射频电路与天线-Smith圆图-褚庆昕
- 格式:pdf
- 大小:1.18 MB
- 文档页数:44
一、Smith圆图概述Smith圆图(Smith chart)是用来分析传输线匹配问题的有效方法。
它具有概念明晰、求解直观、精度高等特点,因而被广泛应用于射频工程中分析传输线问题。
高频与微波电路设计中,最基本且重要的课题为阻抗匹配。
透过阻抗匹配的运用与设计,可以使信号有效率的由电源端传送到负载端。
现阶段,阻抗匹配须借重史密斯图的运用才能快速、有效的达成。
随着时间的流转,阻抗匹配的方式也由过去在史密斯图上以手绘计算结果,转而经由计算机化的史密斯图达成,其优点在于:(1)免除复杂计算过程中可能产生的人为错误,(2)透过计算机化史密斯图的运用可以进一步达到宽频带阻抗匹配的目的。
电子SMITH圆图软件能将计算结果以图形和数据并行输出,处理包括复数的矩阵运算。
且拥有良好的用户界面以及函数本身会绘制图形、自动选取坐标刻度等优点。
本设计即是利用vb6.0针对阻抗匹配设计的计算机化史密斯图。
其优点在于图面功能非常清楚,并且运用可视化的安排,使匹配电路直接显示,使设计者可以轻松的了解如何进行阻抗匹配工作也同时可以观察加入各项组件后的输入阻抗变化情形。
二、Smith圆图结构阻抗圆导纳圆阻抗圆导纳圆反射系数圆软件界面电抗圆电阻圆三、Smith圆图基本原理史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s11。
史密斯圆图是通过验证阻抗匹配的负载产生的。
这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。
我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。
2-4史密斯Smith圆图(传输线理论的计算工具)Smith圆图-传输线理论的计算工具主要内容: Smith圆图的参量 Smith圆图的构造Smith圆图的应用使用圆图前提:归一化 2.等x圆常用:圆图上特殊的三个点三点:匹配点O 短路点A 开路点B l开路、短路点(全反射的驻波):计算沿线各点的阻抗、反射系数、电压驻波比等方向小结: * * 一:Smith圆图的参量史密斯圆图 Smith chart 是利用图解法来求解无耗传输线上任一点的参数。
围绕以下三个公式: 2.反射系数 1.输入阻抗 3. 电压驻波比阻抗归一:圆图作用:使我们可能在一有限空间读出无耗传输线的三个参量Z、Γ、和ρ。
ZL d=0 二: smith圆图的构造 1.归一化电阻圆:等r圆2.归一化电抗圆:等x圆 3. 反射系数模值圆:等圆等式两端展开实部和虚部,并令两端的实部和虚部分别相等。
归一化阻抗圆上式为两个圆的方程。
可得代入上式为归一化电阻的轨迹方程,当r等于常数时,其轨迹为一簇圆; 1.等r圆半径圆心坐标 r 0;圆心(0,0)半径 1 r 1;圆心(0.5,0)半径 0.5 r ∞;圆心(1,0)半径 0 归一化电抗的轨迹方程,当x等于常数时,其轨迹为一簇圆弧;在的直线上半径圆心坐标 x +1;圆心(1,1)半径 1 x -1;圆心(1,-1)半径 1 x 0;圆心(1,∞)半径∞x ∞;圆心(1,0)半径 0 Gi Gr 归一化阻抗圆:等r圆和等x圆例:在圆图上具体的找归一化阻抗点:z=1+j 分两步:(1)找r=1的电阻圆(2)找x=1的电抗圆 r 1 X 1 传输线上任一点的反射系数为:是一簇|G|?1同心圆。
3. 等圆复角增加复角减少例:在圆图上具体的找反射系数点:分两步:(1)找大小为0.6的等圆(2)找角度为45度的线等反射系数模值圆对应于驻波比也是一簇同心圆说明:等驻波比圆 B A O 三个点的物理意义 l匹配点(没反射的行波):中心点O 对应的电参数:匹配点 O 开路点纯电抗圆与正实轴的交点B(阻抗无穷)B A 短路点电抗圆与负实轴的交点A(阻抗为0)纯电抗圆三:Smith圆图应用应用过程分以下三步: 1.起点(已知P) 2.终点(所求Q) 3.旋转(方向) ZL 传输线上的点与圆图上的点一一对应,所以圆图可以用来: Q P L 向电源:d 增加―从负载移向信号源,在圆图上顺时针方向旋转;向负载:d减小―从信号源移向负载,在圆图上逆时针方向旋转; ZL d=0 例1 已知:求:距离负载0.24波长处的Zin. 解:查史密斯圆图,其对应的向电源波长数为则此处的输入阻抗为: 向电源顺时针旋转0.24 等半径 ZL 0.24l 思考:已知输入阻抗,求距离0.24波长处的负载阻抗?。
《射频电路》课程设计题目:SMITH圆图分析与归纳系部电子信息工程学院学科门类工学专业电子信息工程学号姓名2012年6月25日SMITH 圆图分析与归纳摘 要Smith 圆图在计算机时代就开发了,至今仍被普遍使用,几乎所有的计算机辅助设计程序都应用Smith 圆图进行电路阻抗的分析、匹配网路的设计及噪声系数、增益和环路稳定性的计算。
在Smith 圆图中能简单直观地显示传输线阻抗以及反射系数。
Smith 圆图是在反射系数复平面上,以反射系数圆为低圆,将归一化阻抗圆或归一化导纳圆盖在底图上而形成的。
因而Smith 圆图又分为阻抗圆图和导纳圆图。
关键字:Smith 圆图 阻抗圆图 导纳圆图 归一化阻抗圆 归一化导纳圆一 引言通过对射频电路的学习,使我对射频电路的视野得到了拓宽,以前自己的视野只局限于低频电路的设计,从来没考虑过波长和传输线之间的关系,而且从来没想过,一段短路线就可以等效为一个电感,一段开路线可以等效为一个电容,一条略带厚度的微带竟然可以传输电波,然而在低频电路我们只把它当做一条阻值可以忽略的导线,同时在低频电路设计时好多原件,都要自己手动计算,然而在学习射频电路时,我发现我们不仅要考虑波长和传输线之间的关系,同时还要考虑每一条微带的长度和宽度,当然我感到最重要的是,通过Smith 圆图可以大大的简化了,我对电阻和电容的计算,二 史密斯圆图功能分析2.1 史密斯圆图的基本基本知识史密斯圆图的基本在于以下的算式: )0/()0(Z ZL Z ZL +-=ΓΓ代表其线路的反射系数,即散射矩阵里的S11,Z 是归一负载值,即0/Z ZL 。
当中,ZL 是线路的负载值,Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为()1/(+R R ,0),半径为)1/(1+R 。
R 为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为(1,X /1),半径为X /1。
Smith圆图简介对于射频人员来讲,做的最多的,可能就是匹配。
而做匹配,最常用到的就是Smith圆图。
当年在学校的时候,觉着Smith圆图好难;工作久了,再加上软件的帮助,觉着Smith圆图还是比较好理解的。
要用好Smith圆图,关键是熟悉它的构成。
主要包括等电阻圆,等电导圆,等Q线,等电抗圆,等电纳圆。
通常匹配的话,一般都采用电感和电容,所以用的最多的,是等电阻圆和等电导圆,如图1和图2所示。
图 1 等电阻圆图 2 等电导圆Smith圆图的上半部分代表感抗,下半部分代表容抗。
在等电阻圆上顺时针旋转,相当于串联电感;逆时针旋转,相当于串联电容。
在等电导圆上顺时针旋转,相当于并联电容;逆时针旋转,相当于并联电感(我一般这样记忆,从圆图中心点,沿着等电阻圆往上旋转为顺时针旋转,而一般串联电路用电阻来标称阻值,且圆图上半部分为感抗,所以顺时针旋转时,相当于串联电感;同理,沿着等电导圆往上旋转为逆时针,一般并联电路用电导来表示,且圆图上半部分为感抗,所以沿电导圆逆时针旋转时,相当于并联电感)。
具体如图3所示。
图 3 串并联电容电感如果想设计宽带匹配电路的话(适合于源阻抗和负载阻抗不随频率变化的情况),就需要用到等Q线了,如图4所示。
Q值越低,也就是等Q线越接近圆图横轴,越容易设计出宽带匹配电路。
而且,沿着低等Q线,规划匹配路线,也会使得匹配电路里的值有较大的容差范围,减少调试难度。
图 4 等Q线了解了这些知识,在已知源阻抗和负载阻抗的情况下,在现有Smith圆图软件的帮助下,很容易就能设计出匹配电路。
注意,设计时,要遵循‘往前看,向后退’的原则。
如图5所示。
图 5 往前看,向后退原则。
阻抗匹配与史密斯(Smith>圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA>之间的匹配、功率放大器输出(RFOUT>与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻>对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括∙计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
∙手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”>的计算公式、并且被处理的数据多为复数。
∙经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
∙史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
Smith圆图的原理和应用1. 前言Smith圆图是一种用于分析和解决电路中匹配问题的有效工具。
它由英国电气工程师Philip H. Smith于1939年创造,被广泛应用于射频电路、微波电路和天线设计等领域。
本文将介绍Smith圆图的基本原理和其在电路设计中的应用。
2. Smith圆图的基本原理2.1 反射系数和阻抗的关系Smith圆图是基于反射系数和阻抗之间的关系来进行分析的。
在电路中,反射系数表示反射波与入射波之间的关系,它是一个复数,可以用幅值和相位角来表示。
而阻抗则表示电路的负载特性,是一个实数。
Smith圆图将反射系数和阻抗之间的关系以一种直观而又简洁的方式进行了可视化。
2.2 Smith圆图的表示方式Smith圆图以单位圆为基础,将纯虚轴表示为电阻为无穷大的点,将实轴表示为电抗为零的点。
反射系数的值可以通过在Smith圆图上找到相应的点来表示。
例如,反射系数为0时,点位于单位圆的中心,反射系数为1时,点位于单位圆的边缘。
3. Smith圆图的应用3.1 反射系数的测量Smith圆图可以用于测量电路中的反射系数。
通过将电路与信号源和负载连接,可以使用向电路中注入信号的方式来测量反射系数。
通过测量反射系数的幅值和相位角,并将其在Smith圆图上进行标记,可以得到电路的匹配情况。
3.2 阻抗匹配Smith圆图可以帮助我们进行阻抗匹配,即调整电路的参数,以使得电路的输入和输出阻抗相匹配。
在Smith圆图上,我们可以通过移动点的位置来调整电路的参数,直至反射系数最小化。
通过在Smith圆图上定位匹配的点,可以快速找到合适的参数设置。
3.3 确定失配的原因Smith圆图可以帮助我们确定电路中失配的原因。
当电路的反射系数不为零时,可以使用Smith圆图来定位反射点,并判断失配的原因。
例如,如果反射系数位于实轴上,则说明电路存在电抗失配;如果反射系数位于圆心,则说明电路存在电阻失配。
3.4 天线设计Smith圆图在天线设计中也有广泛的应用。
射频电路课程名称:射频电路英文名称:Radio Frequency Circuits学分:3课程总学时:48课程性质:☑必修□选修是否独立设课:☑是□否课程类别:□基础课□专业基础课☑专业课面向专业:信息工程、电子科学与技术(物理电子学)、电子科学与技术(微电子技术) 、集成电路设计与系统集成先修课程:电磁场与电磁波一、教学信息课程的性质:《射频电路》课程是电子与通信工程等专业的一门重要的专业课。
其任务是学习射频信号的产生、传输、变换、检测、测量技术及电磁波的辐射与接收。
《射频电路》主要讲述射频电路的内容。
课程的目的与教学基本要求:课程的目的是通过这门课程的学习,学生可以掌握射频电路与天线的基本原理,并具备分析能力与初步的设计能力,为无线通信、光纤通信、移动通信等课程提供技术基础。
通过这门课的学习,要求学生熟练掌握传输线理论,了解波导和谐振腔的基本知识,掌握微波网络理论,了解各种射频电路的工作原理,掌握天线的辐射原理和天线的基本参数,了解各种线天线和面状天线的工作原理。
考核方式:总分数100分,平时作业考勤占总分数30% ,期末闭卷考试占总分数70%。
二、教学资源教材[1]李绪益著,《微波技术与微波电路》,广州:华南理工大学出版社,2007.3。
[2]褚庆昕著,《射频电路与天线》(讲义),2008。
多媒体教学资源(课程网站、课件等资料)教学课件,教学视频,精品课程网站http://202.38.193.234/rf1/。
三、教学内容、要求与学时分配按各章节列出主要内容,注明课程教学的难点和重点,对学生掌握知识的要求,以及学时的分配1 第一部分、传输线理论(1)传输线的纵向问题-传输线理论(8学时)主要内容:传输线方程及其解、无耗传输线上的行波与驻波、驻波比、反射系数、不同负载时无耗传输的工作状态、圆图及其应用。
基本要求:理解长线的概念,理解传输线方程及其解的意义,熟练掌握传播常数、特性阻抗、反射系数、驻波比的物理意义,熟练掌握无耗传输线上反射系数、驻波比、输入阻抗的特点与相互关系,掌握不同负载时无耗传输线的工作状态,掌握阻抗圆图和导纳圆图的构成,熟练应用传输线理论解决传输线问题,熟练应用圆图求解传输线问题。
阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括∙计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
∙手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
∙经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
∙史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
Research Institute of Antennas & RF Techniques
射频电路与天线(一)
RF Circuits & Antennas
第4讲Smith圆图
褚庆昕
华南理工大学电子与信息学院
天线与射频技术研究所TEL: 22236201-601Email:qxchu@
y
y
Research Institute of Antennas & RF Techniques S
o u t
h
C h i n a U n i v e r s i t y
o f
T e c h n o l o g y
今天,计算机计算已变得非常容易,精度远远高于作图法。
但是,并不能说作图法就无用了,更不能说圆图就可以淘汰了,因为圆图不仅可以简化计算,更重要的是可以提供清晰的几何概念和物理意义。
Smith圆图已成为分析和设计RF/MW电路的常用工具,许多设计软件和测量仪器都使用Smith圆图。
y
4.1.1 反射系数圆与相位射线
y
l
平面内(实部为横坐标,虚部为竖坐标)
y ()1
l Γ=≤常数φ=常数
Γ平面2βl Γ( l )l
y
Research Institute of Antennas & RF Techniques
S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y ()
l φ0.1l α=
y
归一化阻抗圆
y
y
Research Institute of Antennas & RF Techniques
S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y
r圆
开路点
短路点
匹配点
Research Institute of Antennas & RF Techniques
S
o u
t h C h i n a U n i v e r s i t y o f T e c h n o l o g y
x 圆
Smith阻抗圆图y
y
Smith阻抗圆图
Research Institute of Antennas & RF Techniques
y
Smith 导纳圆图
1.
y
Research Institute of Antennas & RF Techniques
S
o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y
但要注意,同时要做下列变换:
¾开路点和短路点互换。
¾上半圆为容抗。
¾下半圆为感抗。
¾电压最大点与最小点互换。
¾
平面坐标轴反向。
y
Research Institute of Antennas & RF Techniques
S
o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y
Smith 导纳圆图
Research Institute of Antennas & RF Techniques
S
o u t h
C h i n a U n i v e r s i t y o f T e c h n o l o g y
4.导抗圆图(教材最后一页)
把阻抗圆图和导纳圆图迭在一起,就绘成导抗圆图。
Research Institute of Antennas & RF Techniques
S
o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y
4.1.5 圆图应用
¾Smith圆图常应用于下列问题的计算:
由负载阻抗求线上的驻波比或反射系数和输入阻抗。
由负载阻抗求电压波腹点及波节点位置。
由驻波比和第一个波腹点或波节点的位置求负载阻抗。
阻抗与导纳的互换。
【例4-2】
阻抗
阻抗和驻波比。
y
y
y
y
Research Institute of Antennas & RF Techniques
点的距离即为电压波腹y
y
Research Institute of Antennas & RF Techniques
y 【例4-4】
端接入
短路时,电压最小点往负载方向移动了
Research Institute of Antennas & RF Techniques
y
Research Institute of Antennas & RF Techniques
【例
载
y
y
如下图所示,无耗传输线电路中源电动势特性阻抗Z=100Ω, 负载
器(
y
¾y
y
2
)
y
y
y
y 【例
端接一未知负载0.3
y
Research Institute of Antennas & RF Techniques S
o u t
h
C h i n a U n i v e r s i t y
o f
T e c h n o l o g y ¾本题给出了测量负载阻抗的又一方法。
具体步骤:@测取U max 或U min 及其位置z max 或z min ;@计算得驻波比ρ;@由本题方法算出反射系数和负载。
y
Research Institute of Antennas & RF Techniques S
o u t
h
C h i n a U n i v e r s i t y
o f
T e c h n o l o g y 习题4P37: 1-17(用圆图),1-18,1-19,1-20.。