大学物理-静电场讲义
- 格式:ppt
- 大小:7.93 MB
- 文档页数:202
第七章静电场§7.1点电荷库仑定律一、点电荷和狄拉克d 函数❶点电荷:是一个理想模型,忽略带电体本身的大小和形状,而将其抽象成带电荷的质点。
❷电荷连续分布线分布:dl dq =λ面分布:ds dq =σ体分布:vd dq =ρ❸d 函数(),00⎩⎨⎧=∞≠=x x X d ()1=⎰∞∞-dx X d 二、库仑定律❶真空12f 1q 2q 12r 21ff1q 2q12f 21f ,12312211212r r q Kq f f =-=229cNm 100.9-⨯=K设,410πε=K 212120mN C 1085.8---⨯=ε则3120122121124r r q q f f επ =-=电介质312312441221012212112r r q q r r q q f f r πεεεπ ==-=εr 电介质的相对介电常数ε 电介质的介电常数§7.2电场电场强度一、电场电荷周围存在的一种特殊形态的物质,具有能量、动量等。
电场对外表现:其一:电场对引入其中的电荷有力的作用;其二:当电荷在电场中移动时,电场对它要做功。
电荷之间的作用是通过电场实现的。
电荷⇔⇔电荷电场二、电场强度为了描述电场对电荷的施力性质,引入一个基本物理量--电场强度,简称场强,用表示,其定义为EqF E=三、场强迭加原理处于由产生的电场中q 0n q q q ,,,21 ∑∑=====n i in i iE F FE q q 11四、场强的计算点电荷电场,430rrq q F πε =34r r q E πε =点电荷系电场∑∑==i i i ii i r r q E E 34πε任意带电体电场用积分求解.解体步骤:1.将带电体分成无数个电荷元(电荷元不一定是点电荷)电荷元dq 在空间某点的场强:r rdq E d341πε=2.选取适当的坐标系,写出的各个分量的表达式。
Edzy x dE dE E d ,,3.求zy x dE dE E d ,,,⎰=E d E x x ,⎰=E d E y y ⎰=E d E z z 此步最好利用电荷分布的对称性判断方向,减少计算.E4. 带电体的场强kE j E i E E z y x++=§7.3 电感强度高斯定理一、电感强度D在各向同性的均匀电介质中,任一点处的电感强度等于该点的电场强度和介电常数的乘积,即:D εE EDε=二、电力线和电感线电力线电力线在电场中任一点处,通过垂直于的单位面积的电力线条数等于该点处的量值。
§5.4 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线.为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度E dSdN= (5.17) 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。
⎪⎭⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⋅⋅=θ=Φ⎰⎰)()()(cos c b a S d E S E ES ES e 图ϖϖϖϖ (5.18)若对封闭曲面,并规定面元法向n 的正向为从面内指向面外,则上式可表示为:⎪⎩⎪⎨⎧<>⋅=Φ⎰⎰小于穿入闭面的电场线从闭面穿出的电场线数大于穿入闭面的电场线从闭面穿出的电场线数00S e S d E ϖϖ (5.19) 三、高斯定理高斯(K.F.Gauss ,1777-1855年)是德国物理学家和数学家,他在实验物理和理论物理以及数学方面都做出了很多贡献,他导出的高斯定理是电磁学的一条重要规律.定理反映了静电场中任一闭面电通量和这闭面所包围的电荷之间的确定数量关系.下面在电通量概念的基础上,利用场的叠加原理推导高斯定理.1、包围点电荷 q 的球面的电通量以点电荷 q 所在点为中心,取任意长度r 为半径,作一球面S 包围这个点电荷 q ,如图5.6(a )所示,据点电荷电场的球对称性知,球面上任一点的电场强度E 的大小为204r qπε,方向都是以q 为原点的径向,则电场通过这球面的电通量为:⎪⎩⎪⎨⎧<>ε=πε=πε=⋅=Φ⎰⎰⎰⎰⎰⎰004402020qdS r qdS r q S d E SSSe ϖϖ 此结果与球面的半径r 无关,只与它包围的电荷有关.即通过以 q 为中心的任意球面的电通量都一样,均为q/0ε ,用电力线的图象来说,即当 q >0 时, e Φ> 0 ,点电荷的电力线从点电荷发出不间断的延伸到无限远处;q<0 时, e Φ< 0 ,电力线从无限远不间断地终止到点电荷.2、包围点电荷的任意封闭曲面S'的电通量S'和球面S 包围同一个点电荷q ,如图5.6(a )所示,由于电力线的连续性,可以得出通过任意封闭曲面S' 的电力线条数就等于通过球面S 的电力线条数.所以通过任意形状的包围点电荷q 的封闭曲面的电通量都等于q/0ε.3、如果闭面S' 不包围点电荷q如图5.6(b)所示.则由电力线的连续性可得,由一侧穿入S' 的电力线数就等于从另一端穿出S' 的电力线数,所以净穿出S' 的电力线数为零.即:0=⋅=Φ⎰⎰'S e S d E ϖϖ4、任意带电系统的电通量以上只讨论了单个点电荷的电场中,通过任一封闭曲面的电通量.我们把上结果推广到任意带电系统的电场中,把其看成是点电荷的集合.通过任一闭面S 的电通量为:⎰⎰∑∑⎰⎰⋅+=⋅=Φ+==Ssn i i n i i S e S d E E S d E ϖϖϖϖϖ)('11∑∑⎰⎰⎰⎰∑===ε=⋅=⋅=ni i n i S i S ni i q S d E S d E 10111ϖϖϖϖ5、高斯定理综上可得如下结论:在真空中通过任意闭合曲面的电通量等于该曲面内电荷电量的代数和除以 .这便是高斯定理 .其数学表达式为0101ε−−→−ε=⋅∑⎰⎰=q q S d E n i i S 写成'ϖϖ (5.20) 应当注意,高斯定理说明了通过封闭面的电通量,只与该封闭面所包围的电荷有关,并没有说封闭曲面上任一点的电场强度只与所包围的电荷有关.封闭面上任一点的电场强度应该由激发该电场的所有场源电荷(包括封闭面内、外所有的电荷)共同决定.四、高斯定理的应用高斯定理是反映静电场性质的一条普遍定律,它对后面要讨论的变化电场也是成立的.另外,在电荷分布具有某种对称性时,也可用高斯定理求该种电荷系统的电场分布,而且利用这种方法求电场要比库仑定律简便得多.下面通过例子来说明.例题 5.4 内、外半径分别为21R R 和的均匀带电球壳,总电荷为Q .求空间各点的电场强度。