二氧化碳压裂
- 格式:ppt
- 大小:6.23 MB
- 文档页数:34
二氧化碳压裂施工安全要点CO₂泡沫压裂是低压低渗、水敏性地层有效的增产措施,具有对地层伤害低、液体返排率高、携砂性能好、抑制粘土膨胀、降低滤失及水的表面张力等优点,增长效果较好,目前在国内外各油气田得到广泛应用。
但是由于液态的CO2容易形成干冰堵塞而出现炸裂等事故,因此,CO₂泡沫压裂施工安全显得尤为重要。
介绍主要从两个方面入手:CO2物理特性和现场施工安全注意事项,对CO₂压裂安全施工具有较好的指导作用,保证压裂施工的安全有效进行。
一、CO₂的物理性质1、性质CO₂在-56.6°C和0.531MP(绝对)的条件下,气态、液态和固态三种形态同时存在,即CO₂的三态点。
在低于0.531MP(绝对)时,CO₂以固体(干冰)或者是气体的形态存在,高于30.6°C和7.5MP时,它将以气体的形态存在。
在大气压条件下,固态在其温度达到-78.5°C时,便开始升华。
超过30.6°C时,CO₂都是蒸汽,超过这个临界温度增加压力也不能使之转变到液态。
CO₂常温下是一种无色无味、不助燃、不可燃的气体,密度比空气大,略溶于水,与水反应生成碳酸。
CO₂压缩后俗称为干冰。
2、人体危害(1)CO₂密度较空气大,当CO₂少时对人体无危害,但其超过一定量时会影响人(其他生物也是)的呼吸,原因是血液中的碳酸浓度增大,酸性增强,并产生酸中毒。
因为CO₂比空气重,所以在低洼处的浓度较高。
CO₂的正常含量是0.04%,当CO₂的浓度达1%会使人感到气闷、头昏、心悸,达到4%~5%时人会感到气喘、头痛、眩晕,而达到10%的时候,会使人体机能严重混乱,使人丧失知觉、神志不清、呼吸停止而死亡(2)切记在每次接触干冰的时候,一定要小心并且用厚绵手套或其他遮蔽物才能触碰干冰,如果是在长时间直接碰触肌肤的情况下,就可能会造成细胞冷冻而类似轻微或极度严重冻伤的伤害。
二、CO₂压裂基本原理CO₂泡沫压裂液是由液态CO₂、水冻胶和各种化学添加剂组成的液-液两项混合体系,在向井下注入过程,随温度的升高,达到30.6°C临界温度以后,液态CO₂开始气化,形成以CO₂为内相,含高分子聚合物的水基压裂液为外相的气液两相分散体系。
CO2干法压裂据了解,二氧化碳压裂技术源于北美,是一种采用液态二氧化碳作为压裂液来代替水的技术,主要针对煤层气、水敏性储层、含原油较稠储层、低压储层的油气开发而设计。
液态二氧化碳在汽化后,无水相,无残渣,仅有支撑剂留在地层,不会对储层造成伤害,可实现快速排液投产;此外,二氧化碳具备比甲烷更强的吸附力,可置换出吸附于母岩的甲烷,从而提高天然气或煤层气的产量,并实现部分二氧化碳的永久埋存。
与常规水基压裂相比,二氧化碳干法压裂对地层几乎无伤害,具有良好的增产增能作用,大量节约了水资源,达到了节能减排、绿色环保的施工要求,对于非常规油气储层清洁、高效开发意义深远,具有广阔的应用前景。
一、工艺技术原理1、增产机理强水敏/水锁伤害储层由于水基压裂液的滤失而导致较大的储层渗透率损害,影响压裂作业的增产效果。
低压、低渗透气藏普遍具有较强的水锁伤害。
CO2干法加砂压裂能够较大幅度的提高强水敏/水锁伤害储层的压后产量,主要体现在:①压裂液具有极低的界面张力,受热汽化后能够从储层中完全、迅速返出;②压裂液无残渣,对支撑裂缝导流床具有较好的清洁作用,保持了较高裂缝导流能力和较长的有效裂缝长度;③CO2在地层原油中具有较高的溶解度,能够降低地层原油黏度,改善原油流动性;④超临界CO2具有极低的界面张力,理论上,对非常规天然气储层中吸附气的解析具有促进作用。
2、技术优点CO2干法加砂压裂具有诸多优点,主要体现在较小的储层渗透率伤害,较高的支撑裂缝导流能力保留系数,较快的压后返排速度和对吸附性天然气的解析等方面。
对于提高水敏/水锁伤害严重储层和吸附性天然气储层(页岩气、煤层气等)产能具有明显技术优势,是一项非常有前景的增产改造技术。
CO2干法压裂总结起来有以下优点:1)无水相,不会对储层造成水敏水锁伤害;2)无残渣,不会对储层和支撑裂缝渗透率造成残渣伤害;3)具有很好的增能作用,在压力释放后,二氧碳气体膨胀,可实现迅速返排,有低压气井的压后快速排液投产;4)CO2流动性强,可以流入储集层中的微裂缝,更好地沟通储集层;5)CO2溶于原油可以降低原油的黏度,利于原油的开采;6)CO2能够置换吸附于煤岩与页岩中的甲烷,在提高单井产量的同时,还可以实现温室气体的封存。
二氧化碳压裂页岩技术
二氧化碳压裂是一种新兴的页岩气开采技术。
它利用高压二氧化碳替代传统的水和化学品作为压裂液,将其注入到页岩岩层中,从而使岩石裂缝扩大,释放出埋藏在其中的天然气。
相比于传统压裂技术,二氧化碳压裂具有更高的效率和更少的环境影响。
二氧化碳压裂技术的优势在于其压裂液为二氧化碳,不仅可以减少对地下水资源的污染,还可以将二氧化碳气体注入到岩层中进行封存,起到减缓气候变化的效果。
此外,二氧化碳压裂所需的水资源也较少,适用于缺水地区的页岩气开采。
不过,二氧化碳压裂技术也存在一些挑战,例如二氧化碳的成本较高、压裂液的注入需要更高的压力等。
此外,岩层中的二氧化碳含量也会影响二氧化碳压裂的效果。
总体来说,二氧化碳压裂技术是一种有前途的页岩气开采方法,其环境友好、高效节能的特点使其备受关注。
未来随着技术的不断进步,二氧化碳压裂技术的应用前景也将变得更加广阔。
- 1 -。
二氧化碳在油井中的应用引言:二氧化碳是一种常见的气体,它在油井中有着广泛的应用。
二氧化碳的化学性质稳定,易于获取和使用,因此它被广泛应用于油井开采和增产过程中。
本文将详细介绍二氧化碳在油井中的应用,包括二氧化碳驱油、二氧化碳压裂和二氧化碳注入。
一、二氧化碳驱油二氧化碳驱油是指通过注入二氧化碳气体来推动原油向油井井口移动的一种增产方式。
二氧化碳在地下的高压下,能够渗入油层中,与原油发生物理、化学反应,降低原油的粘度和表面张力,提高了原油的流动性。
此外,二氧化碳的气体膨胀性能也能够推动原油向油井井口移动。
通过二氧化碳驱油技术,可以有效地提高油井的采收率,延长油田的寿命。
二、二氧化碳压裂二氧化碳压裂是指在油井开采过程中,通过注入高压二氧化碳气体来破裂油层,并将原油从裂缝中释放出来的一种技术。
二氧化碳具有良好的渗透性和膨胀性能,可以在地下形成高压环境,使原油从油层中迅速释放出来。
与传统的水力压裂相比,二氧化碳压裂能够更好地保持油层的渗透性,提高原油的产量。
三、二氧化碳注入二氧化碳注入是指将二氧化碳气体注入到油井中的一种增产技术。
通过注入二氧化碳气体,可以改变油藏的物理性质,增加油层的压力,促使原油从油层中流出。
此外,二氧化碳还具有溶解原油的能力,可以提高原油的提取率。
二氧化碳注入技术在油井增产中具有广泛应用,能够有效地提高油井的产量和采收率。
四、二氧化碳的优势和挑战二氧化碳在油井中的应用具有以下几个优势。
首先,二氧化碳是一种环境友好的气体,与地球大气层中的二氧化碳没有任何区别,不会对环境造成污染。
其次,二氧化碳的获取和使用成本相对较低,适用于各种油田开采条件。
此外,二氧化碳的应用范围广泛,不仅可以用于常规油田开采,还可以用于页岩气、煤层气等非常规能源的开发。
然而,二氧化碳在油井中的应用也面临一些挑战。
首先,二氧化碳的获取和输送需要一定的成本和技术支持。
其次,二氧化碳的注入量和压力需要精确控制,否则可能会导致油井产量下降或油井堵塞。
二氧化碳压裂增产技术摘要:近年来,二氧化碳压裂法作为一种新型的非水压裂法已被广泛地用于国外和国外的非传统石油资源的开采。
二氧化碳压裂工艺主要有二氧化碳泡沫和二氧化碳干压裂化两种工艺,对于非传统油藏(尤其是低压、低渗透、水锁、水敏伤害)的工艺改进具有重要作用。
为解决二氧化碳压裂增产问题,本文综述了二氧化碳压裂技术的原理、施工工艺、压裂液体系、设备要求等,并对当前的问题及发展方向做了简要的介绍,以期为相关人员(或工程)提供参考。
关键词:二氧化碳;压裂增产CO2 fracturing stimulation technologyXI Shangyong,XIA Xuhua,BAO Li(CNPC Xibu Drilling Engineering Company Limited Tuha Downhole operation company)In recent years, as a new non hydraulic fracturing method, carbon dioxide fracturing has been widely used in the exploitation of unconventional oil resources at home and abroad. Carbon dioxide fracturing technology mainly includes carbon dioxide foam and carbon dioxide dry pressure cracking, which plays an important role in the process improvement of unconventional reservoirs (especially low pressure, low permeability, water lock, water sensitive damage). In order to solve the problem of CO2 fracturing stimulation, this paper summarizes the principle, construction technology, fracturing fluid system, equipment requirements, etc. of CO2 fracturing technology, and briefly introduces the current problems and development direction, in order to provide reference for relevant personnel (or Engineering).Key words:carbon dioxide;Fracturing stimulation引言近几年,由于我国石油消费的日益增长,石油对外依赖性已达60%,而随着国内石油产区的不断减少,石油产量的不断减少,石油资源的供应也面临着严峻的挑战。
CO2压裂工艺技术CO2压裂工艺技术是80年代以来发展起来的新工艺技术,它是以液态CO2或CO2与其它压裂液混合,加入相应添加剂,来代替常规水基压裂液完成造缝、携砂、顶替等工序的压裂工艺技术。
根据使用的压裂液组成不同,CO2压裂工艺技术可分为二氧化碳液体压裂、二氧化碳(甲醇)稠化水压裂、二氧化碳与氮气双相泡沫压裂和二氧化碳泡沫压裂四种形式,其中以二氧化碳泡沫压裂最为常用。
⑴原理CO2压裂液主要成分是液态CO2、原胶液和若干种化学添加剂。
在压裂施工注入过程中,随深度的增加,温度逐渐升高,达到一定温度后,CO2开始汽化,形成原胶为外相,CO2为内相的两相泡沫液。
由于泡沫液具有气泡稠密的密封结构,气泡间的相互作用而影响其流动性,从而使泡沫具有“粘度”,因而具有良好的携砂性能,在压裂施工中起到与常规水基压裂液相同的作用。
⑵技术优点①液体的二氧化碳在地层中既能溶于油又能溶于水,改善原油的物性,降低油水界面张力,有效提高油气采收率;②二氧化碳压裂液和常规压裂液相比,只有极少量的水和固相颗粒进入地层,同时二氧化碳泡沫可在裂缝壁面形成阻挡层,从而大大减少滤失,减少对地层的伤害;③CO2泡沫压裂液的PH值在3.5左右,即可有效防止粘土膨胀,又能对地层起解堵作用,有利于保护或增加地层孔隙渗透性,对水敏性地层效果更佳;④返排时,随井底压力下降,二氧化碳起到气驱作用,对于低产能井,有助于提高返排能力和加速返排速度。
使用CO2压裂,返排出的液体一般为总液量的75~90%,可以减少地层伤害,这是使用二氧化碳压裂气层的主要原因之一。
⑶二氧化碳泡沫压裂设计方法二氧化碳泡沫压裂设计采用“恒定内相”的设计方法,即把水基液部分看作外相,液态二氧化碳和支撑剂看作内相,施工过程中总排量和水基压裂液的排量恒定,随着加入支撑剂浓度的提高,液态二氧化碳的排量相应减小,使支撑剂和液态二氧化碳的体积量始终保持一个恒定值,这样有利于降低施工压力,提高施工一次成功率。
超临界二氧化碳压裂
超临界二氧化碳压裂,是一种新型的压裂技术。
它具有对环境的友好性,对裂缝的侵蚀较小,同时能够保证压裂效果的提高。
该技术逐渐被广泛应用于页岩气、煤层气等天然气开采中,为国家能源产业的发展带来新的机遇。
超临界二氧化碳是一种特殊的物质,当其处于临界条件下时,体积小、密度大、温度高,且具有极强的溶解能力。
在压裂作业中,超临界二氧化碳能够穿透岩石裂缝,与其中的油、气等有机物质迅速反应,加速产生压裂效果,从而提高了采收率。
与传统的水力压裂技术相比,超临界二氧化碳压裂具有以下几个优势:首先,这种技术对环境的影响很小,不需要大量用水,不会产生二氧化碳等污染物;其次,压裂液中含有的二氧化碳可以在岩石裂缝中形成气体泡沫,从而进一步增强压裂效果;最后,该技术适用于各种岩石类型,能够满足不同地质条件下的特定需求。
然而,超临界二氧化碳压裂技术的应用还存在一些问题。
例如,压裂液中的二氧化碳可能会泄漏到地表或大气中,对环境产生负面影响;此外,该技术对设备性能和操作要求较高,需要有资深的工程师和技术人才参与。
总的来说,超临界二氧化碳压裂技术是当前天然气开采领域中的一种创新技术。
通过进一步完善技术路线,优化操作流程,在确保安全的前提下,该技术有望持续发展,并为我国的能源产业做出贡献。
“液态”二氧化碳压裂增透技术一、背景技术随着浅部煤炭资源逐渐减少甚至枯竭,矿井进入深部开采以后,煤层突出危险程度日趋增加,瓦斯灾害的防治难度进一步增大,瓦斯抽采困难。
我矿进行了多种增透试验,包括煤层注水、水力压裂、水力割缝、水力冲孔技术等,并取得了一定的应用效果。
但相关研究表明:水分具有抑制煤层瓦斯解吸的作用,煤层注水减缓了瓦斯放散初速度,对瓦斯解吸起到了一定的封堵效应。
二、解决的技术问题与水力压裂相比,CO2压裂具有以下几方面的优势:①煤对CO2的吸附能力高于CH4,在含瓦斯煤体中注入CO2可通过驱替置换等作用促进瓦斯解吸;②低温液态CO2从岩层中吸热产生气体膨胀比约1:600,对钻孔周围岩体有巨大的气体压力促进钻孔裂隙发育;低温产生的收缩应力超过煤岩的抗拉强度后,煤岩内部结构发生破坏,产生热应力裂缝;③CO2遇到岩层中的水分会形成酸性混合物,可以酸化并移出堵塞于煤岩裂隙中的一些杂物;④液态CO2粘性较低,可以很容易地连接煤层中微裂隙,提高裂隙导流能力;⑤静态压力下煤(岩)层中某些区域的液态CO2能转变为超临界状态,超临界CO2作为一种溶解能力较强的溶剂,具有萃取煤中可溶有机质(如醚、酯、内酯类、环氧化合物等)的能力,可溶有机质经超临界CO2萃取后,煤体的孔隙率和渗透性增大;⑥液态CO2(-37℃)与煤(岩)层相比温度更低,能在钻孔周围形成温度梯度并引起温度应力。
三、具体实施方式2019年5月15日至2019年6月23日,在2121(1)西段瓦斯治理巷29#、30#钻场进行了向上穿层钻孔液态CO压裂增透试验。
此次试验共分为两个阶段,2第一阶在29#钻场预先打好压注孔与考察孔,以边压边抽方式考察抽采效果;考虑到打钻对原始煤岩的影响,第二阶段在30#钻场先布置压注孔,采取先压后抽的方式考察抽采效果。
截止2019年6月23日,课题组完成30#钻场的压注试验,约5m3,压注结束,实施考察孔。
共压注液态CO21、试验目的(1)研究先压后抽方式煤岩致裂增渗及瓦斯抽采效果;(2)穿层钻孔边压边抽和先压后抽的效果对比分析;致裂增渗煤岩的效果及影响范围。
二氧化碳干法压裂案例
二氧化碳干法压裂是一种使用液态二氧化碳作为压裂介质的压裂技术。
这种技术可以避免常规压裂技术中可能出现的水相伤害,如水敏和水锁现象。
以下是二氧化碳干法压裂的案例:
1. 吉林油田的二氧化碳蓄能压裂:这是一种无水相压裂技术,以液态二氧化碳为压裂介质,使用高强度固体颗粒作为支撑剂。
这种技术在吉林油田得到了应用,并取得了良好的效果。
2. “二氧化碳+氮气”泡沫压裂技术:这种技术是在压裂施工中同时注入二氧化碳及氮气。
具体的施工方法是,将液态二氧化碳或添加了其他化学剂的液态二氧化碳注入地层,在地层条件下气化。
依靠液态二氧化碳的造壁性,在储层中形成动态裂缝,为油气流动提供导流能力较高的渗流通道。
施工后地层中无液体残留。
如需更多二氧化碳干法压裂案例,建议查阅相关资料或咨询石油专家获取帮助。