fluent模型选择
- 格式:docx
- 大小:18.30 KB
- 文档页数:3
标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
fluent建模步骤第一步:导入几何模型Fluent是一款流体力学仿真软件,首先需要导入几何模型。
用户可以使用CAD软件创建几何模型,然后将其导入Fluent中进行后续仿真分析。
导入几何模型时,需要确保模型的几何形状和尺寸正确无误。
第二步:设置边界条件在进行仿真分析之前,需要为模型设置边界条件。
边界条件指定了流体在模型各个边界处的性质,如压力、速度等。
根据具体问题的要求,设置正确的边界条件非常重要,它将直接影响到仿真结果的准确性和可靠性。
第三步:选择物理模型Fluent提供了多种物理模型供用户选择,如湍流模型、传热模型等。
根据具体问题的特点和需求,选择合适的物理模型非常重要。
在选择物理模型时,需要考虑流体的性质和流动情况,以及所关注的现象和现象的复杂程度。
第四步:网格划分网格划分是Fluent建模的关键步骤之一。
合适的网格划分可以提高仿真结果的准确性和计算效率。
在进行网格划分时,需要考虑模型的几何形状、流动特性和计算资源的限制。
网格划分应该尽可能细致,以捕捉到流体流动中的细节现象。
第五步:设置求解器选项Fluent提供了多种求解器选项,用户可以根据具体问题的复杂性和计算资源的限制选择合适的求解器。
求解器选项包括迭代收敛准则、时间步长和稳态/非稳态求解等。
正确设置求解器选项可以提高仿真计算的准确性和效率。
第六步:运行仿真计算完成以上步骤后,就可以运行仿真计算了。
Fluent会根据用户设置的边界条件、物理模型和求解器选项,对模型进行数值计算,并得到流场、温度场等仿真结果。
在运行仿真计算时,需要确保计算机具备足够的计算资源和稳定的工作环境。
第七步:分析和后处理得到仿真结果后,可以进行分析和后处理。
Fluent提供了丰富的后处理功能,用户可以对仿真结果进行可视化、数据提取和统计分析等操作。
通过分析和后处理,可以深入了解流体的流动特性、传热情况和压力分布等信息。
总结:使用Fluent进行建模时,需要按照以上步骤进行操作。
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
Fluent能量方程选择简介在流体力学中,能量方程是描述流体内部能量变化的重要方程之一。
Fluent是一种常用的流体力学软件,它提供了多种不同类型的能量方程模型供用户选择。
本文将介绍Fluent中可选的能量方程模型,并对其特点和适用范围进行详细解释。
能量方程模型Fluent中提供了多种能量方程模型,主要包括:1.内部能(Internal Energy)模型:该模型假设流体内部能量主要由分子内部振动、转动和电子结构等因素决定。
它适用于低速、低温和不可压缩流体问题。
2.焓(Enthalpy)模型:该模型考虑了流体的压力对内部能量的影响。
它适用于高速、高温和可压缩流体问题。
3.温度(Temperature)模型:该模型假设流体内部能量与温度成正比。
它适用于不考虑压力变化对内部能量影响的问题。
4.混合物(Mixture)模型:该模型适用于多组分混合物问题,考虑了各组分之间的相互作用和相变过程。
5.热平衡(Thermal Equilibrium)模型:该模型适用于流体与固体表面有热交换的问题,考虑了流体与固体之间的传热过程。
模型选择依据在选择Fluent能量方程模型时,需要考虑以下几个因素:1.流体性质:首先需要确定流体是可压缩还是不可压缩的,以及流体的温度范围和速度范围。
根据这些性质可以初步判断哪种能量方程模型更适用。
2.物理现象:根据具体问题中存在的物理现象,如相变、传热等,选择相应的能量方程模型。
例如,在液化天然气储罐内部温度分布问题中,需要考虑相变过程,可以选择混合物模型。
3.计算效率:不同能量方程模型对计算资源的需求不同,某些复杂模型可能会增加计算时间和内存消耗。
在实际工程计算中,需要综合考虑计算效率和精度之间的平衡。
使用示例下面以一个简单的管道流动问题为例来说明如何选择Fluent能量方程模型。
假设有一个水平直管道内流动的空气,管道内壁温度为300K,管道入口处速度为10m/s,出口处压力为1atm。
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
fluent多相流模型选择与设定Fluent多相流模型是一种用于模拟多相流动的计算模型。
它可以应用于各种工程领域,如化工、环境工程、能源等,用于预测流体在不同相态下的行为和性质。
在本文中,将介绍Fluent多相流模型的选择和设定,并探讨其在工程应用中的重要性。
选择适当的多相流模型对于准确模拟流体行为至关重要。
Fluent提供了多种多相流模型,包括欧拉-欧拉模型、欧拉-拉格朗日模型和欧拉-欧拉-拉格朗日模型等。
根据实际应用需求,可以选择合适的模型。
例如,在颗粒流动中,欧拉-欧拉模型可以更好地描述流体和颗粒之间的相互作用;而在液滴破裂模拟中,欧拉-拉格朗日模型可以更准确地预测液滴的形变和破裂行为。
设定正确的边界条件和物理参数也是模拟多相流动的关键步骤。
边界条件包括入口速度、出口压力、界面张力等,这些参数对于模拟结果的准确性和稳定性起着重要作用。
在设定物理参数时,需要考虑到流体的性质、颗粒的密度、粘度等因素,并根据实际情况进行合理选择。
在使用Fluent进行多相流模拟时,还需要合理设置网格。
网格的划分应该足够细致,以捕捉流体和颗粒的细微变化。
同时,为了提高计算效率,还需要根据流体和颗粒的运动特性进行网格的划分和调整。
这样可以保证模拟结果的精确性和计算的稳定性。
Fluent多相流模型在工程应用中具有广泛的适用性和重要性。
例如,在化工领域,多相流模型可以用于模拟反应器内的气体-液体反应过程,以优化反应条件和提高反应效率。
在环境工程中,多相流模型可以用于模拟污水处理过程中的气体和颗粒物的分离和去除效果。
在能源领域,多相流模型可以用于模拟燃烧过程中的燃料和空气的混合和燃烧特性,以优化燃烧效率和减少污染物排放。
Fluent多相流模型是一种强大而灵活的工具,可以帮助工程师和科研人员更好地理解和预测多相流动的行为。
通过正确选择和设定模型,并结合实际应用需求,可以获得准确、稳定的模拟结果,为工程设计和优化提供科学依据。
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流 (上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
fluent中常见的湍流模型及各自应用场合湍流是流体运动中的一种复杂现象,它在自然界和工程应用中都非常常见。
为了模拟和预测湍流的行为,数学家和工程师们开发了各种湍流模型。
在Fluent中,作为一种流体动力学软件,它提供了多种常见的湍流模型,每个模型都有其自己的适用场合。
1. k-ε 模型最常见的湍流模型之一是k-ε模型。
该模型基于雷诺平均的假设,将湍流分解为宏观平均流动和湍流脉动两个部分,通过计算能量和湍动量方程来模拟湍流行为。
k-ε模型适用于边界层内和自由表面流动等具有高湍流强度的情况。
它还适用于非压缩流体和对称或旋转流动。
2. k-ω SST 模型k-ω SST模型是基于k-ε模型的改进版本。
它结合了k-ω模型和k-ε模型的优点,既能够准确地模拟边界层流动,又能够提供准确的湍流边界条件。
SST代表了"Shear Stress Transport",意味着模型在对剪切流动的边界层进行处理时更为准确。
k-ω SST模型适用于各种湍流强度的流动,特别是在激烈湍流的边界层内。
3. Reynolds Stress 模型Reynolds Stress模型是一种基于雷诺应力张量模拟湍流的高级模型。
它考虑了流场中的各向异性和非线性效应,并通过解Reynolds应力方程来确定流场中的张应力。
由于对流场的湍流行为进行了更精确的建模,Reynolds Stress模型适用于湍流流动和涡旋流动等复杂的工程应用。
然而,由于模型的计算复杂度较高,使用该模型需要更多的计算资源。
4. Large Eddy Simulation (LES)Large Eddy Simulation是一种直接模拟湍流的方法,它通过将整个流场划分为大尺度和小尺度的涡旋来模拟湍流行为。
LES适用于高雷诺数的流动,其中小尺度涡旋的作用显著。
由于需要同时解决大尺度和小尺度涡旋的运动方程,LES计算的复杂度非常高,适用于需要高精度湍流求解的工程应用。
fluent多孔跳跃模型参数设置摘要:1.Fluent 软件简介2.多孔跳跃模型的设置方法3.多孔介质模型的参数设置4.模型应用实例正文:一、Fluent 软件简介Fluent 是一款国际上流行的商用计算流体动力学(CFD)软件包,广泛应用于航空航天、汽车设计、石油天然气和涡轮机设计等领域。
它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在美国的市场占有率达到60%。
二、多孔跳跃模型的设置方法在Fluent 中,多孔跳跃模型的设置主要分为以下几个步骤:1.定义多孔介质包含的材料属性和多孔性。
2.设定多孔区域的固体部分的体积热生成速度(或任何其它源项,如质量、动量)(此项可选)。
3.如果合适的话,限制多孔区域的湍流粘性。
4.如果相关的话,指定旋转轴和/或区域运动。
三、多孔介质模型的参数设置在Fluent 中设置多孔介质模型时,需要考虑以下几个参数:1.空隙率:多孔介质中的空隙体积与总体积之比。
2.热导率:多孔介质中的热传导性能,单位为瓦特/(米·开尔文)。
3.密度:多孔介质中的质量密度,单位为千克/立方米。
4.比热容:多孔介质中的比热容,单位为焦耳/(千克·开尔文)。
5.粘性阻力:多孔介质中的流体阻力,单位为帕斯卡。
6.内部阻力:多孔介质中的内部阻力,单位为帕斯卡。
四、模型应用实例Fluent 中的多孔跳跃模型在许多实际应用中都取得了良好的效果,例如在航空航天、汽车设计、石油天然气和涡轮机设计等领域。
通过设置合适的多孔介质模型参数,可以更准确地模拟流体在多孔介质中的流动过程,从而为工程设计提供有力的支持。
综上所述,Fluent 中的多孔跳跃模型参数设置涉及多个方面,需要综合考虑多孔介质的材料属性、热生成速度、湍流粘性等因素。
The Spalart-Allmaras模型
对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。
它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。
Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出和好的效果。
在透平机械中的应用也愈加广泛。
在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。
在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。
这将是最好的选择,当精确的计算在湍流中并不是十分需要时。
再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。
这也许可以使模型对于数值的误差变得不敏感。
需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。
例如,不能依靠它去预测均匀衰退,各向同性湍流。
还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。
在气体动力学中,对于有固壁边界的流动,利用Spalart-Allmaras模型计算边界层内的流动以及压力梯度较大的流动都可得到较好的结果。
标准k-e模型
最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。
在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。
适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。
它是个半经验的公式,是从实验现象中总结出来的。
由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e模型。
k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
RNG k-e模型
RNG k-e模型来源于严格的统计技术。
它和标准k-e模型很相似,但是有以下改进:•RNG模型在e方程中加了一个条件,有效的改善了精度。
•考虑到了湍流漩涡,提高了在这方面的精度。
•RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。
•然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。
这些公式的效用依靠正确的对待近壁区域
这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。
带旋流修正的k-e模型
带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。
•带旋流修正的k-e模型为湍流粘性增加了一个公式。
•为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
带旋流修正的k-e 模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模
型有更好的表现。
但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。
带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。
这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。
这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。
由于这些修改,把它应用于多重参考系统中需要注意。
标准k-ω模型
标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。
Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。
标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。
剪切压力传输(SST)k-ω模型
SST k-ω模型由Menter发展,以便使得在广泛的领域中可以独立于k-e模型,使得在近壁自由流中k-ω模型有广泛的应用范围和精度。
为了达到此目的,k-e模型变成了k-ω公式。
SST k-ω模型和标准k-ω模型相似,但有以下改进:
•SST k-ω模型和k-e模型的变形增长于混合功能和双模型加在一起。
混合功能是为近壁区域设计的,这个区域对标准k-ω模型有效,还有自由表面,这对k-e模型的变形有效。
•SST k-ω模型合并了来源于ω方程中的交叉扩散。
•湍流粘度考虑到了湍流剪应力的传波。
•模型常量不同。
这些改进使得SST k-ω模型比标准k-ω模型在在广泛的流动领域中有更高的精度和可信度。
雷诺压力模型(RSM)
在FLUENT中RSM是最精细制作的模型。
放弃等方性边界速度假设,RSM使得雷诺平均N-S 方程封闭,解决了关于方程中的雷诺压力,还有耗散速率。
这意味这在二维流动中加入了四个方程,而在三维流动中加入了七个方程。
由于RSM比单方程和双方程模型更加严格的考虑了流线型弯曲、漩涡、旋转和张力快速变化,它对于复杂流动有更高的精度预测的潜力。
但是这种预测仅仅限于与雷诺压力有关的方程。
压力张力和耗散速率被认为是使RSM模型预测精度降低的主要因素。
RSM模型并不总是因为比简单模型好而花费更多的计算机资源。
但是要考虑雷诺压力的各向异性时,必须用RSM模型。
例如飓风流动、燃烧室高速旋转流、管道中二次流。
计算成效:cpu时间和解决方案
从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一种方程可以解。
由于要解额外的方程,标准k-e模型比Spalart-Allmaras模型耗费更多的计算机资源。
带旋流修正的k-e模型比标准k-e模型稍微多一点。
由于控制方程中额外的功能和非线性,RNGk-e模型比标准k-e模型多消耗10~15%的CPU时间。
就像k-e模型,k-ω模型也是两个方程的模型,所以计算时间相同。
比较一下k-e模型和k-ω模型,RSM模型因为考虑了雷诺压力而需要更多的CPU时间。
然而高效的程序大大的节约了CPU时间。
RSM模型比k-e模型和k-ω模型要多耗费50~60%的CPU时间,还有15~20%的内存。
除了时间,湍流模型的选择也影响FLUENT的计算。
比如标准k-e模型是专为轻微的扩散设计的,然而RNG k-e模型是为高张力引起的湍流粘度降低而设计的。
这就是RNG模型的缺
点。
同样的,RSM模型需要比k-e模型和k-ω模型更多的时间因为它要联合雷诺压力和层流。
【FLUENT】
FLUENT 中courant number是在耦合求解的时候才出现的。
正确的调整,可以更好地加速收敛和解的增强稳定性。
courant number 实际上是指时间步长和空间步长的相对关系,系统自动减小courant 数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。
在fluent 中,用courant number 来调节计算的稳定性与收敛性。
一般来说,随着courantnumber 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。
所以具体的问题,在计算的过程中,最好是把Courant number 从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number 的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。