计算流体力学电子教案
- 格式:ppt
- 大小:2.06 MB
- 文档页数:54
《流体力学》实验教案(全)(一)不可压缩流体定常流能量方程(伯努利方程)实验一、实验目的要求:1、掌握流速、流量、压强等动水力学水力要素的实验量测技术;2、验证流体定常流的能量方程;3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。
自循环伯努利方程实验装置图本实验的装置如图所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板;5 / 456.恒压水箱;7.测压计;8.滑动测量尺;9.测压管; 10.实验管道; 11.测压点; 12.毕托管 13.实验流量调节阀。
三、实验原理:在实验管路中沿水流方向取n个过水截面。
可以列出进口截面(1)至截面(i)的能量方程式(i=2,3,.....,,n)选好基准面,从已设置的各截面的测压管中读出值,测出通过管路的流量,即可计算出截面平均流速ν及动压,从而可得到各截面测管水头和总水头。
四、实验方法与步骤:1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。
4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。
5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。
五、实验结果及要求:1、把有关常数记入表2.1。
2、量测()并记入表2.2。
3、计算流速水头和总水头。
4、绘制上述结果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。
六、结果分析及讨论:1、测压管水头线和总水头线的变化趋势有何不同?为什么?2、流量增加,测压管水头线有何变化?为什么?3、测点2、3和测点10 、11的测压管读数分别说明了什么问题?4、试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。
绪 论一、课程简介1、课程的研究对象——单元操作 (1)单元操作的概念指在各种化工过程中,遵守同一基本原理,所用设备相似,作用相同,仅发生物理变化过程的那些操作,称为单元操作。
(2)单元操作的特点①所有的单元操作都是物理性操作,只改变物料的状态或物理性质,并不改变化学性质。
②单元操作是化工生产过程中共有的操作,只是不同的化工生产中所包含的单元操作数目、名称与排列顺序不同。
③单元操作作用于不同的化工过程时,基本原理相同,所用的设备也是通用的。
(3)单元操作的分类根据单元操作所遵循的基本规律,分为三类:流体动力过程、传热过程和传质过程。
2、课程性质:本课程是化工类专业学生的专业必修课。
3、课程特点:理论与经验相结合的工程研究方法。
二、单元操作中常用的基本概念和观点 1、物料衡算根据需要人为地划出一个封闭体系,那么有:输入物料=输出物料+(物料损失) 2、 能量衡算 同样对于一个体系有:输入能量=输出能量+(能量损失)在化工生产过程中的能量衡算大多为热量衡算。
3、平衡关系平衡是过程进行的极限状态。
通过讨论平衡关系,我们可以判断过程进行的方向及过程推动力的大小。
4、过程速率 过程速率与过程推动力成正比,与过程阻力成反比。
即:过程阻力过程推动力过程速率5、经济核算 三、单位及单位换算单位可分为二大类:基本单位和导出单位。
(1)基本单位基本单位只有几个,指定的几个独立的物理量。
由于同一物理量在不同的单位制中具有不同的单位和数值,象cm.g.s 制和工程单位制等给人类的计算和交流带来麻烦,为此规定使用统一的“国际单位制”,即SI 制。
SI 制有七个基本单位SI 制有以下两大优点:通用性:自然科学、工程技术以及国民经济中都采用; 一贯性:不需引入比例系数。
(2)导出单位其它物理量利用基本量从物理定律中导出,称为导出量,其单位称为导出单位。
基本单位与导出单位的总和称为单位制。
(3)单位换算经验公式(又称数字公式,根据实验结果整理而得)中各符号只代表物理量的数字部分,而它们的单位必须采用指定的单位。
计算流体力学教案计算流体力学教案流体力学是力学地一个独立分支,它是研究流体地平衡和流体地机械运动规律及其在工程实际中应用地一门学科。
以下是计算流体力学教案,欢迎阅读。
一、流体地基本特征1.物质地三态在地球上,物质存在地主要形式有:固体、液体和气体。
流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。
固体:既能承受压力,也能承受拉力与抵抗拉伸变形。
流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。
液体和气体地区别:气体易于压缩;而液体难于压缩;液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。
液体和气体地共同点:两者均具有易流动性,即在任何微小切应力作用下都会发生变形或流动,故二者统称为流体。
2. 流体地连续介质模型微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。
1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。
宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。
(1) 概念连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。
连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。
(2)优点排除了分子运动地复杂性。
物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。
3.流体地分类(1)按照流体受压体积缩小地性质,流体可分为:可压缩流体(compressible flow):流体密度随压强变化不能忽略地流体。
计算流体力学教案一、课程介绍1.1 课程背景计算流体力学(Computational Fluid Dynamics,CFD)是运用数值分析和算法解决和分析流体力学问题的一个分支。
本课程旨在让学生了解并掌握计算流体力学的基本原理、方法和应用。
1.2 课程目标通过本课程的学习,学生将能够:(1)理解流体力学的基本概念和原理;(2)掌握CFD的基本数值方法和算法;(3)应用CFD软件进行流体力学的数值分析和解决实际问题。
二、教学内容2.1 流体力学基础(1)流体力学的定义和发展;(2)流体力学的分支;(3)流体力学的基本方程。
2.2 数值方法基础(1)数值方法的分类;(2)数值方法的原理;(3)数值方法的稳定性分析。
2.3 网格技术(1)网格方法;(2)网格质量评价;(3)网格独立性研究。
2.4 流动问题的离散化(1)流动问题的离散化方法;(2)离散化方程的求解方法;(3)离散化方程的数值求解技术。
2.5 流场可视化(1)流场可视化的方法;(2)流场可视化的技术;(3)流场可视化的应用。
三、教学方法3.1 课堂讲授通过讲解流体力学的基本概念、原理和数值方法,使学生掌握CFD的基本理论。
3.2 软件操作实践通过操作CFD软件,使学生了解并掌握网格、流动问题离散化、求解和流场可视化的实际操作。
3.3 案例分析通过分析实际案例,使学生了解并掌握CFD在工程中的应用。
四、教学评估4.1 平时成绩包括课堂表现、作业完成情况等,占总成绩的30%。
4.2 期中考试包括理论知识和软件操作,占总成绩的30%。
4.3 期末考试包括理论知识,占总成绩的40%。
五、教学资源5.1 教材《计算流体力学导论》(Introduction to Computational Fluid Dynamics)。
5.2 软件CFD软件,如OpenFOAM、FLUENT等。
5.3 网络资源相关在线课程、论文、教程等。
六、网格技术(续)6.1 结构网格结构网格的定义和特点常见的结构网格算法结构网格在CFD中的应用案例6.2 非结构网格非结构网格的定义和特点常见的非结构网格算法非结构网格在CFD中的应用案例6.3 混合网格混合网格的定义和特点混合网格算法的基本原理混合网格在CFD中的应用案例七、流动问题的离散化(续)7.1 守恒定律的离散化质量守恒定律的离散化动量守恒定律的离散化能量守恒定律的离散化7.2 离散化方程的求解线性方程组的求解方法非线性方程组的求解方法代数方程组的求解方法7.3 离散化方程的数值求解技术(续)时间步进方法空间离散化技术稳定性和收敛性分析八、流场可视化(续)8.1 流场可视化的方法(续)着色法纹理映射法粒子追踪法8.2 流场可视化的技术(续)数据处理技术三维重构技术动画制作技术8.3 流场可视化的应用(续)航空航天领域的应用汽车工业领域的应用生物医学领域的应用九、案例分析(续)9.1 案例分析的方法案例选择的原则案例分析的步骤9.2 流体动力学案例分析不可压缩流体的流动案例可压缩流体的流动案例复杂几何形状的流动案例9.3 热流体力学案例分析热传导问题案例热对流问题案例热辐射问题案例十、课程总结与展望10.1 课程总结本课程的主要内容和知识点回顾学生在本课程中学到的技能和知识10.2 课程作业与项目课程作业的布置与评价课程项目的选择与实施10.3 未来学习方向CFD在科学研究中的应用CFD在工业中的应用趋势CFD领域的最新研究动态十一、流体机械特性分析11.1 流体的粘性粘性的定义和测量牛顿流体和非牛顿流体的特性粘性流体的流动案例分析11.2 流体的弹性弹性流体的定义和特性弹性流体流动的数值模拟方法弹性流体流动案例分析11.3 流体的湍流特性湍流的定义和特性湍流流动的数值模拟方法湍流流动案例分析十二、多相流动分析12.1 多相流动的定义和分类单相流动和多相流动的定义连续相、分散相和界面流动的特点多相流动的数值模拟方法12.2 多相流动的数值模拟方法欧拉-欧拉模型欧拉-拉格朗日模型离散相模型12.3 多相流动案例分析油气水三相流动案例颗粒物在空气中的扩散案例喷雾燃烧过程的数值模拟案例十三、化学反应流体力学13.1 化学反应流体力学的定义和特点化学反应和流体运动的相互作用化学反应流体力学的应用领域化学反应流体力学的数值模拟方法13.2 化学反应流动的数值模拟方法反应速率模型化学反应平衡和化学平衡计算化学反应流体流动的数值模拟算法13.3 化学反应流体流动案例分析燃烧过程中的化学反应流动案例化工过程中的化学反应流动案例环境污染治理过程中的化学反应流动案例十四、计算流体力学的软件应用14.1 CFD软件的基本操作CFD软件的用户界面和操作流程CFD软件的网格和边界条件设置CFD软件的求解器和结果分析工具14.2 CFD软件的高级应用参数研究and 优化并行计算和云计算应用复杂几何形状和多物理场耦合问题的模拟14.3 CFD软件案例分析利用CFD软件分析风力发电机翼的气流分布利用CFD软件分析汽车发动机的冷却效果利用CFD软件分析建筑物的热环境十五、课程项目与实验15.1 课程项目的选择与实施项目选题的原则和步骤项目实施的计划和管理项目成果的评估和反馈15.2 实验设计与实验操作实验设计的原则和方法实验操作的步骤和安全注意事项实验数据的采集和分析报告的结构和内容要求报告的提交和评审流程重点和难点解析本文教案主要介绍了计算流体力学(CFD)的基本原理、方法与应用,内容涵盖了流体力学基础、数值方法基础、网格技术、流动问题的离散化、流场可视化、案例分析、多相流动分析、化学反应流体力学、计算流体力学的软件应用以及课程项目与实验等方面。
计算流体力学教案一、课程简介1.1 课程背景计算流体力学(Computational Fluid Dynamics,CFD)是运用数值分析和算法解决和分析流体力学问题的一个分支。
本课程旨在通过介绍CFD的基本理论、方法和应用,使学生掌握流体力学的数值模拟方法,提高学生在工程和科研中分析和解决问题的能力。
1.2 课程目标(1)理解流体力学的基本概念和原理;(2)掌握CFD的基本理论和方法;(3)能够运用CFD软件进行流体力学的数值模拟;(4)具备分析和解决流体力学问题的能力。
二、教学内容2.1 流体力学基本原理(1)流体的定义和分类;(2)流体力学的守恒定律:质量守恒、动量守恒和能量守恒;(3)流体的粘性、可压缩性和热传导性。
2.2 数值方法(1)数值求解方法的分类:有限差分法、有限体积法和有限元法;(2)数值求解方法的原理和优缺点;(3)稳定性分析与收敛性判断。
2.3 CFD软件与应用(1)常用CFD软件介绍:FLUENT、CFX、ANSYS CFD;(2)CFD软件的基本操作和功能;(3)CFD软件在工程和科研中的应用案例。
三、教学方法与手段3.1 教学方法(1)讲授:讲解流体力学基本原理、数值方法及CFD软件应用;(2)实验:上机操作练习,巩固理论知识;(3)讨论:组织学生进行案例分析和问题讨论,提高解决问题的能力。
3.2 教学手段(1)多媒体教学:运用PPT、动画等手段直观展示流体力学现象和CFD模拟过程;(2)上机实践:让学生在计算机上操作CFD软件,提高实际操作能力。
四、课程考核与评价4.1 考核方式课程考核分为过程评价和期末考试两部分,其中过程评价占60%,期末考试占40%。
4.2 过程评价(1)作业:布置适量作业,检查学生对课程知识的掌握程度;(2)实验报告:评估学生在实验过程中的操作能力和分析问题的能力;(3)课堂讨论:评价学生在讨论中的参与程度和观点阐述。
4.3 期末考试期末考试采用闭卷形式,内容包括流体力学基本原理、数值方法和CFD软件应用等方面。
《流体力学》实验教案(一)word版一、实验目的1. 理解流体力学的基本概念和原理;2. 掌握流体力学实验的基本方法和技能;3. 培养观察现象、分析问题和解决问题的能力。
二、实验原理1. 流体的定义和分类;2. 流体静力学基本方程:帕斯卡定律、压力与深度关系;3. 流体动力学基本方程:连续性方程、伯努利方程。
三、实验器材与步骤1. 实验器材:流体容器、压力计、流量计、尺子、计时器等;2. 实验步骤:(1)检查器材是否完好,确保实验安全;(2)根据实验要求,设置流体容器和测压、测流量的设备;(3)开始实验,记录初始数据;(4)改变实验条件,观察并记录数据;(5)分析实验数据,验证流体力学原理。
四、实验注意事项1. 严格遵守实验规程,确保人身和设备安全;2. 保持实验环境的整洁和安静;3. 准确记录实验数据,避免误差;4. 实验过程中发现问题,及时报告实验指导教师。
五、实验报告要求1. 报告内容:实验目的、原理、器材、步骤、数据、分析等;2. 报告格式:Word文档,清晰,简洁明了,数据准确;3. 报告截止时间:实验结束后一周内提交。
《流体力学》实验教案(二)word版六、实验目的1. 学习流体流动的数值模拟方法;2. 掌握计算流体力学(CFD)基本原理;3. 培养运用现代技术手段分析流体力学问题的能力。
七、实验原理1. 数值模拟的基本概念;2. 计算流体力学基本方程:纳维-斯托克斯方程、能量方程;3. 湍流模型:κ-ε模型、LES模型等。
八、实验器材与步骤1. 实验器材:计算机、CFD软件;2. 实验步骤:(1)安装并熟悉CFD软件;(2)根据实验要求,设置流体参数和计算区域;(3)导入几何模型,划分网格;(4)选择适当的湍流模型,设置边界条件和初始条件;(5)进行数值计算,观察并分析计算结果。
九、实验注意事项1. 遵守实验规程,确保计算机安全和数据存储;2. 合理选择计算参数,避免计算资源浪费;3. 认真观察计算过程,及时记录重要信息;4. 实验过程中发现问题,及时与实验指导教师沟通。
计算流体力学教案第一章:计算流体力学简介1.1 课程背景与意义介绍计算流体力学(CFD)的基本概念和发展历程。
解释CFD在工程和科学研究中的应用领域。
1.2 流体力学基本概念介绍流体力学的定义和基本原理。
解释流体力学中的关键参数,如流速、压力、密度等。
1.3 CFD的基本流程介绍CFD分析的基本流程,包括前处理、求解和后处理。
解释每个流程中的关键步骤和注意事项。
第二章:CFD的前处理技术2.1 几何建模介绍几何建模的基本概念和方法。
解释如何使用CAD软件进行几何建模。
2.2 网格划分介绍网格划分的目的和重要性。
解释网格划分的方法和技巧,如结构网格、非结构网格和混合网格。
第三章:流动方程及其离散化3.1 流动方程简介介绍流动方程的基本概念和重要性。
解释连续方程、动量方程和能量方程的基本形式。
3.2 离散化方法介绍离散化方法的基本概念和目的。
解释常用的离散化方法,如显式格式、隐式格式和混合格式。
第四章:数值求解技术4.1 数值求解方法介绍数值求解方法的基本概念和原理。
解释常用的数值求解方法,如有限差分法、有限体积法和有限元法。
4.2 收敛性分析与优化介绍收敛性分析的基本概念和方法。
解释如何优化求解过程,提高计算精度和效率。
第五章:CFD的后处理技术5.1 结果可视化介绍结果可视化的基本概念和方法。
解释如何使用CFD软件进行结果可视化,如云图、流线图和粒子追踪。
5.2 数据分析和解释介绍数据分析和解释的基本方法。
解释如何对计算结果进行分析和解释,如压力分布、速度分布和温度分布。
第六章:湍流模型6.1 湍流现象简介介绍湍流的基本特征和现象。
解释湍流的产生原因和影响因素。
6.2 湍流模型分类介绍常见的湍流模型,如直接数值模拟(DNS)、大涡模拟(LES)和雷诺平均纳维尔斯托克斯(RANS)模型。
解释不同湍流模型的适用范围和优缺点。
6.3 常用湍流模型介绍常用的RANS模型,如标准\( k-\epsilon \)、\( k-\omega \)和Spalart-Allmaras模型。
计算流体力学教案第一章:计算流体力学简介1.1 课程目标了解计算流体力学的基本概念理解计算流体力学的发展历程掌握计算流体力学的应用领域1.2 教学内容计算流体力学的定义和发展历程计算流体力学的应用领域计算流体力学的方法和步骤1.3 教学方法讲授基本概念和理论知识展示相关实例和应用领域引导学生进行实际操作和思考1.4 教学资源教材和参考书目相关软件和工具网络资源和案例研究1.5 教学评估课堂讨论和问题解答练习题和作业项目研究和报告2.1 课程目标掌握流体力学的基本原理和定律理解流体的性质和行为分析流体的流动和压力分布2.2 教学内容流体的定义和分类流体力学的基本原理和定律流体的性质和行为流体的流动和压力分布2.3 教学方法讲授基本原理和定律进行数值分析和实例解析引导学生进行实验观察和数据分析2.4 教学资源教材和参考书目相关软件和工具实验设备和仪器2.5 教学评估课堂提问和问题解答练习题和作业实验报告和数据分析3.1 课程目标掌握数值方法的基本原理和技巧理解数值方法的适用范围和限制分析数值方法的准确性和稳定性3.2 教学内容数值方法的定义和分类数值方法的原理和技巧数值方法的适用范围和限制数值方法的准确性和稳定性3.3 教学方法讲授数值方法的基本原理和技巧进行数值分析和实例解析引导学生进行实验观察和数据分析3.4 教学资源教材和参考书目相关软件和工具实验设备和仪器3.5 教学评估课堂提问和问题解答练习题和作业实验报告和数据分析第四章:计算流体力学软件介绍4.1 课程目标掌握计算流体力学软件的基本操作和功能理解计算流体力学软件的适用范围和限制分析计算流体力学软件的准确性和稳定性4.2 教学内容计算流体力学软件的定义和分类计算流体力学软件的基本操作和功能计算流体力学软件的适用范围和限制计算流体力学软件的准确性和稳定性4.3 教学方法讲授计算流体力学软件的基本操作和功能进行数值分析和实例解析引导学生进行实验观察和数据分析4.4 教学资源教材和参考书目相关软件和工具实验设备和仪器4.5 教学评估课堂提问和问题解答练习题和作业实验报告和数据分析第五章:计算流体力学应用实例分析5.1 课程目标掌握计算流体力学在实际工程中的应用理解计算流体力学在不同领域的应用案例分析计算流体力学的优势和局限性5.2 教学内容计算流体力学在工程中的应用领域计算流体力学应用案例分析计算流体力学的优势和局限性5.3 教学方法讲授计算流体力学在工程中的应用领域分析计算流体力学应用案例引导学生进行讨论和思考5.4 教学资源教材和参考书目相关软件和工具实际工程案例和数据5.5 教学评估课堂讨论和问题解答练习题和作业项目研究和报告第六章:有限元方法在计算流体力学中的应用理解有限元方法的基本原理和步骤掌握有限元方法在计算流体力学中的应用分析有限元方法的优缺点6.2 教学内容有限元方法的定义和发展历程有限元方法的基本原理和步骤有限元方法在计算流体力学中的应用有限元方法的优缺点6.3 教学方法讲授有限元方法的基本原理和步骤通过实例分析有限元方法在计算流体力学中的应用引导学生进行实验操作和数据分析6.4 教学资源教材和参考书目有限元软件和工具实验设备和仪器6.5 教学评估课堂提问和问题解答练习题和作业实验报告和数据分析第七章:边界层理论和湍流模型理解边界层理论的基本概念掌握湍流模型的发展和应用分析不同湍流模型的特点和适用条件7.2 教学内容边界层理论的基本概念和方程湍流模型的定义和发展常用湍流模型的特点和适用条件边界层理论和湍流模型的关系7.3 教学方法讲授边界层理论的基本概念和方程分析不同湍流模型的特点和适用条件通过实例讲解湍流模型的应用7.4 教学资源教材和参考书目相关软件和工具实验设备和仪器7.5 教学评估课堂讨论和问题解答练习题和作业实验报告和数据分析第八章:多相流和反应流计算理解多相流和反应流的基本概念掌握多相流和反应流的计算方法分析多相流和反应流计算的挑战和限制8.2 教学内容多相流和反应流的定义和分类多相流和反应流的计算方法多相流和反应流计算的挑战和限制多相流和反应流计算的应用领域8.3 教学方法讲授多相流和反应流的基本概念和分类分析多相流和反应流的计算方法通过实例讲解多相流和反应流计算的应用8.4 教学资源教材和参考书目相关软件和工具实验设备和仪器8.5 教学评估课堂讨论和问题解答练习题和作业实验报告和数据分析第九章:计算流体力学的优化和并行计算理解计算流体力学优化的基本概念掌握计算流体力学并行计算的方法和技术分析计算流体力学优化和并行计算的优势和限制9.2 教学内容计算流体力学优化的定义和方法计算流体力学并行计算的基本概念和技术计算流体力学优化和并行计算的应用领域计算流体力学优化和并行计算的优势和限制9.3 教学方法讲授计算流体力学优化的基本概念和方法分析计算流体力学并行计算的方法和技术通过实例讲解计算流体力学优化和并行计算的应用9.4 教学资源教材和参考书目相关软件和工具实验设备和仪器9.5 教学评估课堂讨论和问题解答练习题和作业实验报告和数据分析第十章:计算流体力学的未来发展方向了解计算流体力学当前的研究热点掌握计算流体力学的发展趋势分析计算流体力学在未来的应用前景10.2 教学内容计算流体力学当前的研究热点计算流体力学的发展趋势计算流体力学在未来的应用前景10.3 教学方法讲授计算流体力学当前的研究热点和发展趋势引导学生进行思考和讨论分析计算流体力学在未来的应用前景10.4 教学资源教材和参考书目相关研究报告和论文网络资源和案例研究10.5 教学评估重点和难点解析1. 计算流体力学简介难点解析:流体力学的基本原理和定律的理解,流体的性质和行为的分析,流体的流动和压力分布的计算。