- 文档页数:8
大体积混凝土计算:1绝热温升Tmax=W×Q/(c×γ)=362×377/(0.96×2400)=59.2(℃)W----每立方米混凝土实际用水泥量为362kg;Q----425号普通水泥其28天的水化热为377kJ/kg;c----混凝土密度为2400kg/m3;γ----混凝土的比热,取0.96kJ/(kg℃)。
2各龄期的计算温差取混凝土的浇筑温度为5℃,则各龄期的温度升降值为T=Tj+Tmax×ξ(Tj为浇筑温度,Tmax为绝热温升。
)3天T(3)=45.26(℃)6天T(6)=44.66(℃)△T'(6) =T(3)-T(6) =0.59(℃)9天T(9)=42.30(℃)△T'(9) =T(6)-T(9) = 2.37(℃) 12天T(12)=38.74(℃)△T'(12)=T(9)-T(12) =3.55(℃) 15天T(15)=31.64(℃)△T'(15)=T(12)-T(15)=7.10(℃) 18天T(18)=26.31(℃)△T'(18)=T(15)-T(18)=5.33(℃) 21天T(21)=22.76(℃)△T'(21)=T(18)-T(21)=3.55(℃) 24天T(24)=19.80(℃)△T'(24)=T(21)-T(24)=2.96(℃) 27天T(27)=17.43(℃)△T'(27)=T(24)-T(27)=2.37(℃) 30天T(30)=16.25(℃)△T'(30)=T(27)-T(30)=1.18(℃) 4各龄期混凝土收缩当量温差εy(t)=εy0M1×M2×M3…M10×(1-e-0.01t);εy(t)----为混凝土任意时间的收缩(mm/mm);εy0=εy(∞)----混凝土标准状态下,εy0=3.24×10-4;M1…M10----考虑各种非标准条件的修正系数;M1 ----水泥品种为普通水泥,取1;M2 ----水泥细度为5000孔,取1.35;M3 ----骨料为花岗岩,取1;M4 ----水灰比为0.5,取1.2;M5 ----水泥浆量为0.29,取1.1;M6 ----自然养护28天,取0.93;M7 ----环境相对湿度为50%,取1;M8 ----水力半径倒数为0.75,取1.44;M9 ----机械振捣,取1;M10 ----含筋率为0.5%,取0.86。
温度控制计算书
依据<<建筑施工计算手册>>。
一、计算公式:
(1) 混凝土表面所需的热阻系数计算公式:
(2) 蓄水深度计算公式:
式中 R----混凝土表面的热阻系数(k/W);
X----混凝土维持到预定温度的延续时间(h);
M----混凝土结构物表面系数(1/m);
T max---混凝土中心最高温度(℃);
T b---混凝土表面温度(℃);
K----透风系数,取 K=1.30;
700----混凝土的热容量,即比热与密度之乘积(kJ/m3.K); T0---混凝土浇筑、振捣完毕开始养护时的温度(℃);
T c---每立方米混凝土的水泥用量(kg/m3);
Q(t)---混凝土在规定龄期内水泥的水化热(kJ/kg);
λw---水导热系数,取0.58W/m.k。
二、计算参数
(1) 大体积混凝土结构长a=15.00(m);
(2) 大体积混凝土结构宽b=15.00(m);
(3) 大体积混凝土结构厚c=2.00(m);
(4) 混凝土表面温度T b=25.00(℃);
(5) 混凝土中心温度T max=45.00(℃);
(6) 开始养护时的温度T0=15.00(℃);
(7) 维持到预定温度的延续时间X=10.00(d);
(8) 每立方米混凝土的水泥用量m c=300.00(kg/m3);
(9) 在规定龄期内水泥的水化热Q(t)=188.00(kJ/kg)。
三、计算结果
(1) 混凝土表面的热阻系数R=0.18(k/W);
(2) 混凝土表面蓄水深度h w = 0.11(m);。
10-7-2-1 大体积混凝土温度计算公式1.最大绝热温升(二式取其一)(1)T h=(m c+k·F)Q/c·ρ(2)T h=m c·Q/c·ρ(1-e-mt)(10-43)式中 T h——混凝土最大绝热温升(℃);m c——混凝土中水泥(包括膨胀剂)用量(kg/m3);F——混凝土活性掺合料用量(kg/m3);K——掺合料折减系数。
粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表10-81;不同品种、强度等级水泥的水化热表10-81水泥品种水泥强度等级水化热Q(kJ/kg)3d 7d 28d硅酸盐水泥42.5 314 354 375 32.5 250 271 334矿渣水泥32.5 180 256 334c——混凝土比热、取0.97[kJ/(kg·K)];ρ——混凝土密度、取2400(kg/m3);e——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变。
查表10-82。
系数m 表10-82浇筑温度(℃) 5 10 15 20 25 30 m(l/d)0.295 0.318 0.340 0.362 0.384 0.4062.混凝土中心计算温度T1(t)=T j+T h·ξ(t)式中 T1(t)——t龄期混凝土中心计算温度(℃);T j——混凝土浇筑温度(℃);ξ(t)——t龄期降温系数、查表10-83。
降温系数ξ表10-83浇筑层厚度(m)龄期t(d)3 6 9 12 15 18 21 24 27 301.0 0.36 0.29 0.17 0.09 0.05 0.03 0.011.25 0.42 0.31 0.19 0.11 0.07 0.04 0.031.50 0.49 0.46 0.38 0.29 0.21 0.15 0.12 0.08 0.05 0.042.50 0.65 0.62 0.57 0.48 0.38 0.29 0.23 0.19 0.16 0.153.00 0.68 0.67 0.63 0.57 0.45 0.36 0.30 0.25 0.21 0.194.00 0.74 0.73 0.72 0.65 0.55 0.46 0.37 0.30 0.25 0.243.混凝土表层(表面下50~100mm处)温度1)保温材料厚度(或蓄水养护深度)δ=0.5h·λx(T2-T q)K b/λ(T max-T2)(10-45)式中δ——保温材料厚度(m);λx——所选保温材料导热系数[W/(m·K)]查表10-84;几种保温材料导热系数表10-84材料名称密度(kg/m3)导热系数λ[W/(m·K)材料名称密度(kg/m3)导热系数λ[W/(m·K)]建筑钢材7800 58 矿棉、岩棉110~200 0.031~0.06 钢筋混凝土2400 2.33 沥青矿棉毡100~160 0.033~0.052 水0.58 泡沫塑料20~50 0.035~0.047 木模板500~700 0.23 膨胀珍珠岩40~300 0.019~0.065 木屑0.17 油毡0.05 草袋150 0.14 膨胀聚苯板15~25 0.042沥青蛭石板350~400 空气0.03膨胀蛭石80~200 0.047~0.07 泡沫混凝土0.10 T2——混凝土表面温度(℃);T q——施工期大气平均温度(℃);λ——混凝土导热系数,取2.33W/(m·K);T max——计算得混凝土最高温度(℃);计算时可取T2-T q=15~20℃T max=T2=20~25℃K b——传热系数修正值,取1.3~2.0,查表10-85。
已知条件:墩身Ⅰ砼共412m3,强度C50 ,由于值冬季施工,砼既要满足冬季施工,又要按大体积砼考虑。
砼有沈铁大城商品砼站供应,为暖站拌合,拌合出料温度不小于10℃,入模温度T不小于5℃。
每M3砼的水泥用量(普硅525):W=486kg/m3水泥发热量:Q=461KJ/kg 混凝土密度:p=2400kg/m3砼配比如下:(kg/1m3)砼比热:0.96J/(kg/℃)(一)混凝土内部中心温度(绝热温升)计算:1. 砼的最高绝热温升当结构厚度在1.8m以上时,可只考虑水泥用量及浇注温度影响。
Tmax=T+W/10=5+486×1.15/10=61℃砼3、7天的绝热温升分别为:T(t)= Tmax(1-e-mt) 其中m=0.013,t为砼龄期h;T(3)=37℃T(7)=54℃2. 砼内部中心温度计算a. 大体积砼内实际最高温度(按3.4m计算厚度)T1max=T+ T(t)×ξξ指不同浇注块厚度的温降系数,3天取0.7,7天取0.68;则3天Tmax=5+37x0.7=30.9℃7天Tmax=5+54x0.68=41.72℃(二)表面温度计算(考虑砼表面覆盖一层草袋,周边设两层帆布,布设4台15kw的暖风机,使周边气温控制在5~10℃左右)Tb=Tq+4h’(H-h’)△T/H2H为混凝土的计算厚度,H=3.4+2h’=3.4+2x0.5=4.4mh为混凝土的实际厚度3.4米h’ 为混凝土的虚厚度(m)* h’=kλ/V=0.666×2.33/3.112=0.5λ砼的导热系数,取消2.33w/m/kV模板及保温层的传热系数(w/m2k)V=1/(∑δi/αi_+Rw)=1/(0.018/0.17+0.01/0.058+0.043)=1/0.321=3.112ΔT(t)为各龄期砼内最高气温与外界气温之差。
ΔT(3)= Tmax-Tq=30.9-8=22.9℃ΔT(7)= Tmax-Tq=41.72-8=33.7℃则3天表面温度为Tb(3)=8+0.5×4(4.4-0.5) ×22.9/4.42=17.2℃7天表面温度为Tb(7)=8+0.5×4(4.4-0.5) ×33.7/4.42=21.6℃(三)体积内外温差引起的温度应力:1. 各龄期的砼的弹性模量E(13)=E0(1-e-0.09t)=3.45×104×0.236=8.163×103E(17)=E0(1-e-0.09t)=3.45×104×0.467=1.613×1042. 砼的二维温度应力计算式如下σ=E(1t)α△T Sh(t)Rk/(1-μ)砼的最大综合温度差(℃)3天为△T=T0+2×T(15)/3+T1(t)=5+2×37/3+2=31.667℃7天为△T=T0+2×T(15)/3+T1(t)=5+2×54/3+2=43℃砼的松弛系数Sh(t) ,3天取0.57,7天取0.502;砼的外约束系数Rk取0.3;砼的泊松比μ取0.15。
宁波LNG冷能空分项目大体积混凝土浇筑体施工阶段温度应力与收缩应力的计算一、混凝土温度的计算①混凝土浇筑温度:Tj =Tc+(Tq-Tc)×(A1+A2+A3+……+An)式中:Tc—混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌合温度比当时温度高2-3 ℃,我们按3 ℃计;、Tq—混凝土浇筑时的室外温度(考虑夏季最不利情况以30 ℃计);A 1、A2、A3……An—温度损失系数,A1—混凝土装、卸,每次A=0.032(装车、出料二次);A2—混凝土运输时,A=θt查表得6 m3滚动式搅拌车运输θ=0.0042,运输时间t约30分钟,A=0.0042×30=0.126;A3—浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003×240=0.72;T j =33+(Tq-Tc)×(A1+A2+A3)=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃二、混凝土绝热温升计算T(t)=W×Q×(1-e-mt)/(C×r)式中:T(t)—在t龄期时混凝土的绝热温升(℃);W—每m3混凝土的水泥用量(kg/m3),取420kg/m3;Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号普通硅酸盐水泥Q =375kJ/kg(建筑施工手册 P614表10-81);C—混凝土比热0.97 KJ/(kg·K) ;r—混凝土容重2400 kg/m3;e—常数,2.71828;m—与水泥品种、浇筑时温度有关,可查建筑施工手册 P614表10-82;t—混凝土龄期(d)。
T3= W×Q×(1-e-mt)/(C×r)=420×375×(1- 2.718-0.406×3)/ (0.97×2400)=47.63(℃)T6= W×Q×(1-e-mt)/(C×r)=420×375×(1- 2.718-0.406×6)/ (0.97×2400)=60.89(℃)T9= W×Q×(1-e-mt)/(C×r)=420×375×(1- 2.718-0.406×9)/ (0.97×2400)=58.35(℃)T 12 = W ×Q ×(1-e -mt )/(C ×r )=420×375×(1- 2.718-0.406×12)/ (0.97×2400)=51.35(℃)混凝土最高绝热温升T h =W ×Q/(C ×r )=340×375/(0.97×2400)=54.77(℃)计算结果如下表三、混凝土内部中心温度计算 T 1(t)=T j + Th ·ξ(t)式中:T 1(t)—t 龄期混凝土中心计算温度;T j —混凝土浇筑温度(℃);ξ—不同浇筑块厚度的温降系数,查建筑施工手册P 614表10-83得,对2.5m 厚混凝土3天时ξ=0.65,6天时ξ=0.62,9天时ξ=0.57,12天时ξ=0.48;T 1(3)= T j +T h ×ξ(3)= 30+47.63×0.65=60.9(℃) T 1(6)= T j +T h ×ξ(6)= 30+60.89×0.62=66.55(℃) T 1(9)= T j +T h ×ξ(9)= 30+58.35×0.57=63.26(℃) T 1(12)= T j +T h ×ξ(12)= 30+51.35×0.48=54.65(℃)从混凝土温度计算得知,砼第6天左右内部温度最高,则验算第6天砼温差。
大体积混凝土温度计算在建筑工程中,大体积混凝土的应用越来越广泛,如大型基础、大坝、桥墩等。
然而,由于大体积混凝土在浇筑和硬化过程中会产生大量的水化热,若不加以控制,可能导致混凝土内部温度过高,从而产生温度裂缝,影响混凝土的质量和结构的安全性。
因此,准确计算大体积混凝土的温度变化,对于采取有效的温控措施至关重要。
大体积混凝土温度的变化主要受到水泥水化热、混凝土的热学性能、浇筑温度、环境温度以及散热条件等因素的影响。
首先,水泥的水化热是导致混凝土温度升高的主要原因。
不同品种和标号的水泥,其水化热的释放量和速率都有所不同。
一般来说,高标号水泥的水化热较大。
在计算大体积混凝土温度时,需要根据所选用水泥的品种和标号,以及混凝土的配合比,来确定水泥水化热的总量。
混凝土的热学性能也是影响温度变化的重要因素。
混凝土的导热系数、比热和热膨胀系数等参数,决定了热量在混凝土内部的传递和分布情况。
导热系数越小,混凝土内部的热量越不容易散发出去,温度升高就越明显;比热越大,混凝土吸收或放出相同热量时,温度变化就越小。
浇筑温度是指混凝土在浇筑时的初始温度。
它受到原材料温度、搅拌过程中的温度升高以及运输和浇筑过程中的环境温度等因素的影响。
降低浇筑温度可以有效地控制混凝土的最高温度。
环境温度对大体积混凝土的温度变化也有一定的影响。
在夏季高温环境下,混凝土表面的散热速度较慢,容易导致内外温差增大;而在冬季低温环境下,混凝土表面的散热速度较快,需要采取保温措施来防止混凝土表面温度过低。
散热条件包括混凝土的浇筑厚度、浇筑方式、表面保温措施等。
分层浇筑可以增加散热面积,有利于降低混凝土内部的温度;表面覆盖保温材料可以减少热量的散失,控制混凝土的内外温差。
接下来,我们介绍一下大体积混凝土温度计算的常用方法。
一种是理论计算法。
根据热传导方程和边界条件,通过数学推导来计算混凝土内部的温度分布。
这种方法需要对混凝土的热学性能和边界条件有准确的了解,计算过程较为复杂,但结果较为精确。
Th= m c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第6d左右内部温度最高,则验算第6d砼温差2、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,底板混凝土表面采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。
地下室外墙1200 厚混凝土表面,双面也采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。
①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:23.9(℃)(Tmax-25)T q ——施工期大气平均温度:25(℃)T 2-T q —--1.1(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=-0.32cm故可采用一层阻燃草帘并在其上下各铺一层塑料薄膜进行养护。
②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]=48.83③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=0.0318④混凝土计算厚度:H=h+2hˊ= 1.66m⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。
大体积混凝土绝热温升计算
一、原始数据
1、基准配合比水泥用量360kg/m3
2、粉煤灰代用率为25%时水泥用量270kg/m3
3、计算龄期3d
4、环境温度36℃
5、砼水灰比0.56
6、水泥水化热350000j/kg
7、砼的平均比热1000j/kg.k
8、砼表观密度2400kg/m3
二、绝热温升计算
1、水泥用量为360 kg/m3时,
绝热温升T=360*350000/1000*2400
=52.5℃
2、水泥用量为270 kg/m3时,
绝热温升T=270*350000/1000*2400
=39.4℃
三、结论
1、不掺粉煤灰时,砼内部温度与环境温度之差为52.5-36=16.5℃,砼出现温度裂缝的可能性很小。
2、掺25%粉煤灰时,砼内部温度与环境温度之差为39.4-36=3.4℃,砼出现温度裂缝的可能性更小。
北京福郁华混凝土有限公司
一九九九年五月十二日。
大体积混凝土温度计算公式大体积混凝土温度计算公式一、引言大体积混凝土在施工过程中,其温度变化会对混凝土的性能产生重要影响。
因此,准确计算混凝土温度是保证混凝土质量和工程安全的重要一环。
本文将详细介绍大体积混凝土温度的计算公式及相关细化内容。
二、温度的影响因素混凝土温度受多种因素的综合影响,包括外界环境温度、混凝土初始温度、混凝土配合比、施工时间等。
在计算大体积混凝土温度时,需要综合考虑这些因素,以得出准确的结果。
三、大体积混凝土温度计算公式针对大体积混凝土温度的计算,常用的公式有以下几种:1. 温度场分布公式温度场分布公式可以用来计算混凝土在不同位置的温度分布情况。
其中,温度场分布公式的具体形式与混凝土结构的形状以及施工方式有关。
常用的温度场分布公式包括线性分布、二次分布等。
2. 温度梯度计算公式温度梯度是指混凝土中不同位置的温度差异。
温度梯度计算公式可以通过考虑混凝土材料的导热性以及各种因素的影响,来计算混凝土中各点的温度梯度。
3. 温度升高率计算公式温度升高率是指混凝土温度随时间变化的速率。
温度升高率计算公式可以考虑混凝土自身的物理特性以及外界环境因素,来得出混凝土温度的变化规律。
四、温度计算模型针对大体积混凝土温度的计算,常用的模型有以下几种:1. 欧拉模型欧拉模型是一种基于传热理论的混凝土温度计算模型。
该模型通过对混凝土内部的温度分布进行求解,来得到混凝土的温度变化规律。
2. 有限元模型有限元模型是一种以离散化方法为基础的温度计算模型。
通过将混凝土划分为多个小单元,并对每一个小单元进行温度计算,最终得到整体的温度分布情况。
3. 统计学模型统计学模型是一种通过对实际温度数据的统计分析来得到混凝土温度的模型。
该模型考虑了混凝土温度的随机性和不确定性,可以提供更加真实和可靠的温度计算结果。
五、附件本所涉及的附件如下:1. 温度场分布图表2. 温度梯度计算表格3. 温度升高率计算表格4. 温度计算模型示意图5. 温度计算模型原始数据六、法律名词及注释本所涉及的法律名词及其注释如下:1. 混凝土:指由水泥、石子、砂等材料经过搅拌、浇注成型后经过固化而成的一种建造材料。
大体积混凝土温度计算在建筑工程中,大体积混凝土的应用越来越广泛,如大型基础、大坝、桥墩等。
然而,由于大体积混凝土结构的尺寸较大,水泥水化热在混凝土内部积聚不易散发,容易导致混凝土内部温度升高,从而产生较大的温度应力。
如果温度应力超过混凝土的抗拉强度,就会引起混凝土裂缝,影响结构的安全性和耐久性。
因此,准确计算大体积混凝土的温度变化,对于控制混凝土裂缝的产生具有重要意义。
一、大体积混凝土温度组成大体积混凝土在浇筑后的温度变化主要由以下几个部分组成:1、浇筑温度浇筑温度是指混凝土浇筑时的初始温度,它取决于混凝土原材料的温度、搅拌过程中的温度升高以及运输和浇筑过程中的温度损失。
2、水泥水化热温升水泥在水化过程中会释放出大量的热量,这是导致混凝土内部温度升高的主要原因。
水泥水化热温升的大小与水泥品种、用量、混凝土配合比以及浇筑后的时间等因素有关。
3、混凝土的散热混凝土在浇筑后会向周围环境散热,散热的速度取决于混凝土的表面系数(表面积与体积之比)、环境温度、风速等因素。
二、大体积混凝土温度计算方法1、经验公式法经验公式法是根据大量的工程实践数据总结出来的一些简化计算公式。
常见的经验公式有绝热温升公式、表面散热系数公式等。
这些公式虽然简单易用,但由于其是基于经验数据得出的,对于一些特殊情况可能会存在较大的误差。
2、有限元法有限元法是一种数值计算方法,它将大体积混凝土结构离散为若干个单元,通过建立热传导方程,求解混凝土内部各点在不同时刻的温度分布。
有限元法可以考虑混凝土结构的复杂形状、边界条件以及材料的非均匀性等因素,计算结果较为准确,但计算过程较为复杂,需要专业的软件和一定的计算能力。
三、大体积混凝土温度计算的影响因素1、混凝土配合比混凝土中水泥用量、水灰比、骨料种类和级配等配合比参数会影响水泥水化热的产生和混凝土的导热性能,从而对温度变化产生影响。
2、浇筑工艺浇筑的分层厚度、浇筑速度、振捣方式等浇筑工艺参数会影响混凝土的散热和内部温度分布。
大体积混凝土温度计算公式.docx范本一:章节一:引言在混凝土结构工程中,温度是一项重要的考虑因素。
为了确保混凝土的强度和耐久性,需要对混凝土的温度进行精确的计算和控制。
本文档将介绍大体积混凝土温度计算的公式和步骤。
章节二:温度计算公式2.1 温度升高计算公式混凝土温度升高的计算公式如下:ΔT = (Ts - Ta) * B /(C * m)其中,ΔT 表示温度升高(摄氏度),Ts 表示混凝土浆液的温度(摄氏度),Ta 表示环境温度(摄氏度),B 表示混凝土的体积膨胀系数,C 表示混凝土的热容量(焦耳/克·摄氏度),m 表示混凝土的质量(克)。
2.2 温度降低计算公式混凝土温度降低的计算公式如下:ΔT = (Ta - Ts) * B /(C * m)其中,ΔT 表示温度降低(摄氏度),Ta 表示环境温度(摄氏度),Ts 表示混凝土浆液的温度(摄氏度),B 表示混凝土的体积膨胀系数,C 表示混凝土的热容量(焦耳/克·摄氏度),m 表示混凝土的质量(克)。
章节三:温度计算步骤3.1 确定混凝土浆液的温度根据实际情况和要求,确定混凝土浆液的温度。
3.2 确定环境温度根据实际情况和要求,确定环境温度。
3.3 确定混凝土的体积膨胀系数根据混凝土的材料和配比,确定混凝土的体积膨胀系数。
3.4 确定混凝土的热容量根据混凝土的材料和配比,确定混凝土的热容量。
3.5 确定混凝土的质量根据混凝土的体积和密度,确定混凝土的质量。
3.6 使用温度计算公式计算温度升高或降低根据温度计算公式,将前面步骤中确定的数值代入公式进行计算,得出温度升高或降低的结果。
章节四:附件附件一:混凝土温度计算实例附件二:混凝土温度计算表格章节五:法律名词及注释1. 海牙规则:指由国际商会于1990年12月公布和修订的《国际销售货物合同规则》。
2. 不可抗力:是指不能预见并且不能避免的客观情况,包括地震、洪水、火灾等自然灾害以及战争、罢工等人力不可抗拒的事件。
10-7-2-1 大体积混凝土温度计算公式1.最大绝热温升(二式取其一)(1)T h=(m c+k·F)Q/c·ρ(2)T h=m c·Q/c·ρ(1-e-mt)(10-43)——混凝土最大绝热温升(℃);式中 Th——混凝土中水泥(包括膨胀剂)用量(kg/m3);mcF——混凝土活性掺合料用量(kg/m3);K——掺合料折减系数。
粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表10-81;不同品种、强度等级水泥的水化热表10-81c——混凝土比热、取0.97[kJ/(kg·K)];ρ——混凝土密度、取2400(kg/m3);e——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变。
查表10-82。
系数m 表10-822.混凝土中心计算温度T1(t)=T j+T h·ξ(t)——t龄期混凝土中心计算温度(℃);式中 T1(t)——混凝土浇筑温度(℃);Tjξ——t龄期降温系数、查表10-83。
(t)降温系数ξ表10-833.混凝土表层(表面下50~100mm处)温度1)保温材料厚度(或蓄水养护深度)δ=0.5h·λx(T2-T q)K b/λ(T max-T2)(10-45)式中δ——保温材料厚度(m);λx——所选保温材料导热系数[W/(m·K)]查表10-84;几种保温材料导热系数表10-84T2——混凝土表面温度(℃);Tq——施工期大气平均温度(℃);λ——混凝土导热系数,取2.33W/(m·K);Tmax——计算得混凝土最高温度(℃);计算时可取T2-Tq=15~20℃T max =T2=20~25℃Kb——传热系数修正值,取1.3~2.0,查表10-85。
传热系数修正值表10-85注:1.K 1值为一般刮风情况(风速<4m/s ,结构位置>25m );2.K 2值为刮大风情况。
大体积混凝土温度和温度应力计算在大体积混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的开展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量。
(一)温度计算搅拌站提供的混凝土每立方米各项原材料用量及温度如下:水泥:367kg,11℃;砂子:730kg,13℃,含水率为3%;石子:1083kg,9℃,含水率为2%;水:195kg,9℃;粉煤灰:35kg,11℃;外加剂:27kg,11℃。
混凝土拌合物的温度:T0=[0.9(mceTce+msaTsa+mgTg)+4.2Tw(mw-ωsamsa-ωgmg)+c1(ωsamsa+Tsa+wgmgTg)-c2(wsamsa+wgmg)]÷[4.2mw +0.9(mce+msa+mg)]式中T0——混凝土拌合物的温度(℃);mw、mce、msa、mg——水、水泥、砂、石的用量(kg);Tw、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃);wsa、wg——砂、石的含水率(%);c1、c2——水的比热容(kJ/kg·K)及溶解热(kJ/kg)。
当骨料温度>0℃时,C1=4.2,C2=0;≤0℃时,c1=2.1,c2=335。
为计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。
T0=[0.9(429×11+730×13+1083×9)+4.2×9(195-3%×730-2%×1083)+4.2(3%×730×13+2%×1083×9)-0]÷[4.2×195+0.9(429+730+1083)]=10.3℃。
混凝土拌合物的出机温度:T1=T0-0.16(T0-Ti)式中T1——混凝土拌合物的出机温度(℃);Ti——搅拌棚内温度(℃)。
T1=10.3-0.16(10.3-14)=10.9℃3.混凝土拌合物浇筑完成对的温度T2=T1-(att+0.032n)(T1-Ta)式中T2——混凝土拌合物经运输至浇筑完成时的温度(℃);a——温度损失系数(h-1);tt——混凝土自运输至浇筑完成时的时间(h);n——混凝土转运次数;Ta——运输时的环境气温(℃)。
大体积混凝土温控计算书1T-mt)式中:T(t)混凝土龄期为t时的绝热温升(℃)m c每m3混凝土胶凝材料用量,取415kg/m3Q胶凝材料水热化总量,Q=kQ0Q0水泥水热化总量377KJ/kg(查建筑施工计算手册)C 混凝土的比热:取0.96KJ/(kg.℃)ρ混凝土的重力密度,取2400kg/m3m 与水泥品种浇筑强度系有关的系数取0.3d-1(查建筑施工计算手册)t混凝土龄期(d)经计算:Q=kQ0=(K1+K2-1)Q0=(0.955+0.928-1)X377=332.9KJ/kg2、混凝土收缩变形的当量温度(1)混凝土收缩的相对变形值计算εy(t)=εy0(1-e-0.01t)m1m2m3.....m11式中:εy(t)龄期为t时混凝土收缩引起的相对变形值εy0在标准试验状态下混凝土最终收缩的相对变形值取3.24X10-4m1m2m3.....m11考虑各种非标准条件的修正系数m1=1.0 m2=1.0 m3=1.0 m4=1.2 m5=0.93 m6=1.0 m7=0.57 m8=0.835m9=1.0 m10=0.89 m11=1.01m1m2m3.....m11=0.447(2)混凝土收缩相对变形值的当量温度计算T y(t)=εy(t)/α式中:T y(t)龄期为t时,混凝土的收缩当量温度α混凝土的线膨胀系数,取1.0X10-53、混凝土的弹性模量E(t)=βE0(1-e-φ)式中:E(t)混凝土龄期为t时,混凝土弹性模量(N/mm2)E0混凝土的弹性模量近似取标准条件下28d的弹性模量:C40E0=3.25X104N/mm2φ系数,近似取0.09β混凝土中掺和材料对弹性模量修正系数,β=1.0054、各龄期温差(1)、内部温差T max=T j+ξ(t)T(t)式中:T max混凝土内部的最高温度T j混凝土的浇筑温度,因搅拌砼无降温措施,取浇筑时的大气平均温度,取15℃T(t)在龄期t时混凝土的绝热温升ξ(t)在龄期t时的降温系数Km W ⋅=++2/546.6231047.00001.014.0015.015、表面温度本工程拟采用的保温措施是:砼表面覆盖一层塑料薄膜及棉毡,棉毡厚度为15mm 左右,薄膜厚度0.1mm 左右。
大体积混凝土温度计算及施工方案7 大体积混凝土温度计算及施工方案一、温度计算:混凝土厚度 1.9m;根据配合比单,相关材料用量,每立方混凝土:硅酸盐水泥403kg,膨胀剂32kg,粉煤灰掺料78 kg。
计算如下1 、最大绝热温升T h= (m C+KF ) Q/C p=(435+0.3 X 78)X 375/(0.97 X 2400)=738C2、混凝土中心计算温度(计算3 天、6 天)T1 (3) =T j+T h E( t) =10+T h E( t)=10+73.8X 0.55=50.59CT1 ( 6)=10+73.8X 0.52=48.38C3、混凝土表层温度(表面下50~100mm 处)( 1 )保温材料厚度计算5 =0.5h 入x (T2 - Tq) K b/ X( T max - T2)=0.5X 1.9X 0.14X 15x 1.6/ (2.33X25)=0.054( m)( 2)混凝土表面模板及保温层的传热系数B =1/[ 2 5 i/ 入i+1/ B q]=1/[0.054/0.14+1/23]=2.331( 3)混凝土虚厚度h‘ =k 入/ B=2/3x 2.33/2.331=0.666(m)( 4)混凝土计算厚度H=h+2 h=1.9+2x 0.666=3.232(m)( 5)混凝土表层温度T2 (t) =T q+4 h '( H-h‘)[T1 (t) - T q]/H2T2( 3) =2+4x 0.666( 3.232-0.666) [48.59-5]/3.2322 =2+0.654x 43.59=30.51 CT2(6) =2+4x0.666(3.232-0.666) [46.38-5]/3.2322=2+0.654 X [41.38]=29.06C(6)混凝土温差T1 (3)- T2 (3) =50.59-30.51=20.08 CT1 (6)- T2 (6) =48.38- 29.06=19.32 C经以上计算预测,采取上述混凝土配合比,并加大保温材料厚度( 5cm 厚草袋,一层塑料布) ,可满足混凝土最大内外温差均小于25 C的要求。
5.1.4热工计算如下:
1)混凝土绝热温升
T h(t)=[m c×Q/(c×p)](1-e-mt)
其中t为龄期
m c――混凝土中水泥 (含膨胀剂) 用量(kg/ m3);
Q――水泥28天水化热;
不同品种、强度等级水泥的水化热表
c――混凝土比热,一般为—,计算时一般取(kJ/
p――混凝土密度,一般取2400(Kg/m3)
e――常数,为
t――混凝土的龄期(天);
m――系数,随浇筑温度改变,查表可得。
系数 m
本工程C35S8混凝土拟采用配合比(经验配合比,根据实际配
合比在制定实施方案时重新计算):
经计算得出不同龄期下的混凝土绝热升温T h,见下表:
2)t龄期混凝土中心计算温度
混凝土中心计算温度按下式计算:
T1(t)= T j+ T h(t)×ξ(t)
T1(t)―― t龄期混凝土中心计算温度
T h(t)―― t龄期混凝土绝热升温温
T j――混凝土浇筑温度,取值根据浇筑时的大气温度确定,根据预计浇筑时的气候条件,取T j=30℃
ξ(t)―― t 龄期降温系数
ξ(t)取值表
本工程ST1、ST2及裙楼底板厚度分别为4m、3.5m、1.5m,分别经计算T1(t)取值见下表:
T1(t)取值表
3)保温材料计算厚度
保温材料计算厚度按下式计算:
δ=×λx(T2-T q)×K b/λ(T max-T2)
h――筏板厚度
λx ――所选保温材料的导热系数[W/()]
T2――混凝土表面温度
T q――施工期大气平均温度,取30℃
λ――混凝土导热系数,取[W/()]
T max――计算得混凝土最高温度
计算时取:T2-T q = 15--20oC,
T max-T2 = 20-25oC
本工程取T2-T q = 18oC,T max-T2 = 21oC
K b――传热修正系数,在易透风保温材料上下各铺一层不易透风材料时,一般刮风情况下取
计算时取值:λx =[W/()]
T2-T q =18oC
T max-T2 = 21oC
经计算,保温材料δ计算值见下表:
δ计算值表
4)混凝土保温层传热系数
混凝土保温层的传热系数按下式计算:
β=1/[∑δi/λi+1/βq]
β――混凝土表面模板及保温层等的传热系数[w/]
δi――各保温材料厚度(mm)
λi――各保温材料导热系数[w/]
βq――空气的传热系数,取23[w/
经计算,混凝土保护层传热系数见下表:
β系数表
5)混凝土虚厚度
混凝土虚厚度按下式计算:
h' = k×λ/β
式中:h'――混凝土虚厚度(m) k ――折减系数,取2/3
λ――混凝土导热系数,取[w/]经计算,混凝土虚厚度值见下表:
6)混凝土计算厚度
混凝土的计算厚度按下式计算:
H=h+2h'
式中:H――混凝土计算厚度(m)
h ――混凝土实际厚度
经计算,混凝土计算厚度H 值,见下表:
7)混凝土表层计算温度
T2(t)= T q+4h’×(H-h’)× [T1(t)- T q]/ H2 T2(t)――混凝土表面温度
T q――施工期大气平均温度
h’――混凝土虚厚度
T2(t)取值表
8)混凝土内平均温度
混凝土内平均温度按下式计算:
T m(t)= [T1(t)+ T2(t)]/2
T m(t)取值表
按上述计算过程,混凝土计算结果,见下表。
混凝土温度计算结果表
从上表可能看出,混凝土中心温度峰值出现时间:1.5m厚底板在浇筑后第6天左右出现,中心最高温度约为53 oC; 3.5m、4m厚底
板在浇筑后第9天左右出现,中心最高温度分别约为 oC、 oC。
中心温度与表面温度差值均小于25,且表面与大气温度差不大于20,满足要求。
混凝土保温养护保温层厚度为:3.5m、4m厚底板采用40mm保温板能够满足保温要求。