带电粒子在电场和重力场复合场中的运动
- 格式:ppt
- 大小:195.50 KB
- 文档页数:15
带电粒子在电场和重力场的复合场中的运动教学目标:(一)知识与技能1.带电粒子在复合场中的运动处理方法。
2. 将力学中的研究方法,灵活地迁移到复合场中,分析解决力、电综合问题。
(二)过程与方法培养学生综合运用力学和电学知识,分析解决带电粒子在复合场中的运动能力。
(三)情感态度与价值观培养学生综合分析问题的能力,体会物理知识的实际应用。
教学重点:用力和运动的观点来分析带电体的运动模型。
教学难点:带电粒子在复合场中的运动规律教学过程:引入:我们本节课所讲的复合场指的是重力场和电场并存。
带电粒子在复合场中运动,物理情景比较复杂,是每年高考命题的热点;这部分内容从本质上讲是一个力学问题,应根据力学问题的研究思路和运用力学的基本规律求解。
带电粒子在复合场中运动的基本类型和解法归纳如下。
一:求解带电粒子在复合场中运动的基本思路1:带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为:2:确定研究对象;3:进行受力分析(注意重力是否能忽略);4:根据粒子的运动情况,运用牛顿运动定律结合运动学公式、动能定理或能量关系列方程式求解.二:带电粒子在复合场中运动的受力特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。
(2)电场力的大小为,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。
重力、电场力可能做功而引起带电粒子能量的转化。
三:带电粒子在复合场中运动的物理模型类型一:带电粒子在复合场中的直线运动1、当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.例1:带电粒子静止在电场中。
(1)带电粒子带什么电?(2)若给初速度以下情况下带电粒子将做什么运动?2:当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动例题2如图所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
高三物理带电粒子在复合场中的运动知识点总结|带电粒子在电场中的运动知识点一、带点粒子在复合场中的运动本质是力学问题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。
2、分析带电粒子在复合场中的受力时,要注意各力的特点。
如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。
而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。
必要时加以讨论。
三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:1、匀速直线运动。
自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。
因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
2、匀速圆周运动。
自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。
3、较复杂的曲线运动。
在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。
带电粒子在重力场与电场中的运动[学习目标] 1.会应用运动和力、功和能的关系分析带电粒子在复合场中的直线运动问题.2.会应用运动和力、功和能的关系分析带电粒子在复合场中的类平抛运动问题和圆周运动问题.一、带电粒子在复合场中的直线运动讨论带电粒子在复合场中做直线运动(加速或减速)的方法(1)动力学方法——牛顿运动定律、运动学公式.当带电粒子所受合力为恒力,且与速度方向共线时,粒子做匀变速直线运动,若题目涉及运动时间,优先考虑牛顿运动定律、运动学公式.在重力场和电场叠加场中的匀变速直线运动,亦可以分解为重力方向上、静电力方向上的直线运动来处理.(2)功、能量方法——动能定理、能量守恒定律.若题中已知量和所求量涉及功和能量,那么应优先考虑动能定理、能量守恒定律.例1如图所示,水平放置的平行板电容器的两极板M、N接直流电源,两极板间的距离为L=15 cm.上极板M的中央有一小孔A,在A的正上方h处的B点有一小油滴自由落下.已知带正电小油滴的电荷量q=3.5×10-14C、质量m=3.0×10-9kg.当小油滴即将落到下极板时速度恰好为零.两极板间的电势差U=6×105 V.(不计空气阻力,取g=10 m/s2)(1)两极板间的电场强度E的大小为多少?(2)设平行板电容器的电容C=4.0×10-12 F,则该电容器所带电荷量Q是多少?(3)B点在A点正上方的高度h是多少?针对训练1(多选)如图所示,平行板电容器的两个极板与水平地面成一角度,两极板与一恒压直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受重力与静电力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动二、带电粒子的类平抛运动带电粒子在电场中的类平抛运动的处理方法:1.运动分解的方法:将运动分解为沿初速度方向的匀速直线运动和垂直初速度方向的匀加速直线运动,在这两个方向上分别列运动学方程或牛顿第二定律.2.利用功能关系和动能定理分析:(1)功能关系:静电力做功等于电势能的减少量,W电=E p1-E p2.(2)动能定理:合力做功等于动能的变化,W=E k2-E k1.例2如图所示,空间存在一方向竖直向下的匀强电场,O、P是电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B.A不带电,B的电荷量为q(q>0),A从O点发射时的速度大小为v0,到达P点所用时间为t,B从O点到达P点所用时间为t2.重力加速度为g,求:(1)电场强度E的大小;(2)B运动到P点时的动能;(3)OP间的电势差U OP的大小.针对训练2(多选)如图所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行金属板左侧中点以相同的初速度v0垂直于电场方向进入板间匀强电场,最后落在A、B、C 三点,可以判断()A.落到A点的小球带正电,落到B点的小球不带电,落到C点的小球带负电B.三个小球在电场中运动的时间相等C.三个小球到达极板时的动能关系为E k C>E k B>E k AD.三个小球在电场中运动时的加速度关系为a A<a B<a C三、带电粒子在电场(复合场)中的圆周运动解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,向心力的来源有可能是重力和静电力的合力,也有可能是单独的静电力.例3(多选)(2022·广州市高二期末)如图所示,在竖直放置的半径为R的光滑半圆弧绝缘细管的圆心O处固定一点电荷,将质量为m,带电荷量为+q的小球从圆弧管的水平直径端点A由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力.已知重力加速度为g,下列说法正确的是()A.O处固定的点电荷带负电B.小球滑到最低点B时的速率为2gRC.B点处的电场强度大小为2mg qD.小球不能到达光滑半圆弧绝缘细管水平直径的另一端点C例4(2021·六安市高二期中)如图所示,一个竖直放置的半径为R的光滑绝缘环,置于水平方向的匀强电场中,电场强度为E,有一质量为m、电荷量为q的带正电荷的空心小球套在环上,并且Eq=mg.(1)当小球由静止开始从环的顶端A 下滑14圆弧长到位置B 时,小球的速度为多少?环对小球的压力为多大?(2)小球从环的顶端A 滑至底端C 的过程中,小球在何处速度最大?最大速度为多少?专题强化5 带电粒子在重力场与电场中的运动探究重点 提升素养例1 (1)4×106 V/m (2)2.4×10-6 C (3)0.55 m解析 (1)由匀强电场的场强与电势差的关系式可得两极板间的电场强度大小为E =UL =4×106 V/m.(2)该电容器所带电荷量为Q =CU =2.4×10-6 C. (3)小油滴自由落下,即将落到下极板时,速度恰好为零 由动能定理可得:mg (h +L )-qU =0 则B 点在A 点正上方的高度是h =qU mg -L =3.5×10-14×6×1053.0×10-9×10m -15×10-2 m =0.55 m. 针对训练1 BD [对带电粒子受力分析如图所示,F 合≠0,A 错误.由图可知静电力与重力的合力方向与v 0方向相反,F 合对粒子做负功,其中重力mg 不做功,静电力Eq 做负功,故粒子动能减少,电势能增加,B 正确,C 错误.F 合恒定且F 合与v 0方向相反,粒子做匀减速直线运动,D 正确.] 例2 (1)3mg q (2)2m (v 02+g 2t 2) (3)3mg 2t 22q解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a ,OP 的竖直高度为h , 根据牛顿第二定律:mg +qE =ma 由运动学公式和题给条件有:h =12gt 2=12a (t 2)2 联立解得:E =3mg q(2)设小球B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,根据动能定理有: mgh +qEh =E k -12m v 12h =12gt 2 且小球B 水平方向位移:x =v 1t2=v 0t联立得:E k =2m (v 02+g 2t 2) (3)OP 间电势差为U OP =Eh 由(1)知E =3mgq联立解得:U OP =3mg 2t 22q.针对训练2 ACD [不带电小球、带正电小球和带负电小球在平行金属板间的受力如图所示:由此可知不带电小球做平抛运动,a 1=Gm ,带正电小球做类平抛运动a 2=G -F m ,带负电小球做类平抛运动,a 3=G +F ′m.根据题意,三小球在竖直方向都做初速度为0的匀加速直线运动,到达下极板时,竖直方向的位移h 相等, 根据t =2ha得,带正电小球运动时间最长,不带电小球次之,带负电小球运动时间最短. 三小球在水平方向都不受力,做匀速直线运动,则落在板上时水平方向的距离与下落时间成正比,故水平位移最大的A 是带正电的小球,B 是不带电的小球,C 是带负电的小球,故A 正确,B 错误;根据动能定理,三小球到达下板时的动能等于这一过程中合外力对小球做的功.由受力图可知,带负电小球所受合力最大,为G +F ′,做功最多,动能最大,带正电小球所受合力最小,为G -F ,做功最少,动能最小,则小球到达极板时的动能关系为E k C >E k B >E k A ,故C 正确.因为落在A 点的小球带正电,落在B 点的小球不带电,落在C 点的小球带负电,所以a A =a 2,a B =a 1,a C =a 3,所以a A <a B <a C ,故D 正确.]例3 AB [小球从A 点由静止释放,运动到B 点的过程中,电场力不做功,则由机械能守恒定律可得mgR =12m v 2,即到达B 点的速度为v =2gR ,故B 正确;由题意可知,小球沿细管滑到最低点B 时,对管壁恰好无压力,则在B 点小球受重力和电场力,小球带正电受向上的电场力,则O 处固定的点电荷带负电,故A 正确;在B 点由牛顿第二定律k QqR 2-mg =m v 2R ,E =k Q R 2=3mgq ,故C 错误;根据点电荷的电场分布特点,可知电场线沿着半圆轨道的半径方向,所以小球从A 点运动到C 点的过程中,电场力不做功,即小球从A 点运动到C 点的过程中,机械能守恒,即小球可以到达光滑半圆弧绝缘细管水平直径的另一端点C ,故D 错误.] 例4 (1)4gR 5mg (2)BC 弧的中点2(2+1)gR解析 (1)从A 到B 根据动能定理得:mgR +qER =12m v B 2-0,解得:v B =4gR .根据牛顿第二定律得:F N -qE =m v B 2R ,解得:F N =5mg .根据牛顿第三定律得,环对小球的压力为5mg .(2)由于小球所受的静电力与重力都是恒力,它们的合力也是恒力,小球从A 处下滑时,静电力与重力的合力先与速度成锐角,做正功,动能增大,速度增大,后与速度成钝角,做负功,动能减小,速度减小,所以当合力与速度垂直时速度最大,由于qE =mg ,所以速度最大的位置位于BC 圆弧的中点,设为D 点. 则从A 到D 过程,根据动能定理得: mg (R +22R )+qE ·22R =12m v m 2 解得:v m =2(2+1)gR .。