搅拌机功率计算(1)软件
- 格式:xls
- 大小:25.50 KB
- 文档页数:2
几种常用搅拌桨的功率计算2011-01-15搅拌所需功率是搅拌操作中的重要数据,它不仅可以作为选择电动机功率的依据,而且搅拌功率对搅拌操作的效果有直接影响,单位液体容积所耗功率是搅拌操作的一个重要的放大基准。
正确地计算搅拌所需功率对节约能量和提高搅拌操作的效果都是非常重要的。
在计算搅拌所需功率时,一般要先求出搅拌桨的功率数,然后根据下式就可以求出搅拌所需功率。
P=NρN3d5(1)P搅拌功率数随流动状态以及搅拌装置的形状和尺寸等条件而变化。
以往经常采用的搅拌功率计算方法有永田的关联式、Rushton的曲线图、Bates的曲线图等。
近几年龟井等人对层流区的搅拌桨的功率数与广泛雷诺数范围内用直叶开启涡轮(包括桨式桨)和折叶开启涡轮的功率数进行了研究,Bujalski等人对圆盘涡轮的功率数与规模的依存性进行了研究,并分别推导出可供设计采用的比较准确的搅拌功率数的关联式。
现将其研究结果分别介绍如下,而对关联式的推导过程从略。
1层流区各种搅拌桨龟井等基于搅拌槽内层流区桨式搅拌桨的二维流动数值解析的结果,利用基础式和边界条件从理论上推导出的几何参数,可以求得层流区的搅拌功率数的关联式,然后再考虑到三维的几何变数,对以上结果进行修正,提出了可适用于桨式桨(包括直叶开启涡轮)、锚式桨和双螺带桨在层流区的搅拌功率数的关联式。
该关联式与实验数据进行比较,对与槽壁间隙小的大型搅拌浆和间隙大的小型搅拌桨都能适用。
1.1桨式桨图13种搅拌桨的结构尺寸符号对于桨式桨(见图1a)有如下关联式:对两叶桨式桨(即Np=2)永田提出的关联式为:永田的关联式只适用两叶桨式浆。
式(2)的Np的范围为2~8,其计算值与实测值的平均误差为8%。
1.2锚式桨考虑到锚式桨(见图1b)的叶片高度h,宽度w和底边的宽幅b′,要在式(2)的基础上进行修正如下:式中的修正系数为:式(4)的平均误差为6.4%。
1.3双螺带桨考虑双螺带桨(见图1c)螺距S(一周的高度)和在槽壁面的叶片和水平面的角度A的关系,可用下式将α和S关联。
如何计算搅拌器轴功率搅拌器轴功率是指搅拌器驱动轴所需的功率,用来计算搅拌器的功率需求以确定合适的搅拌器驱动系统。
搅拌器轴功率的计算通常涉及以下几个因素:1. 流体特性:流体的属性对于计算搅拌器轴功率至关重要。
其中最重要的参数是流体的密度和粘度。
密度是液体或气体的质量与体积的比值,通常用千克/立方米(kg/m^3)表示。
粘度是流体的内部摩擦力,用牛顿/米^2(Pa·s)或波斯流(Poise)表示。
2.搅拌器几何形状:搅拌器的几何形状对于计算轴功率至关重要。
几何形状包括搅拌器直径、叶片长度、搅拌叶片的形状等。
几何形状决定了搅拌器所施加的剪切力和离心力。
3.负荷系数:负荷系数是一个用于考虑流体阻力和其他额外阻力的修正系数。
这个系数通常是经验数据,可以根据不同的搅拌过程和设备进行选择。
4.功率转换效率:功率转换效率表示通过驱动器传递的功率与输入功率之间的比例关系。
搅拌器轴功率需乘以这个转换效率来得到所需的输入功率。
5.抗冲击能力:对于一些特殊应用场景,如料液阶段反应或高粘度混合物搅拌,搅拌器的轴功率计算需要考虑到抗冲击能力。
基于上述因素,以下是常用的几种方法来计算搅拌器轴功率。
1. 塔比尔方程(Towler Equation):这是一种最常用的计算方法,通常用于低到中等粘度的流体。
公式如下所示:P=Cρn^3d^5其中,P代表搅拌器轴功率(瓦特),C是由负荷系数和其他经验数据决定的修正系数,ρ是流体密度(千克/立方米),n是搅拌器速度(转/分钟),d是搅拌器直径(米)。
2. 罗斯基方程(Rushton Equation):这个方程是针对一些特定类型的搅拌器设计的,例如罗斯基叶片搅拌器或桥式搅拌器。
公式如下:P=Cρn^3d^5ε^2其中,ε是搅拌器叶片的长度(米)。
3. 黄金方程(Golden Equation):这个方程适用于高粘度的液体。
公式如下:P=Cρn^3d^2V其中,V是浆料的体积流速。
P=M*n/9550M=955 0P/n序号发酵罐规格(标准比例)经验功率(以前项目所用功率)(KW)罐体直径(m)搅拌轴转数n(rpm)搅拌轴转数n(r/s)搅拌器数量电动机计算功率P M(KW)搅拌轴轴封处的摩擦损耗功率P m(KW)每层搅拌器的设计功率扭矩M(N.m)搅拌器直径Dj(m)轴封处搅拌轴直径 d0搅拌机传动装置各零部件的传动效率η1搅拌功率Ps(kW)功率准数Po多层搅拌器总功率准数系数Pon/Po多层搅拌器总功率准数Poc功率准数校正总系数k液体密度ρ(kg/m3)液体粘度Pa.s(Nsm-2)搅拌液体雷诺数R e115L0.40.2100016.6710.1150.086 1.10.067250.980.02750.750.90110000.00174074 130L0.550.2580013.3310.1320.086 1.60.083250.980.04450.750.91410000.00192593 250L0.550.3100016.6710.3060.086 2.90.100250.980.21450.750.92510000.001166667 250L0.550.380013.3310.1990.086 2.40.100250.980.11050.750.92510000.001133333 3100L 1.50.4400 6.6720.2110.107 5.00.133300.980.10050.78.50.94210000.001118519 4200L 2.20.570011.672 1.8940.19725.80.167500.98 1.65950.78.50.95610000.001324074 5300L 2.20.55100.1720.2010.197191.80.183500.980.00050.78.50.96210000.0015601.9 5300L 2.20.5560010.002 1.9290.19730.70.183500.98 1.69350.78.50.96210000.001336111 6500L30.8300 5.0020.6150.15119.60.267400.980.45210.7 1.70.98616000.03416732 6500L30.654707.832 2.1360.19743.40.217500.98 1.89750.78.50.97210000.001367731 6800L30.8350 5.832 2.4890.19767.90.267500.98 2.24250.78.50.98610000.001414815 71000L40.85400 6.673 6.8820.320164.30.283750.98 6.42450.7120.98910000.001535185 71500L7.5 1.00350 5.8327.4120.320202.20.333750.98 6.94350.78.5 1.00010000.001648148 85000L15 1.4250 4.17214.5200.320554.70.467750.9813.91050.78.5 1.02210000.001907407 910000L22 2.000140 2.33428.1400.4521919.60.6671000.9827.12550.715.5 1.04610000.0011E+06 101500L7.50.80400 6.673 5.1490.320122.90.267750.98 4.72650.7120.98610000.001474074搅拌功率计算:圆盘涡轮搅拌器,标准叶轮适用。
搅拌机功率的计算教学基本内容:介绍⽣物反应器设计特点与⽣物学基础;⽣物反应器中传质与传热问题;⼏种常见的⽣物反应器,通风发酵设备、嫌⽓发酵设备以及动植物细胞培养反应器;⽣物反应器的⽐拟放⼤。
7.1⽣物反应器设计特点与⽣物学基础7.2⽣物反应器中传质与传热问题7.3通风发酵设备7.4嫌⽓发酵设备与动植物细胞培养反应器7.5⽣物反应器的⽐拟放⼤授课重点:1. ⽣物反应器中传质与传热问题2. 搅拌转速和通⽓量对好氧发酵的影响3. 通风发酵设备中搅拌功率的计算4. 通风发酵设备的⽐拟放⼤难点:1. ⽣物反应器中传质与传热问题2.通风发酵设备的⽐拟放⼤本章主要教学要求:1. 了解⽣物反应器设计的基本特点。
2. 理解⽣物反应器中传质与传热的问题3. 了解搅拌转速和通⽓量对好氧发酵的影响4. 掌握通风发酵设备中搅拌功率的计算5. 掌握通风发酵设备的⽐拟放⼤⽣物反应器的概念提出:20世纪70年代,Atkinson提出了⽣化反应器(Biochemical reactors)⼀词,其含义除包括原有发酵罐外,还包括酶反应器、处理废⽔⽤反应器等。
期间,Ollis 提出了另⼀术语——⽣物反应器(Biological Reactor)。
⽣物反应器不仅包括传统的发酵罐、酶反应器,还包括采⽤固定化技术后的固定化酶或细胞反应器、动植物细胞培养⽤反应器和光合⽣化反应器等。
虽然⽣物反应器这⼀术语出现时间不长,但⼈们利⽤⽣物反应器进⾏有⽤物质⽣产却有着悠久的历史。
我们祖先酿制传统发酵⾷品时使⽤的容器就是最初的⽣物反应器。
20世纪40年代是⽣物反应器的开发、研制和应⽤获得迅速发展的阶段之⼀。
随后,由于⼀些著名⽣化⼯程学者的出⾊⼯作,极⼤地推动了⽣物反应器技术的发展,建⽴了常规⽣物反应器的⽐拟放⼤理论。
本章仅就⼏类主要⽣物反应器及其放⼤的基本原理做⼀介绍。
7.1⽣物反应器设计特点与⽣物学基础⽣物反应器的设计除与化⼯传递过程因素有关外,还与⽣物的⽣化反应机制、⽣理特性等因素有关。
搅拌器功率计算搅拌器功率分为运转功率和启动功率,运转功率是指远转时桨叶克服液体的摩擦阻力所消耗的功率;启动功率是指在启动时桨叶克服液体静止惯性所消耗的功率。
一、 运转功率计算 以平浆式为例:d n P i m53⨯⨯⨯=ρξ转式中:ξm --- 常数项;ρ----- 液体密度,kg/m 3; n----- 桨叶转速,r/min; d i ---- 桨叶直径,mm;根据对运转功率的进一步分析,得出如下结论:1、 采用倾斜桨叶,在改善结构和降低运转功率方面都是有宜的。
2、 在搅拌跟多液体时,应首先考虑增加桨叶数量,而不应增加桨叶长度。
3、 实际运转功率大于理论功率,这是因为还存在其它阻力,因此应在计算功率的基础上适当增加。
4、 容器内壁粗糙时,运转的实际功率应比计算功率增加10-30%。
5、 容器内有加热蛇管时,应增加2倍。
6、 容器内有挡板时,应增加2-3倍。
二、 惯性功率计算d n P i b 4393.1⨯⨯⨯=ρ阻令b/ d i =a;b=a d i .则: d n P i a 5393.1⨯⨯⨯=ρ阻令k=1.93a.为常数项,则: d n P i k 53⨯⨯⨯=ρ阻符号意义同上。
三、 总功率搅拌器的总功率消耗P W 为: P W =P转+P 阻=d n i m k 53)(⨯⨯⨯+ρξ以此式计算的功率值在1kw 以上时误差叫小,小于1kw 时则与实际功率有较大出入,将以用一下数值对功率作调整:当负荷功率≥1kw时,P实=(1.1-1.2)P W当负荷功率≥0.1kw时,P实=(1-4)P W当负荷功率≤0.1kw时,P实=10P W当负荷功率≥0.1kw时,P实=(1-4)P W如果只对功率作粗略估算,P W=(2-3)P转电动机应选用防潮型、具有接触环的异步电动机,它具有较大的启动转矩,而一般的三相同步电动机是不适应的。
搅拌器形式适应条件液体单位体积的平均搅拌功率的推荐值影响搅拌器功率的因素:1、 搅拌器的几何参数及运转参数2、 搅拌器的几何参数3、 搅拌介质的物理参数搅拌器的设计几种搅拌罐的H/D 值搅拌罐装料量 已知H/D 比公称容积V g ,操作时盛装物料的容积1、 装料系数ηV g =V*η η一般取值0.6-0.85.物料在反应过程中要起泡沫或呈沸腾状态,装料系数取低脂约0.6-0.7,物料反应平稳,可取0.8-0.85,物料粘度大时,可取大值。