地球物理测#(第三章)核测井、GR测井
- 格式:ppt
- 大小:621.50 KB
- 文档页数:42
一、实验目的本次实验旨在使学生掌握地球物理勘探的基本原理和实验方法,提高学生对地球物理勘探技术的认识,为后续课程的学习和研究打下基础。
二、实验原理地球物理勘探是利用地球的各种物理场(如重力场、磁场、电场、地震波等)来探测地下结构和物质分布的技术。
通过观测和分析这些物理场的变化,可以推断地下岩层的性质、地质构造和矿产资源分布等信息。
三、实验内容1. 重力勘探实验(1)实验目的:了解重力勘探的基本原理,掌握重力仪的使用方法。
(2)实验原理:利用重力仪测量地面重力加速度的变化,从而推断地下岩石密度分布。
(3)实验步骤:① 将重力仪放置在预定位置,调整水平,记录初始重力值。
② 沿着预定路线移动重力仪,每隔一定距离记录一次重力值。
③ 将记录的重力值绘制成曲线,分析重力异常分布。
2. 磁力勘探实验(1)实验目的:了解磁力勘探的基本原理,掌握磁力仪的使用方法。
(2)实验原理:利用磁力仪测量地面磁场的变化,从而推断地下磁性矿物的分布。
(3)实验步骤:① 将磁力仪放置在预定位置,调整水平,记录初始磁场值。
② 沿着预定路线移动磁力仪,每隔一定距离记录一次磁场值。
③ 将记录的磁场值绘制成曲线,分析磁场异常分布。
3. 电法勘探实验(1)实验目的:了解电法勘探的基本原理,掌握电法勘探仪器的使用方法。
(2)实验原理:利用电法勘探仪器测量地下电性差异,从而推断地下岩石的导电性和含水性。
(3)实验步骤:① 将电法勘探仪器放置在预定位置,调整水平,记录初始电流值。
② 沿着预定路线移动电法勘探仪器,每隔一定距离记录一次电流值。
③ 将记录的电流值绘制成曲线,分析电流异常分布。
四、实验结果与分析1. 重力勘探实验结果:通过分析重力异常曲线,发现实验区域存在一个重力高异常,推断该异常可能与地下岩层的密度变化有关。
2. 磁力勘探实验结果:通过分析磁场异常曲线,发现实验区域存在一个磁场高异常,推断该异常可能与地下磁性矿物的分布有关。
3. 电法勘探实验结果:通过分析电流异常曲线,发现实验区域存在一个电流低异常,推断该异常可能与地下岩石的导电性和含水性有关。
测绘技术中的地球物理测量方法详解地球物理测量是测绘技术中的一项重要领域,它通过测量和分析地球表面和地下的物理现象,为地质、环境、水文和工程等领域提供了重要的数据支持。
本文将对地球物理测量方法进行详解,介绍其原理和应用。
一、重力测量重力测量是地球物理测量中最常用的方法之一。
它利用地球上的重力场变化来推断地下物质分布和构造特征。
重力场是地球上所有物质的引力作用所形成的。
通过使用重力仪器测量重力加速度的变化,可以得到地球重力场的分布情况。
重力测量方法常用于勘探矿产资源和研究地壳运动。
在勘探矿产资源方面,通过测量地下矿体与周围岩石的密度差异,可以推断矿体的位置和规模。
在研究地壳运动方面,重力测量可以检测到地壳的水平运动和垂直变形,对地震、断层和火山活动等现象的研究具有重要意义。
二、磁力测量磁力测量是另一种常用的地球物理测量方法。
地球具有强大的磁场,它来源于地球内部的液态外核。
磁力测量利用磁场的变化来研究地下物质的特征。
通过测量地磁场强度和指向的变化,可以推断地下潜在矿产资源的分布情况。
磁力测量方法广泛应用于勘探矿产资源、地质构造和环境监测等领域。
在勘探矿产资源方面,磁力测量可用于寻找铁矿、锰矿等矿床。
在地质构造方面,磁力测量可以研究地壳中的断裂、隆起和下沉等构造特征。
在环境监测方面,磁力测量可用于监测地磁场的变化,预警地质灾害和地震等自然灾害。
三、电法测量电法测量是一种利用地下电阻率差异来研究地下物质分布和构造特征的测量方法。
电法测量通过在地表施加电流,测量地下电场的分布和变化,来推断地下不同岩石或土壤的电导率情况。
电法测量方法广泛应用于地下水资源、土地质量和工程地质等领域。
在地下水资源方面,电法测量可用于确定地下含水层的深度和厚度,并推断水质状况。
在土地质量方面,电法测量可用于检测土壤的物理特性,判定土壤的质地和含水量等参数。
在工程地质方面,电法测量可用于检测地层的稳定性和地下空洞的存在,为工程设计和施工提供依据。
地球物理测井概论
地球物理测井是指以地球物理学的理论和技术来研究和测量地下岩石的结构特征、物质属性及其变化规律,采集、分析、处理地球物理资料,进而获取地下构造、岩性、成因及其它不可见物质成分等信息,或为地质勘探、矿产调查和地质灾害防治提供依据的一种详尽的“深入地下”的技术与方法的总称。
随着社会的发展和科学技术的普及,地球物理测井,俗称“测井”,也和建设、投资项目紧密相关,它是针对建设区附近地层异常、地埋管线、地下空间等情况,通过测量地下岩石层的构成、位置、厚度、水性等定量数据,充分挖掘工程用地空间本质,对建设项目是否可行提供有力的支持。
在地球物理测井中,采用连续振动地震技术,通过不断发射同频率的声波,实
现地下构造的介质参数的测量,掌握岩石层的厚度、变化趋势、漏失或断裂等信息;采用时反差管理技术,通过测量声波的二次反射,来获取地层的位置、厚度信息;采用震源接收方法,全面掌握地下矿层的位置、厚度及组成等特征,用测井定位进行埋藏物质、探测异常体及水文地质分布范围等;采集测井曲线后,运用有关理论来分析地层变化,把这些曲线复原成地层实际横截面,从而来估计工程用地背景情况,为建设项目提供有力的参考。
总之,地球物理测井具有重要的建设应用价值,为工程设计及施工布置提供关
键的参考,通过深入地下,更好地洞察地质情况,是建筑项目实施有序、科学可行的基础。
什么是地球物理勘探人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中,埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况以及岩石的物理性质。
岩石物理性质是指岩石的导电性、磁性、密度、地震波传播等特性。
地下岩石情况不同,岩石的物理性质也随之而变化。
我们把以岩石间物理性质差异为基础,以物理方法为手段的油气勘探技术,称为地球物理勘探技术,简称物探技术。
通过观测不同岩石引起的重力差异来了解地下地层的岩性和起伏状态的方法,称为重力勘探。
油气生成于沉积盆地,应用重力勘探可以确定沉积盆地范围。
通过观测不同岩石的磁性差异,来了解地下岩石情况的方法,称为磁力勘探。
在沉积盆地中,往往会分布着各种磁性地质体,磁力勘探可以圈定其范围,确定其性质。
通过观测不同岩石的导电性差异来了解地下地层岩石情况的方法,称为电法勘探,与油气有关的沉积岩往往导电性良好(电阻率低),应用电法勘探可以寻找和确定这类地层。
通过观测用人工方法(如爆炸)激发的地震波在不同岩石中的速度变化及其他特征来了解地下岩石情况的方法,称为地震勘探。
在以上这四种方法中,重力、磁力、电法三种方法联合起来应用往往可以找出可能有油气的盆地在哪里,盆地中哪里是隆起,哪里是坳陷,哪里是可能最有利的构造等等。
这种工作是在找油的开始阶段做的,一般叫做普查。
地震勘探是地球物理勘探最主要的一种勘探方法,具有勘探精度高,能更清晰地确定油气构造形态、埋藏深度、岩石性质等优点,成为油气勘探的主要手段,并被广泛应用。
什么是地球物理测井井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。
地质学中的地球物理探测技术地球物理探测技术是地质学中的一大重要分支,主要通过测量地球内部的物理性质,以揭示地球内部的结构和构造,并了解地球演化的历史和过程。
其包括测量地球重力、磁场、电性、声波等各种物理现象,可以应用于地质勘探、矿产资源寻找、灾害预测等方面。
本文就来分别介绍地球物理探测中的重力、磁性、电性和声波等技术及其应用。
一、重力探测技术重力探测技术是利用地球的引力变化来探测地下物质的一种方法。
测量中,首先在地表上设置重力测量仪器,然后通过对重力的测量来确定地下物质的密度分布。
因为地下物质的密度不同,如地壳的密度要比地幔高,而花岗岩的密度又要比沉积岩高,所以通过对重力的测量,可以推测出地下物质的变化规律及分布情况。
重力探测技术在石油、天然气的勘探中应用很广。
由于地下油气形成后常常会跑到密度比较小的地质层里,因此通过对重力的测量,可以预测可能的油气区域。
在地质灾害预测方面,也可以通过重力探测来寻找地下空腔、断层带、岩体变形等预兆。
二、磁性探测技术磁性探测技术是利用地球的磁场变化来探测地下物质的一种方法。
由于地球内部存在着同心球状的磁场,不同地区的地磁场的强度和方向也不尽相同。
利用磁性探测技术可以探测出地下物质的磁性变化,从而揭示地下岩石的磁化程度及其分布规律。
磁性探测技术在矿床勘探中应用广泛,因为矿物常常具有比周围的地壳物质更高的磁滞、磁导率等特性,而这种不同的特征往往非常微弱并不易被发现,所以对于矿床的发现而言,其具有的敏感度非常有优势。
三、电性探测技术电性探测技术是利用地球内部的电性变化来探测地下物质的一种方法。
在地下钻探中,通过地面电极、探测体和接收器三个部件建立起自由电流电场,并分别在探测体和接收器记录电场的变化,最终通过分析电学特性,来推测出地下物质的变化规律及分布情况。
电性探测技术在地下水、岩土工程和矿产资源勘查方面应用广泛。
在地下水资源寻找中,可以通过测量电性来预测水层位置、厚度和水质的状况。
地球物理测量地球物理测量是一种研究地球内部结构和物理现象的科学方法。
通过测量地球的重力场、磁场、地震以及地电场等因素,可以深入了解地球的内部构造、地壳运动和地质特征,为地质勘探、环境保护和自然灾害预测提供重要的科学依据。
地球物理测量主要包括地震学、重力学、地磁学和地电学等领域。
地震学是研究地震现象及其引起的地震波传播规律的学科。
通过监测地震波在地球内部传播的速度和路径,可以判断地球内部的介质性质和地球构造的变化。
地震学对于地壳运动、地震灾害预测和油气资源勘探都具有重要的意义。
重力学是研究地球重力场的学科。
地球的重力场是由地球内部的密度分布和形状引起的,通过测量地球重力场的强度和方向变化,可以推断地球内部的密度变化和地球形状的变化。
重力测量在勘探矿产资源、测量山体移动和地壳变形等方面发挥着重要作用。
地磁学是研究地球磁场的学科。
地球的磁场是由地球内部的物质运动所产生的,磁场的变化可以揭示地球内部的物质运动和地球磁性物质的分布。
地磁测量在地理勘探、地质灾害预测和导航定位等方面具有广泛应用。
地电学是研究地球电场的学科。
地球电场是由空气和地面之间的电荷分布引起的,在地球内部由于地层和水体的地下水存在导致的电荷分布也会产生地电场。
通过测量地球电场的强度和方向变化,可以推断地表和地下的电荷分布情况,进而研究地壳运动、岩石性质和地下水的分布。
地球物理测量是地球科学研究中的重要手段之一,它通过测量地球内部的各种物理字段的变化,揭示了地球内部的动力学特征和构造演化过程。
地球物理测量与地质学、地球化学、地理学等学科相互配合,形成了综合研究地球的方法体系。
地球物理测量在勘探和开发矿产资源方面发挥着重要作用。
通过重力测量可以发现地下的矿体和油气藏;通过地磁测量可以寻找地下矿体和火山活动;通过地电测量可以判断地下的水体分布等。
地球物理测量还可以用于环境保护和自然灾害预测。
通过地震学的研究,可以预测地震的发生和地震波在地下的传播路径,为地震灾害的防范和救援提供科学依据。
地球物理场的测量与解释地球物理学是研究地球内、地表和地球周围空间中各种物理现象的学科。
在地球物理学中,测量和解释地球物理场是一项重要的任务,这些场包括重力场、磁场、地磁场以及电磁场等。
地球物理场的测量是通过各种仪器和设备来获取相关数据的过程。
其中,重力场的测量是通过重力仪器进行的。
重力仪器测量的是地球上各个地点的重力加速度,通过这些数据我们可以得到地壳的密度分布情况。
磁场的测量则是利用磁力仪器获得地球某一确定点上磁力的大小和方向。
地磁场的测量可以帮助我们研究地球内部的磁性物质的分布以及地球的磁极位置的变化情况。
电磁场的测量则是通过电磁波探测仪器获得电磁辐射的强度和频率等信息,这些数据对于研究地下的岩石、矿物以及地下水的分布有着重要意义。
地球物理场的解释是在测量的基础上对获得的数据进行分析和推理的过程。
在解释过程中,我们需要借助数学模型和计算方法来还原地球物理场的实际情况。
例如,在重力场的解释中,我们可以使用球内质量的分布模型来解释观测到的重力数据。
通过对观测数据进行拟合和计算,我们可以得到地球内部质量的垂向分布情况。
磁场的解释中,我们可以使用磁矩模型和磁性物质的磁化情况来推测地下岩石的成分和分布。
电磁场的解释中,我们可以利用电磁波的传播规律和地下储层的电阻率等信息来推测地下岩石和地下水的分布情况。
地球物理场的测量和解释对于我们对地球内部结构和地质现象的研究非常重要。
通过这些测量和解释,我们可以揭示地球深处的奥秘,并对地球的演化和自然灾害进行预测和防范。
例如,重力场的测量和解释有助于我们研究地球板块的运动以及地壳的变形情况,为地震的发生提供了重要的线索。
磁场的测量和解释可以帮助我们了解地球磁极的位置变化以及地球内部液态外核的运动规律,对于研究地球磁场的演化具有重要意义。
电磁场的测量和解释可以用于勘探矿产资源、寻找地下水源以及判断地下岩石的性质。
总之,地球物理场的测量和解释是地球物理学研究的重要内容,它们为我们深入了解地球内部结构和地质现象提供了有力的工具。
地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。
1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。
2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。
梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。
(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。
(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。
视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。
2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。
但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。
3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。
二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。
微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。
地球物理测井方法原理地球物理测井是一种通过测量地下岩石和地层性质的物理参数来获取地质信息的方法。
它是石油勘探和开发中非常重要的技术手段之一,能够提供有关地层构造、储层性质和油气藏特征等方面的关键信息。
本文将详细介绍地球物理测井方法的原理。
一、电测井原理电测井是利用电性差异来识别地层的一种方法。
在地下,地层岩石中的含水层和非含水层具有不同的电导率,因此可以通过测量地层的电导率差异来判断地下岩石的性质。
电测井主要分为直流电测井和交流电测井两种类型。
直流电测井通过测量地下岩石对直流电流的电阻或电导进行分析,从而得到地层的电阻率信息;交流电测井则是通过测量地下岩石对交变电流的电抗或电导来分析地层的电阻率和介电常数等参数。
二、声波测井原理声波测井是利用声波在地层中传播的特性来获取地下岩石的物理参数。
在地球物理测井中常用的声波测井方法有声阻抗测井和声波传播时间测井。
声阻抗测井是通过测量声波在不同地层之间的反射与透射情况来识别地下岩石的性质,从而推断出地层的压力、孔隙度、饱和度等信息;而声波传播时间测井则是通过测量从发射器到接收器之间声波传播的时间差来计算声波的传播速度,从而间接得到地层的密度和弹性模量等参数。
三、放射性测井原理放射性测井是利用地下岩石和地层中放射性元素的衰变活动来探测地层的一种方法。
具体来说,放射性测井主要分为γ射线测井和中子测井两种类型。
γ射线测井通过测量地层中γ射线的强度来分析地下岩石中含有的放射性元素的含量和分布情况,从而推断出地层的密度、孔隙度和含油气性质等信息;中子测井则是通过测量地层中的中子活动度来获取地下岩石的密度和含水饱和度等参数。
四、导向测井原理导向测井是利用电磁信号在地下传播的原理来确定地层的导电性和磁性特性。
常用的导向测井方法有电磁测井、自然电位测井和磁测井等。
电磁测井通过测量地下岩石中对电磁信号的响应来分析地层的导电性,从而获得地层的含水饱和度等信息;自然电位测井是通过测量地下岩石产生的自然电位来研究地下水流动和地层的渗透性等特性;磁测井则是通过测量地下岩石的磁场分布来判断地层的磁性特性和岩石类型等参数。
地球物理测井方法原理
地球物理测井方法是通过在地下钻井孔内采集各种物理测量数据,用于研究地下岩石、水等介质的性质和分布情况。
其原理主要包括以下几种方法:
1. 电测井(电阻率测井):通过测量电阻率的大小来推断岩石和水等介质的性质。
岩石的电阻率与其孔隙度、孔隙液的含水性相关。
2. 密度测井:利用放射性射线经过地下介质时发生的散射和吸收现象,测量射线的衰减情况,来推断介质的密度、孔隙度等参数。
3. 声波测井(声阻抗测井):通过发射声波信号,并测量声波在地下介质中传播的速度和衰减程度,来推断岩石的弹性性质、孔隙度等参数。
4. 中子测井:利用中子与地下介质中核素发生散射和吸收的现象,测量中子流量的变化,来推断介质的孔隙度、含水性等。
5. 磁测井(自然电磁场测井):利用地球自然磁场或人工产生的磁场对地下岩石的磁性进行测量,来推断岩石磁性、含油气性等。
这些测井方法的原理是基于地下介质对电、密度、声波、中子或磁场的响应特性,在测井仪器记录和分析数据后,可以获得地下介质的性质和分布信息,为油气勘
探、水资源管理、地热研究等提供重要依据。
地球物理勘探仪器的测量原理地球物理勘探是一种通过测量地球物理现象来了解地球内部结构和性质的科学方法。
在地球物理勘探中,仪器是不可或缺的工具,它们通过测量地球物理参数来获取有关地球内部的信息。
本文将介绍几种常见的地球物理勘探仪器及其测量原理。
一、地震仪地震仪是地球物理勘探中最常用的仪器之一。
它的测量原理基于地震波的传播和反射。
地震波是由地震源产生的能量波动,经过地球内部的传播后,会在地下的不同介质中发生反射、折射和散射。
地震仪通过测量地震波的传播时间和振幅变化来推断地下介质的性质和结构。
常见的地震仪包括地震记录仪和地震传感器。
二、重力仪重力仪是测量地球重力场的仪器。
它的测量原理基于物体在地球重力作用下的加速度差异。
重力仪通过测量物体的加速度变化来计算地球的重力场强度。
在地球物理勘探中,重力仪被广泛应用于测量地下物质的密度变化。
密度较大的物质会引起局部的重力异常,通过重力仪的测量可以推断出地下的密度分布情况。
三、磁力仪磁力仪是测量地球磁场的仪器。
地球具有一个磁场,磁力仪通过测量磁场的强度和方向来推断地下的磁性物质分布。
磁力仪的测量原理基于磁感应定律,当磁场中存在磁性物质时,它会产生磁感应强度的变化。
通过测量磁场的变化,可以获取地下磁性物质的分布情况。
磁力仪在地球物理勘探中广泛应用于寻找矿产资源和地下构造的研究。
四、电磁仪电磁仪是测量地球电磁场的仪器。
地球的电磁场是由地球内部的电流体所产生的,电磁仪通过测量地球电磁场的强度和频率来推断地下的电导率分布。
地下的电导率分布与地下介质的性质有关,通过电磁仪的测量可以获取地下介质的电导率信息。
电磁仪在地球物理勘探中被广泛应用于寻找地下水资源、矿产资源和地下构造的研究。
总结起来,地球物理勘探仪器的测量原理涉及地震波传播、重力场、磁场和电磁场的测量。
通过这些仪器的测量,可以获取地下介质的性质和结构信息,为地质勘探、资源勘探和环境调查等提供重要的科学依据。
随着技术的不断发展,地球物理勘探仪器的测量精度和分辨率将进一步提高,为我们对地球内部的认识提供更多的突破。
地球物理探测方法1. 地球物理探测是啥呢?简单来说,就是通过研究地球物理场的变化来探测地下的结构、地质体啥的。
就好比给地球做个“透视”,看看地底下到底藏着啥秘密。
这可不是一件简单的事儿,就像大海捞针一样,不过咱有不少厉害的方法。
2.1 重力探测法。
重力探测法就像是一个经验老到的“秤砣师傅”。
地球表面的重力可不是到处都一样的,地下不同的地质结构、岩石密度啥的都会影响重力的大小。
比如说,密度大的岩石,像铁啊、铅啊这些矿石在地下的时候,那这个地方的重力就会比周围大一些。
咱就可以通过测量重力的微小变化,来推断地下是不是有这些特殊的地质体。
这就好比你在一个袋子里摸东西,重的东西你一拿就感觉出来不一样了。
2.2 磁力探测法。
磁力探测法就像是个有魔法的“指南针”。
地球本身就有磁场,地下的一些磁性物质,像磁铁矿这种,就会对周围的磁场产生干扰。
咱们带着磁力探测仪器在地面上走一走,就像探险家在寻宝一样。
如果仪器突然有了变化,那就可能是地下有磁性的东西在捣鬼。
这方法就像闻着味儿找东西,有磁性的东西就像有特殊气味的宝藏,仪器就是那灵敏的鼻子。
2.3 地震探测法。
地震探测法可是个“大力士”方法。
咱们人工制造一些小地震,或者利用天然地震产生的地震波。
这些地震波在地下传播的时候,遇到不同的地质层就会有不同的反应,就像声音在不同的介质里传播速度不一样似的。
有的地质层会让地震波反射回来,有的会让它折射。
咱们通过在地面上接收这些地震波的信息,就像听地下传来的悄悄话一样,就能知道地下的地质结构是啥样的。
这就好比敲敲墙听听声音,就能知道墙里是实心的还是空心的。
3.1 意义。
3.2 挑战。
地球的地质勘探与地球物理勘测地球的地质勘探与地球物理勘测是地球科学中重要的两个领域。
地质勘探主要研究地球内部的构造和组成,而地球物理勘测则是通过测量地球的物理特性来了解地球的内部结构和地球表面的地质特征。
本文将探讨地球的地质勘探与地球物理勘测的基本原理和方法,并介绍一些常用的勘测技术和设备。
一、地球的地质勘探地球的地质勘探是为了了解地球内部的构造和组成以及地球表层地质特征而进行的研究。
地质勘探主要依靠地质学的理论和方法进行,包括地质调查、钻探和地质剖面观测等。
1. 地质调查地质调查是地球地质勘探的基础工作之一。
通过对地表地貌、岩石、矿产和构造等进行调查和研究,可以了解地质历史和地质现象,揭示地质演化的过程。
地质调查可以通过野外实地考察、航空和卫星遥感等多种手段进行。
2. 钻探技术钻探技术是地质勘探中常用的手段之一。
通过地质钻孔可以获取地下岩石和矿物样本,深入了解地下构造和地质特征。
钻探可以采用井下钻探和地表钻探两种方式,根据勘探的目的和深度来选择适当的钻探方法。
3. 地震勘探地震勘探是利用地震波在地下传播和反射的原理来勘测地下结构和地质特征的一种方法。
地震勘探技术可以通过检测地震波的传播速度和反射强度来获取地下地层的信息,包括地下岩石的类型、厚度和分布等。
二、地球物理勘测地球物理勘测是通过测量地球的物理特性来了解地球的内部结构和地球表面的地质特征。
地球物理勘测主要包括重力勘测、地磁勘测和电磁勘测等多种方法。
1. 重力勘测重力勘测是通过测量地球表面的重力场来了解地下的地质结构和密度分布。
重力勘测方法主要是根据物体的质量和距离的关系来计算重力场的变化。
利用重力勘测可以判断地下岩石的类型和厚度,以及地球表面的沉降和隆起等地质现象。
2. 地磁勘测地磁勘测是通过测量地球表面的地磁场来了解地下结构和地球表面的地质特征。
地磁场的变化与地下岩石的类型和磁性有关,通过测量地磁场的强度和方向可以推断地下岩石的性质和分布。
地球物理勘探的方法
地球物理勘探是利用地球物理原理和方法来探测地壳内部的结构、性质和地下资源的勘探方法。
常用的地球物理勘探方法包括:
1. 重力方法:通过测量地球引力场的变化来推测地下密度分布,从而探测地下体的形态、内部结构和重力异常。
2. 磁力方法:通过测量地球磁场的变化来推测地下磁性物质的分布,常用于探测地下矿床和地下构造。
3. 电磁法:通过测量地下介质对电磁波的响应来推测地下结构和含矿体。
4. 地震法:利用地震波在地下传播的速度、路径和衰减特性来推测地下的岩性、层序、裂隙和地壳形态,常用于石油、天然气和地下水资源勘探。
5. 非震方法:包括地电、地热、地应力等方法,通过测量地下电性、热力和应力等物理参数来推测地下结构和性质。
以上只是常用的地球物理勘探方法的一部分,具体的勘探方法与勘探目标、地质环境以及经济条件等相关。
不同的勘探目标需要选用不同的地球物理勘探方法来获取有效的地质信息。