机器视觉测量技术1.
- 格式:doc
- 大小:564.00 KB
- 文档页数:15
基于机器视觉的尺寸测量方法
机器视觉是一种通过摄像机、图像处理软件、计算机和人工智能技术来模拟人类视觉的技术。
在制造业中,机器视觉已经被广泛应用于尺寸测量,其高精度和高效率的特点使其成为自动化生产线上重要的测量手段。
基于机器视觉的尺寸测量方法是通过摄像机获取待测物体的影像,通过图像处理软件提取物体的轮廓或特征点,然后利用数学模型计算物体的尺寸。
这种方法不仅可以测量平面物体的尺寸,还可以对三维物体的长度、宽度、高度等尺寸参数进行测量。
在实际应用中,基于机器视觉的尺寸测量方法需要考虑以下几个方面:
1. 图像质量:图像质量直接影响测量精度,因此需要保证摄像机的分辨率、对比度、光线等条件都符合要求。
2. 物体表面的特征:在进行尺寸测量之前,需要对物体表面进行特征提取。
对于平面物体,可以直接提取物体的轮廓;对于三维物体,需要先通过立体匹配算法建立物体的三维模型,然后提取其特征点。
3. 计算模型:测量结果的精度和稳定性与计算模型密切相关。
因此需要根据实际应用场景选择适当的计算模型,并进行模型的优化和验证。
4. 测量环境:测量环境对测量精度也有一定的影响。
需要保证测量环境的稳定性和灰度均匀性,避免光照不均或者物体本身存在遮
挡等情况。
基于机器视觉的尺寸测量方法已经被广泛应用于汽车、航空、电子、医疗等领域。
随着机器视觉技术的不断发展和完善,基于机器视觉的尺寸测量方法将会更加精准和高效。
机器视觉测距的原理和方法
机器视觉测距是利用图像处理和计算机视觉技术来实现测量目标物体与相机之间的距离。
其原理和方法可以分为以下几种:
1. 三角测距原理:利用视差(相邻图像上同一物体的位置差异)来计算物体的距离。
通过相机的双目或多目成像系统获取多个视角的图像,从而得到图像中目标物体的视差信息,通过视差与相机的基线长度之间的关系,可以计算出距离。
2. 结构光测距原理:结构光测距是利用投射特定结构的光斑模式,通过相机观测光斑的形变来计算物体距离的一种方法。
常见的结构光测距方法有二维结构光和三维结构光。
通过对物体投射结构光,然后用相机观测结构光形变的方式,计算出物体的距离。
3. 时间-of-flight(TOF)原理:TOF测距是利用物体反射光的时间延迟来计算物体的距离。
该方法通过在相机上安装一个发射器和一个接收器,发射器发射红外激光脉冲,接收器接收到反射回来的激光脉冲。
通过测量激光脉冲的时间延迟,可以计算出物体的距离。
4. 激光三角法原理:激光测距是利用激光束在空气中传播速度恒定的特性,通过测量激光束的反射时间或相位差来计算物体的距离。
该方法通过向物体发射一个脉冲激光束,然后用相机或接收器接收反射回来的激光束,通过测量激光束的时间或相位差,可以计算出物体的距离。
综上所述,机器视觉测距的原理和方法多样化,可以根据具体应用需求选择合适的测距方法。
机器视觉检测系统现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。
通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。
人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。
这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。
视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。
与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。
视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。
因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。
在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。
2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。
(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。
通常,机器视觉检测就是用机器代替肉眼来做测量和判断。
基于机器视觉的机械检测与测量技术近年来,随着科技的不断进步,基于机器视觉的机械检测与测量技术在制造业中得到了广泛应用。
在传统的机械检测与测量中,往往需要人工参与,既费时又费力,且容易产生误差。
而通过引入机器视觉技术,可以实现自动化的检测与测量,大大提高了效率和准确性。
机器视觉是一种利用计算机和摄像机等设备对图像进行处理和分析的技术。
它通过模拟人类视觉系统的方式,识别和理解图像中的信息,并根据预设的算法进行相应的处理。
在机械检测与测量中,通过机器视觉技术可以实现对零件尺寸、形状、缺陷等进行快速而准确的检测与测量。
首先,机器视觉可以应用于零件尺寸的检测与测量。
传统的尺寸检测需要人工使用卡尺等工具进行,不仅浪费人力资源,而且容易产生误差。
而利用机器视觉技术,可以通过摄像机对零件进行拍摄,并将图像传输到计算机进行处理和分析,从而得到尺寸的数据。
通过与预设的标准进行对比,可以快速准确地确定零件是否合格。
其次,基于机器视觉的技术可以用于形状的检测与测量。
在制造过程中,零件的形状是否符合设计要求是十分重要的。
传统的方法往往需要仪器测量或者人工判断,耗时耗力且容易受主观因素影响。
而利用机器视觉技术,可以通过对零件图像的处理和分析,提取出形状的特征,并与预设的形状进行对比。
这种方法不仅准确性高,而且效率也得到了极大提高。
此外,机器视觉在检测零件缺陷方面也有广泛的应用。
在制造过程中,零件的缺陷会严重影响产品的质量和使用寿命。
传统的人工检测往往需要经验丰富的检验员进行,既费时又容易出错。
借助机器视觉技术,可以通过对零件图像的分析,快速准确地检测出潜在的缺陷,并及时采取相应的措施。
特别是对于微小缺陷的检测,机器视觉技术更是具有独特的优势。
然而,基于机器视觉的机械检测与测量技术也存在一些挑战和局限性。
首先,对于材料特性或者光照条件的变化比较敏感,可能会引起误判。
其次,复杂的零件形状和结构可能会导致识别和测量的困难。
此外,机器视觉的算法和模型的建立也需要一定的时间和精力投入。
3D机器视觉技术测量原理有哪些3D机器视觉技术是一种通过摄像机、传感器和计算机算法来获取并分析三维物体形状和结构信息的技术。
它在工业自动化、计算机辅助设计、医疗领域等各个领域都具有广泛的应用。
以下是几种常见的3D机器视觉技术测量原理。
1. 立体视觉(Stereo Vision)立体视觉是最常见也是最直观的一种3D测量技术。
它通过两个或多个摄像机同时拍摄同一场景的不同角度图像,然后通过计算机算法对图像进行处理,推算出物体的深度信息。
这种方法适用于静态场景,可以测量物体的尺寸、形状和位置等。
2. 相位测量(Phase Measurement)相位测量是一种基于物体表面的纹理或结构的光学变化来获取物体三维形状的方法。
它通过光源照射物体,使用相机记录物体表面的相位变化,然后根据相位变化来推算物体的高度信息。
这种方法精度较高,通常用于测量物体表面的细节特征,比如凹凸不平的物体表面。
3. 结构光投影(Structured Light Projection)结构光投影是一种利用投影仪投射特定的光纹或光斑到物体表面上,通过相机记录被投射光纹或光斑的畸变情况,进而推算物体的三维形状的方法。
这种方法常见的有线条结构光和格雷代码结构光。
它适用于不同尺寸和形状的物体,测量速度较快且精度较高。
4. 飞行时间法(Time-of-Flight)飞行时间法是一种通过计算光线从光源到物体表面再反射回相机所需的时间来推算物体的距离的方法。
它通过发送一个短脉冲光束,记录光束与物体表面的相互作用时间,然后根据光的速度推算出物体的距离。
这种方法在测量远距离和大尺寸物体上具有优势,但由于光传播速度受环境和表面材料的影响,精度相对较低。
以上是几种常见的3D机器视觉技术测量原理。
根据不同的应用需求和实际场景,可以选择合适的测量原理来获取物体的三维形状和结构信息。