智能电网发展与电能质量
- 格式:pdf
- 大小:248.77 KB
- 文档页数:3
建设智能电网对我国电网发展具有哪些重要意义?智能电网是我国电网发展的必然趋势,它将谱写电网建设的新篇章。
其重要意义体现在以下方面:(1)具备强大的资源优化配置能力。
我国智能电网建成后,将形成结构坚强的受端电网和送端电网,电力承载能力显著加强,形成“强交、强直”的特高压输电网络,实现大水电、大煤电、大核电、大规模可再生能源的跨区域、远距离、大容量、低损耗、高效率输送,区域间电力交换能力明显提升。
(2)具备更高的安全稳定运行水平。
电网的安全稳定性和供电可靠性将大幅提升,电网各级防线之间紧密协调,具备抵御突发性事件和严重故障的能力,能够有效避免大范围连锁故障的发生,显著提高供电可靠性,减少停电损失。
(3)适应并促进清洁能源发展。
电网将具备风电机组功率预测和动态建模、低电压穿越和有功无功控制以及常规机组快速调节等控制机制,结拿大容量储能技术的推广应用,对清洁能源并网的运行控制能力将显著提升'使清洁能源成为更加经济、高效、可靠的能源供给方式。
(4)实现高度智能化的电网调度。
全面建成横向集成、纵向贯通的智能电网调度技术支持系统,实现电网在线智能分析、预警和决策,以及各类新型发输电技术设备的高效调控和交直流混合电网的精益化控制。
(5)满足电动汽车等新型电力用户的服务要求。
将形成完善的电动汽车充放电配套基础设施网,满足电动汽车行业的发展需要,适应用户需求,实现电动汽车与电网的高效互动。
(6)实现电网资产高效利用和全寿命周期管理。
可实现电网设施全寿命周期内的统筹管理。
通过智能电网调度和需求侧管理,电网资产利用小时数大幅提升,电网资产利用效率显著提高。
(7)实现电力用户与电网之间的便捷互动。
将形成智能用电互动平台,完善需求侧管理,为用户提供优质的电力服务。
同用分布式电源、智能电能表、分时电价政策以及电动汽车充放电机制,有效平衡电网负荷,降低负荷峰谷差,减少电网及电源建设成本。
(8)实现电网管理信息化和精益化。
所谓智能电网,就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。
智能电网的核心内涵是实现电网的信息化、数字化、自动化和互动化,简称为“坚强的智能电网(Strong Smart Grid)”。
在奥巴马欲以能源革命将美国重推全球经济顶端之际,智能电网概念也在中国风生水起。
定义之争、标准之辩、什么路径、如何选择等问题,一时难以厘清。
6月10日2009中国分布式能源国际研讨会,6月3日中国电机工程学会智能电网研讨会,5月21日2009特高压输电技术国际会议,近日有关智能电网的会议密集举行。
早报记者近日获悉,我国目前正在规划2030年电网路线图,智能电网将在未来唱主角。
概念之争智能电网,即Smart Grid,原意为智能网格或智能网。
5月21日,国家电网公司在“2009特高压输电技术国际会议”上提出了名为“坚强智能电网”的发展规划。
国务院副总理张德江明确表示,政府未来将加大对特高压输电技术研究的支持力度,加快特高压技术发展步伐,从实际出发积极探索符合中国国情的智能电网发展道路。
“我们要在2020年全面建成坚强的智能电网。
”国家电网公司总经理刘振亚也在当天的会议上公开宣布。
国家电网公司已确立有关发展目标,即加快建设以特高压电网为骨干网架,各级电网协调发展,具有信息化、数字化、自动化、互动化特征的统一的坚强智能电网。
这是智能电网概念在中国引爆的近半年来,决策层在此问题上首次公开作出表态。
国家电网中国电力科学研究院副总工程师胡学浩近日接受早报记者采访时对智能电网做出的定义是:“以物理电网为基础,在中国以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,将现代化先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。
智能电网中的电力质量检测与评估随着科技的不断进步和社会的不断发展,智能电网已经成为现代能源领域的一个重要概念和发展方向。
智能电网利用信息技术和通信技术对电力系统进行智能化管理和控制,以提高供电可靠性和运行效率。
然而,在智能电网中,电力质量成为了一个关键问题。
本文将从电力质量检测与评估的角度,对智能电网中的电力质量问题进行分析和讨论。
一、电力质量的概念及重要性电力质量是指电能满足用户需求的能力,包括电压稳定性、频率稳定性、波形纯度和谐波等方面的指标。
对于现代社会来说,高质量的电能供应是促进经济发展和保障生活品质的重要保障。
不仅如此,电力质量问题还直接影响到电力系统设备的运行和寿命,甚至给用户的生产和生活带来不必要的损失。
因此,在智能电网中,电力质量的检测与评估具有重要的意义和价值。
二、智能电网中的电力质量检测技术智能电网中,电力质量检测技术是实现高质量电能供应的基础。
目前,电力质量检测技术主要包括电力质量监测装置、电能质量数据采集与处理系统以及电力质量在线监测系统等。
1. 电力质量监测装置电力质量监测装置是指用于监测电力质量相关指标的设备。
通过对电压、电流等参数的监测和采集,可以获取电力质量的准确数据。
常见的电力质量监测装置包括电力质量分析仪、电能质量仪表等。
这些装置通常具备高精度、高可靠性和多功能的特点,可以实时监测电力质量的各项参数,并进行数据记录和分析。
2. 电能质量数据采集与处理系统电能质量数据采集与处理系统是指对电力质量相关数据进行采集、存储和处理的系统。
通过该系统,可以将电力质量监测装置采集到的数据进行有效管理和分析,为电力质量评估提供支持。
该系统通常包括数据采集、数据存储、数据传输和数据处理等功能,可以实现对大量数据的高效处理和管理。
3. 电力质量在线监测系统电力质量在线监测系统是指通过网络将电力质量监测数据实时上传到云平台,实现对电力质量的在线监测和评估。
该系统主要是为了提高电力质量监测的实时性和精确性,以及减少设备的运维成本。
新能源并网对电力系统电能质量产生的影响摘要:随着我国新能源行业的逐渐发展,新能源发电系统逐年大规模接入电网,但是,新能源发电极易受到天气变化、季节变换以及地理位置等方面的影响,具有明显的间歇性、季节性、波动性等特点,在实际并网中会对电力系统的电能质量造成一定的影响。
因此,本文对新能源并网发电进行了介绍,分析了新能源并网对电力系统电能质量所产生的影响,并提出了相应的解决措施,希望可以更好地提升我国电力能源供应的稳定性。
关键词:新能源并网;电力系统;电能质量;影响引言由于我国人口众多以及社会的不断发展,各行各业对电量的需求越来越大,由于我国现有的传统能源量逐渐减少,如果一直使用传统的能源进行供电,将会导致能源日益匮乏以及产生环境污染问题。
因此,新能源在发电中发挥着重要作用,电力企业要充分利用新能源进行发电。
但是,随着新能源发电的大范围、大规模接入,高渗透率配电网的运行特性呈现间歇性、随机波动性和控制复杂性特征。
电力系统的安全性、稳定性再次受到了前所未有的挑战,为了不断提高新能源的发电效率,让新能源发电具有一定的持续性。
就要应用新能源并网电力系统电能质量的提升措施,全面推进电网电能质量,进一步满足人们的需求。
1、新能源并网发电的概述随着新能源的出现,也代表着社会开始进入到全新的时代。
对于创新而言,是对这个时代人才的要求,新能源的主要定义就是打破传统的电力能源,运用比较环保的“新”一代能源代替传统能源的地位,该概念对当前社会推行的可持续发展相符合,新能源可以对传统能源进行全面的替代。
1.1新能源类型分析新能源包括太阳能、以及生物质能等,新能源也被称为非常规能源,通常情况下,指的是传统能源外的各种能源形式,新能源是进行开发利用或者正在积极探究,需要进一步推广的能源,例如:太阳能、地热能以及生物质能等。
一般都对这些新能源进行开发与利用时需要借助外在技术。
而新能源发电就是指电力公司在新技术的支持下运用这些新能源进行发电的过程,新能源发电的类型通常包括:水力发电、太阳能发电、地热发电等。
五个环节解读智能电网:既智能又节能在我们的经济生活中,电网在经济社会发展、能源结构调整、应对气候变化等诸多方面发挥着越来越重要的作用。
电网智能化发展是大势所趋,智能电网助力节能减排,在电力系统的发电、输电、配电、变电、用电以及电力调度和通信方面都起到了重要作用。
我们从智能电网发、输、配、变、用五个环节解读智能电网的节能减排效果。
发电国家风光储输示范工程的环境价值集风力发电、光伏发电、储能系统、智能输电于一体工程每年将减少27万吨二氧化碳排放已累计发电近1.5亿千瓦时时至仲夏,塞外高原天高云淡,工程下辖的世界上机型最多的并网友好型风电厂、世界上装机最大的功率调节型光伏电站、世界上规模最大的多类型化学储能电站运转高效可靠,状态稳定良好,处处呈现出一派繁忙有序的喜人景象。
截至目前,国家风光储输工程已累计发电近1.5亿千瓦时。
位于河北张北县大河乡的国家风光储输示范工程,地处风、光资源富集的国家级千万千瓦风电基地,是目前世界上规模最大的集风力发电、光伏发电、储能系统、智能输电于一体的新能源示范电站。
工程运用世界首创的风光储输联合发电模式,积极采用新能源发电领域的新产品、新装备,按照风电10万千瓦、光伏发电4万千瓦、储能2万千瓦,并配套建设1座220千伏智能变电站的建设要求,自2011年12月25日实现竣工投产后,全面发挥大、广、全、新的特色优势,在智能电网技术框架下,通过有针对性地难点、重点攻关,初步实现了将难预测,难控制、难调度的风、光电源变成优质的绿色电源,成为我国在促进节能减排、加快推进新能源产业持续发展中的新亮点。
参照国际通用的换算模式,工程实际每年将减少27万吨二氧化碳排放,相当于燃烧760.79万升汽油、41.6万桶原油、9.36吨标准煤、1.01万立方米天然气所产生的二氧化碳,同时相当于栽下460.2万棵10年树木每年所能吸收的二氧化碳。
年二氧化碳减排量27万吨的数字指标绝不仅仅是一个单纯的简单表象,更是代表国家在实施环境保护、节能减排,大力推进绿色能源发展的科学举措。
电力系统中电能质量改善技术研究进展电能作为现代社会的重要能源形式,其质量的优劣直接影响着各类电气设备的正常运行和生产生活的顺利进行。
随着电力电子技术的迅速发展和电力负荷的日益多样化,电能质量问题愈发突出,如电压波动、谐波污染、三相不平衡等。
因此,研究和开发有效的电能质量改善技术具有重要的现实意义。
一、电能质量问题的成因及影响电能质量问题的产生原因多种多样。
电力系统中的非线性负荷,如电力电子设备、电弧炉等,是谐波产生的主要来源。
这些设备在运行过程中,电流波形发生畸变,从而向电网注入谐波电流,导致电压波形也发生畸变,影响电能质量。
电压波动和闪变则通常是由于大功率冲击性负荷的接入,如轧钢机、电弧炉等。
它们的运行会引起电网电压的快速变化,给照明设备和敏感电子设备带来不良影响。
三相不平衡问题主要源于三相负荷分配不均,可能导致电机发热、变压器损耗增加等问题。
电能质量问题对电力系统和用户设备都有着严重的影响。
对于电力系统,会增加线路损耗、降低变压器的利用率、影响继电保护和自动装置的正常运行。
对于用户设备,可能导致设备故障、降低生产效率、影响产品质量,甚至损坏设备。
二、电能质量改善技术的分类为了解决电能质量问题,目前主要采用以下几类技术:(一)无功补偿技术无功补偿是改善电能质量的重要手段之一。
常见的无功补偿装置有电容器、电抗器、静止无功补偿器(SVC)和静止同步补偿器(STATCOM)等。
电容器和电抗器通过提供或吸收无功功率来调节电网电压。
SVC 则通过控制晶闸管的导通角来快速调节无功功率,响应速度较快。
STATCOM 基于电力电子技术,能够实现更快速、更精确的无功补偿,并且具有更小的占地面积和更低的损耗。
(二)谐波治理技术针对谐波问题,主要有有源滤波和无源滤波两种技术。
无源滤波器结构简单、成本较低,但存在滤波特性受系统参数影响较大、可能与系统发生谐振等缺点。
有源滤波器则能够实时检测谐波电流,并产生与之大小相等、方向相反的补偿电流,实现谐波的有效治理,具有良好的动态性能和适应性。
智能电网中的电力质量监测在当今这个高度依赖电力的社会,智能电网的发展日新月异,而电力质量监测在其中扮演着至关重要的角色。
电力质量的好坏直接影响着各类电气设备的正常运行,以及整个电力系统的稳定性和可靠性。
要理解电力质量监测,首先得明白什么是电力质量。
简单来说,电力质量指的是电力系统中电能的各项指标是否符合标准,包括电压、电流、频率、谐波等。
一个良好的电力质量意味着电压稳定、电流平衡、频率准确且无过多的谐波干扰。
那么,为什么要在智能电网中进行电力质量监测呢?原因有很多。
随着电力系统的日益复杂,各种新型电力设备的不断接入,如变频器、新能源发电设备等,它们在运行过程中可能会产生谐波、电压波动等问题,从而影响电力质量。
如果不能及时监测和处理这些问题,可能会导致电气设备故障、缩短使用寿命,甚至引发电网事故。
此外,对于一些对电力质量要求极高的用户,如半导体制造企业、医院等,电力质量的微小波动都可能造成巨大的经济损失或危及生命安全。
因此,通过电力质量监测,能够及时发现问题,采取相应的措施来保障电力供应的稳定性和可靠性,满足不同用户的需求。
在智能电网中,电力质量监测的手段多种多样。
传统的监测方法主要是通过安装在电网中的各种传感器和仪表来获取电压、电流等数据。
这些传感器将采集到的数据传输到监控中心,工作人员通过对这些数据的分析来判断电力质量的状况。
然而,随着智能电网技术的不断发展,新的监测手段也应运而生。
例如,基于广域测量系统(WAMS)的监测技术,通过在电网中的关键节点安装同步相量测量单元(PMU),能够实时获取电网的动态信息,包括电压相角、频率变化等,从而更全面、准确地监测电力质量。
还有一种常见的监测手段是利用电能质量分析仪。
这种仪器可以对电力参数进行精确测量和分析,不仅能够检测常见的电力质量问题,如谐波、电压暂降等,还能提供详细的数据分析和报告,帮助工作人员快速定位问题所在。
在电力质量监测中,数据的采集和传输是至关重要的环节。
谈谈对智能电网的认识引言智能电网(smart power grids),就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。
1 智能电网的概念及其发展智能电网的核心内涵是, 在电力系统各业务环节, 实现新型信息与通信技术的集成, 促进智能水平的提高, 其覆盖范围包括从需求侧设施到广泛分散的分布式发电再到电力市场的整个电力系统和所有相关环节。
2006年,美国IBM公司提出了“智能电网”解决方案。
IBM的智能电网主要是解决电网安全运行、提高可靠性,从其在中国发布的《建设智能电网创新运营管理-中国电力发展的新思路》白皮书可以看出,解决方案主要包括以下几个方面:一是通过传感器连接资产和设备提高数字化程度;二是数据的整合体系和数据的收集体系;三是进行分析的能力,即依据已经掌握的数据进行相关分析,以优化运行和管理。
该方案提供了一个大的框架,通过对电力生产、输送、零售的各个环节的优化管理,为相关企业提高运行效率及可靠性、降低成本描绘了一个蓝图。
是IBM一个市场推广策略。
而后,中国能源专家武建东提出了“互动电网。
互动电网,英文为Interactive Smart Grid,它将智能电网的含义涵盖其中。
互动电网定义为:在开放和互联的信息模式基础上,通过加载系统数字设备和升级电网网络管理系统,实现发电、输电、供电、用电、客户售电、电网分级调度、综合服务等电力产业全流程的智能化、信息化、分级化互动管理,是集合了产业革命、技术革命和管理革命的综合性的效率变革。
它将再造电网的信息回路,构建用户新型的反馈方式,推动电网整体转型为节能基础设施,提高能源效率,降低客户成本,减少温室气体排放,创造电网价值的最大化。
智能化配电网的发展现状和发展趋势及方向摘要:本文对智能电网的关键技术应用现状进行了阐述,指出了未来发展坚强智能电网的方向,主要是:一要统筹考虑输煤和输电的关系,二是要坚持电网智能与坚强高度融合的原则,三是要积极参与、广泛合作。
我们认为,在国内,政府部门、相关企业等机构应积极宣传智能电网知识,提高公众对智能电网的认识和接受水平。
关键词:智能化;配电网;发展现状;趋势一、前言伴随着电网现代化的发展,人们对电力和安全可靠性和电能质量的要求逐渐提高,目前电力传输的可持续发展已成为各国关注的焦点。
在这种情况下,以现代信息技术为支撑的智能电网,通过智能控制可以有效地实现了动力互补、互助,推进通信及准确的供应,促进电力能源和安全级别的利用效率的提高。
基于此,文章从智能配电网的性能特点出发,对智能配电网中关键技术的应用进行分析和总结,提出了智能电网发展的趋势。
二、智能电网的关键技术应用现状1.1 ADA技术ADA技术是高级配电自动化技术的简称,作为配电网管理和控制方式上的一项重要进步成果,ADA技术实现了对分布式电源和配电系统的自动化和全面控制,促进了系统性能的优化。
智能配电网中的ADA技术,是一项非常复杂并具有高综合性的系统工程,电力企业中和配电系统相关的全部功能数据流和控制均包含其中,是智能配电网建设中的关键性技术。
和传统的配电自动化技术相比较,ADA技术对分布式能源的接入是支持的,实现着核配电网的有机集成,在柔性配电设备中能够进行协调控制。
同时,ADA技术还为智能配电网系统提供了实时仿真分析和辅助决策的效能,支持着高级应用软件和分布智能控制技术,在智能配电网中的应用,实现了对有源配电网的监控和信息的高度共享,具有良好的开放性和可拓展性。
另外ADA技术实现了计算机硬件的连通,Web 实现了网页的连通,而网格试图实现互联网上所有资源的全面连通,包括计算资源、存储资源、通信资源、软件资源、信息资源、知识资源等等。
智能电网发展智能电网是经济和技术发展的必然结果。
随着建设电网越来越大,对大电网提出了许多更高的技术要求,需要建设智能化和数字化电网,实现大电网安全稳定运行。
满足现代大电网运行控制技术的要求。
国际上认为智能电网是指这样的电网:利用现代测量、通信、计算机、自动化等IT技术,使得电网的运行更可靠、更灵活、更经济、能为用户提供更优质的服务。
我国在特高压输电技术国际会议上给出的定义是:以坚强、网架为基础,以信息通信平台为支撑,以智能控制为手段,包括电力系统的发电、输电、变电、配电、用电和调度各个环节,覆盖所有电压等级,实现“电力流、信息流、业务流”的高度一体化融合,是坚强可靠、经济高效、清洁环保、透明开放、有好互动的现代电网。
智能电网的核心是促进新能源和可再生能源的利用,实现节能减排。
挑战是一些可再生能源具有间歇性和随机性。
智能电网的特点:1. 自愈。
通过由分布式发电、分布储能和需求响应(DR)资源组成的分布能源提供辅助服务。
2. 互动。
与末端电力用户相交互。
3. 可靠。
抵御自然灾害,外力破坏和网络攻击4. 优质。
电能质量得到保证,并实现电能质量的差别定价。
5. 高效。
资产和设备的优化利用。
6. 兼容。
集中发电、分布式发电和储能单元的兼容。
7. 协调。
有效的市场化设计可以提高电力系统的规划、运行和可靠性管理水平。
8. 集成。
实现各信息系统之间的综合集成,并实现在此基础上的业务集成。
智能电网的技术体系1. 高级传输功能(ATO)变电站自动化、地理信息系统的传输、广域测量系统(WAMS)、高速信息处理器、高级保护和控制、建模仿真和可视化工具、高级传输系统组件、发达地区的实际应用2. 高级配电模式(ADO)先进传感器的配电管理系统、高级停电管理(实时)、分布式能源资源管理、配电自动化、配电地理信息系统、微格操作(直流和交流)、高级保护和控制、先进的配电系统组件3. 高级计量设施(AMI)智能仪表、智能电器及设备、消费者门户网站、家庭局域网、仪表数据管理、需求回应、客户服务应用、运行网关应用4. 高级资产管理(AAM)先进传感器(系统参数、“健康”设备)、其他系统实时信息的整合(设备利用最优化运行、基本维修条件、工程设计和建设、顾客服务、运行和能源管理、建模和仿真)。
智能电网电能质量监测与分析技术实验报告一、实验目的随着智能电网的快速发展,电能质量问题日益受到关注。
本次实验旨在深入研究智能电网中电能质量的监测与分析技术,掌握电能质量的各项指标及其测量方法,分析影响电能质量的因素,并提出相应的改善措施。
二、实验原理电能质量是指供电装置在正常工作情况下不中断和干扰用户使用电力的物理特性,包括电压、电流、频率、谐波、三相不平衡度等多个方面。
通过使用专业的电能质量监测设备,可以对电网中的电能质量参数进行实时测量和记录。
对于电压和电流的测量,通常采用互感器将高电压和大电流转换为适合测量的小信号,然后通过模数转换和数据处理得到准确的数值。
谐波分析则基于傅里叶变换原理,将复杂的周期性信号分解为不同频率的正弦波分量,从而确定谐波的含量和频率。
三相不平衡度的计算则基于三相电压或电流的矢量关系。
三、实验设备与环境本次实验使用了以下主要设备:1、电能质量分析仪:具备高精度的电压、电流测量功能,能够同时分析多种电能质量指标,如谐波、闪变、不平衡度等。
2、计算机:用于存储和处理测量数据,并运行相关的分析软件。
实验在一个模拟的智能电网实验室环境中进行,该环境能够模拟不同类型的负载变化和电网故障情况,以全面评估电能质量。
四、实验步骤1、设备连接与校准将电能质量分析仪正确连接到电网的测量点,确保连接牢固且信号传输正常。
然后对仪器进行校准,以保证测量结果的准确性。
2、设定测量参数根据实验要求,在电能质量分析仪中设置需要测量的电能质量指标,如电压偏差、谐波含量、频率偏差、三相不平衡度等,并确定测量的时间间隔和数据存储方式。
3、负载变化实验逐步增加和减少不同类型的负载,如线性负载(电阻、电感、电容)和非线性负载(整流器、变频器等),观察并记录电能质量指标的变化。
4、电网故障模拟模拟电网中的短路故障、断路故障等,记录故障发生前后电能质量的变化情况。
5、数据采集与存储在实验过程中,电能质量分析仪持续采集数据,并将其存储到计算机中,以便后续分析。
浅析智能电网的发展及其重要意义[摘要]文章首先介绍了智能电网的概念,详细分析了智能电网的发展历程以及国内发展智能电网的重要意义,最后指出:中国特色智能电网的建设是一项高度复杂的系统工程,为此文章提出了积极有序地推进智能电网研究及建设的具体建议。
[关键词]智能电网发展历程重要意义发展建议中图分类号:f426.61 文献标识码:a 文章编号:1009-914x (2013)14-0228-011 智能电网的概念到目前为止,智能电网并没有统一的定义。
根据 ibm中国公司高级电力专家martin hauske的解释,智能电网有 3 个层面的含义:1)利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控。
2)把获得的数据通过网络系统进行收集、整合。
3)通过对数据的分析、挖掘,达到对整个电力系统运行的优化管理。
我国在特高压输电技术国际会议上给出智能电网的定义是:以坚强网架为基础,以信息通信平台为支撑,以智能控制为手段,包括电力系统的发电、输电、变电、配电、用电和调度各个环节,覆盖所有电压等级,实现“电力流、信息流、业务流”的高度一体化融合,是坚强可靠、经济高效、清洁环保、透明开放、友好互动的现代化电网。
智能电网的定义虽然并不统一,但利用现代信息技术实现电网的智能化已成为普遍的共识。
2 智能电网的发展历程2003 年 4月,美国 65 位来自电力公司、电力设备制造商、联邦和州政府官员、大学和国家实验室的高级专家汇聚一堂,讨论美国未来的电力系统。
会后,于2003 年 6 月以美国能源部输配电办公室的名义发布了一份名为“grid 2030———电力的下一个 100年的国家设想”的报告。
这份报告可谓是美国电力改革的纲领性文件,描绘了美国未来电力系统的设想,并确定了各项研发和试验工作的分阶段目标。
欧洲于2005 年成立了欧洲智能电网论坛,目前,论坛已发表3份报告:《欧洲未来电网的愿景和策略》重点研究了未来欧洲电网的愿景和需求;《战略性研究议程》主要关注优先研究的内容;《欧洲未来电网发展策略》提出了欧洲智能电网的发展重点和路线图。