第6章 多重共线性
- 格式:ppt
- 大小:1.81 MB
- 文档页数:73
第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。
答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。
由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。
再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。
6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。
6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。
但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。
6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。
6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。
如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。
6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。
第6章 多重共线性6.1 多重共线性及其产生的原因6.1.1 多重共线性(Multicollinearity)的定义从数学意义上去解释变量之间存在共线性,就是对于变量k x x x ,,21,如果存在不全为零的常数k λλλ ,,21,使得下式成立02211=+++k k x x x λλλ (6.1.1)则称变量k x x x ,,21之间存在完全共线性。
在计量经济学中,一个具有两个以上解释变量的线性回归模型里,如果解释变量之间存在式(6.1.1)那样的关系,则称这些解释变量之间存在完全的多重共线性。
完全多重共线性还可以用矩阵形式加以描述。
设解释变量矩阵X 为X = ⎪⎪⎪⎪⎪⎭⎫⎝⎛kn k k n n x x x x x x x x x 212222*********所谓完全的多重共线性,就是0='X X 。
或者rank (X )k 〈+1,表明在矩阵X 中,至少有一个列向量可以由其余的列向量线性表示。
所谓近似共线性或不完全多重共线性是指对于k 个解释变量t x (t =1,2,3,…k),如果存在不全为零的数k λλλ ,,21使得02211=++++u x x x k k λλλ (6.1.2)成立,其中u 为随机误差项。
如果k 个解释变量之间不存在上述完全或不完全的线性关系式,则称无多重共线性。
如果用矩阵表示,这时X 为满秩矩阵,即rank (X )=k +1。
6.1.2 多重共线性产生的原因根据经验,多重共线性产生的经济背景和原因有以下几个方面:1.经济变量之间往往存在同方向的变化趋势 2.经济变量之间往往存在着密切的关联度 3.在模型中引入滞后变量也容易产生多重共线性4.在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性6.2 多重共线性造成的影响6.2.1 完全共线性下参数估计量不存在多元线性回归模型U XB Y +=的普通最小二乘估计量为Y X X X B ''=-1)(ˆ如果解释变量之间存在完全多重共线性,由于X 矩阵的系数行列式0='X X ,逆矩阵1)(-'X X 不存在,无法得到参数估计式Bˆ。
回归分析中的多重共线性问题及解决方法回归分析是统计学中常用的一种分析方法,用于研究自变量与因变量之间的关系。
然而,在进行回归分析时,常常会遇到多重共线性的问题。
多重共线性指的是自变量之间存在高度相关性,这会导致回归系数估计不准确,模型预测能力下降,甚至使得结果产生误导。
本文将探讨回归分析中的多重共线性问题及解决方法。
多重共线性问题的产生多重共线性问题通常是由于自变量之间存在高度相关性所导致的。
当自变量之间存在线性相关关系时,回归模型的系数估计变得不稳定,可能会产生较大的标准误差,从而影响对因变量的预测能力。
多重共线性问题的影响多重共线性问题会使得回归系数的估计产生偏离,导致模型的稳定性下降。
此外,多重共线性还会对回归模型的解释能力产生影响,使得模型的可信度下降。
解决多重共线性的方法为了解决多重共线性问题,可以采取以下几种方法:1. 增加样本量增加样本量可以减少参数估计的方差,从而提高估计的精确度。
通过增加样本量,可以减轻多重共线性对参数估计的影响。
2. 删除相关自变量当自变量之间存在高度相关性时,可以考虑删除其中一个或多个相关自变量,以减轻多重共线性的影响。
通过删除相关自变量,可以减少模型的复杂性,提高模型的解释能力。
3. 合并相关自变量另一种解决多重共线性问题的方法是合并相关自变量。
通过将相关自变量进行合并或者构建新的自变量,可以降低自变量之间的相关性,从而减轻多重共线性的影响。
4. 使用主成分分析主成分分析是一种常用的多重共线性处理方法。
通过主成分分析,可以将相关自变量进行线性组合,从而得到一组新的无关自变量,使得回归模型的稳定性得到提高。
5. 使用正则化方法正则化方法是另一种处理多重共线性问题的有效手段。
通过对回归系数进行惩罚,可以有效地控制多重共线性对参数估计的影响,从而提高模型的稳定性。
结语多重共线性是回归分析中常见的问题,对回归模型的稳定性和预测能力都会产生负面影响。
因此,处理多重共线性问题是非常重要的。
试述多重共线性(统计累赘)的概念、特征及其测量方式和处理方式。
1、概念多重共线性是指自变量之间存在线性相关关。
倘若其中两个自变项的关系特别强,则在相互控制后就会使每者的效果减弱,而其他的变相的效果就会因此而增大。
2、特征3、产生原因产生多重相关性的原因主要包括四方面。
一是没有足够多的样本数据; 二是选取的自变量之间客观上就有共线性的关系; 还可能由其它因素导致, 如数据采集所用的方法, 模型设定, 一个过度决定的模型等。
但多数研究者认为共线性本质上是由于样本数据不足引起的。
4、测量方式(1)经验式的诊断方法通过观察,得到一些多重相关性严重存在的迹象。
①在自变量的简单相关系数矩阵中,有某些自变量的相关系数值较大。
②回归系数的代数符号与专业知识或一般经验相反;或者该自变量与因变量的简单相关系数符号相反。
③对重要自变量的回归系数进行t 检验,其结果不显著。
特别是当F 检验能在高精度下通过,测定系数R 2的值也很大,但自变量的t 检验却全都不显著,这时多重相关性的可能将会很大。
④如果增加或删除一个变量,或者增加或删除一个观测值,回归系数发生了明显的变化。
⑤重要自变量的回归系数置信区别明显过大。
⑥在自变量中,某一个自变量是另一部分自变量的完全或近似完全的线性组合。
⑦对于一般的观测数据,如果样本点的个数过少,比如接近于变量的个数或者少于变量的个数,样本数据中的多重相关性就会经常存在。
(2)统计检验方法共线性的诊断方法是基于对自变量的观测数据构成的矩阵X ’X 进行分析,使用各种反映自变量间相关性的指标。
共线性诊断常用的统计量有方差膨胀因子VIF 或容限TOL 、条件指数和方差比例等。
方差膨胀因子VIF 是指回归系数的估计量由于自变量的共线性使其方差增加的一个相对度量。
对于第i 个回归系数,它的方差膨胀因子定义为:VIF=1/1-R 2=1/TOL i 其中R2i 是自变量Xi 对模型中其余自变量线性回归模型的R 平方。
计量经济学习题第6章多重共线性第6章多重共线性⼀、单项选择题1、当模型存在严重的多重共线性时,OLS估计量将不具备()A、线性B、⽆偏性C、有效性D、⼀致性2、经验认为某个解释与其他解释变量间多重共线性严重的情况是这个解释变量的VIF()A、⼤于B、⼩于C、⼤于5D、⼩于53、模型中引⼊实际上与解释变量有关的变量,会导致参数的OLS估计量⽅差()A、增⼤B、减⼩C、有偏D、⾮有效4、对于模型y t=b0+b1x1t+b2x2t+u t,与r12=0相⽐,r12=0.5时,估计量的⽅差将是原来的()A、1倍B、1.33倍C、1.8倍D、2倍5、如果⽅差膨胀因⼦VIF=10,则什么问题是严重的()A、异⽅差问题B、序列相关问题C、多重共线性问题D、解释变量与随机项的相关性6、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( )A 异⽅差B 序列相关C 多重共线性D ⾼拟合优度7、存在严重的多重共线性时,参数估计的标准差()A、变⼤B、变⼩C、⽆法估计D、⽆穷⼤8、完全多重共线性时,下列判断不正确的是()A、参数⽆法估计B、只能估计参数的线性组合C、模型的拟合程度不能判断D、可以计算模型的拟合程度⼆、多项选择题1、下列哪些回归分析中很可能出现多重共线性问题()A、资本投⼊与劳动投⼊两个变量同时作为⽣产函数的解释变量B、消费作被解释变量,收⼊作解释变量的消费函数C、本期收⼊和前期收⼊同时作为消费的解释变量的消费函数D、商品价格、地区、消费风俗同时作为解释变量的需求函数E、每亩施肥量、每亩施肥量的平⽅同时作为⼩麦亩产的解释变量的模型2、当模型中解释变量间存在⾼度的多重共线性时()A、各个解释变量对被解释变量的影响将难以精确鉴别B、部分解释变量与随机误差项之间将⾼度相关C、估计量的精度将⼤幅度下降D、估计对于样本容量的变动将⼗分敏感E、模型的随机误差项也将序列相关3、下述统计量可以⽤来检验多重共线性的严重性()A、相关系数B、DW值C、⽅差膨胀因⼦D、特征值E、⾃相关系数4、多重共线性产⽣的原因主要有()A、经济变量之间往往存在同⽅向的变化趋势B、经济变量之间往往存在着密切的关联C、在模型中采⽤滞后变量也容易产⽣多重共线性D、在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性E、以上都正确5、多重共线性的解决⽅法主要有()A、保留重要的解释变量,去掉次要的或替代的解释变量B、利⽤先验信息改变参数的约束形式C、变换模型的形式D、综合使⽤时序数据与截⾯数据E、逐步回归法以及增加样本容量6、关于多重共线性,判断错误的有()A、解释变量两两不相关,则不存在多重共线性B、所有的t检验都不显著,则说明模型总体是不显著的C、有多重共线性的计量经济模型没有应⽤的意义D、存在严重的多重共线性的模型不能⽤于结构分析7、模型存在完全多重共线性时,下列判断正确的是()A、参数⽆法估计B、只能估计参数的线性组合C、模型的判定系数为0D、模型的判定系数为1三、简述1、什么是多重共线性?产⽣多重共线性的原因是什么?2、什么是完全多重共线性?什么是不完全多重共线性?3、完全多重共线性对OLS估计量的影响有哪些?4、不完全多重共线性对OLS估计量的影响有哪些?5、从哪些症状中可以判断可能存在多重共线性?6、什么是⽅差膨胀因⼦检验法?四、判断(1)如果简单相关系数检测法证明多元回归模型的解释变量两两不相关,则可以判断解释变量间不存在多重共线性。
第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。
答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。
由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。
再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。
6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。
6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。
但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。
6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。
6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。
如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。
6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。
第六章 多重共线性在多元线性回归分析的经典假设中,假定模型所包含的解释变量之间不存在线性关系,即无多重共线性。
但是由于经济变量本身的固有性质,许多的变量之间总是会存在着一定的相关性。
例如,以企业截面数据为样本估计的生产函数,作为其解释变量的有诸如资本、劳动、能源……等等投入要素,这些投入要素都与企业的生产规模有关,显然,它们之间存在着明显的相关性。
再如,以家庭收入I和商品价格P为解释变量分析家庭生活状况的模型。
由于收入较高的家庭购买商品,普通会选择质地较好、价格较高的;而收入较低的家庭购买商品则会选择较便宜的。
这样两解释变量I与P之间存在着明显的相关性。
本章的目的与要求当解释变量之间存在着线性关系,违背了解释变量之间不存在共线性的经典假定时,如何处理可能浮现的一系列状况,就是本章所要讨论的问题。
通过本章学习,要求重点掌握的内容是:明确多重共线性的概念及其表现形式;充分理解当线性回归模型存在多重共线性情形下,使用普通最小二乘估计模型参数将会引起的各种不良后果;熟练掌握检测多重共线性的各种方法以及在此情形下相应的处理与估计改进方法,从而能够运用这些知识处理经济计量分析实践中的相应问题。
本章内容(计划学时)一、多重共线性的性质1、多重共线性的概念2、解释变量线性关系的表现形式3、多重共线性的产生原因4、多重共线性的性质二、多重共线性的后果与检测1、多重共线性的后果2、多重共线性的检测方法三、多重共线性的补救措施学习重点一、多重共线性的性质二、多重共线性的后果与检测方法三、多重共线性的补救措施学习难点一、多重共线性的性质二、多重共线性的后果与检测方法 三、多重共线性的补救措施第一节 多重共线性的性质一、多重共线性的概念多重共线性就是指线性回归模型中若干解释变量或者全部解释变量的样本观测值之间具有某种线性关系,也就是说,对于有 k 个解释变量的线性回归模型Y = β0 + β1X 1 + β2X 2 + … + βk X k + u (式6-1.1) 即模型中的各解释变量Xi 的样本观测值之间存在一定的线性关系,我们就称模型存在多重共线性。