第三章 3.3 其它岩类储层及盖层
- 格式:ppt
- 大小:3.75 MB
- 文档页数:33
对储集层有各种分类方案。
按岩类分为:碎屑岩储层、碳酸盐岩储层、特殊岩类储层(包括岩浆岩、变质岩、泥质岩等)按储集空间类型分为:孔隙型储层、裂缝型储层、孔缝型储层、缝洞型储层、孔洞型储层、孔缝洞复合型储层按渗透率的大小分为:高渗储层、中渗储层、低渗储层陆源碎屑岩砾岩(>2mm)砂岩(2-0.05)粉砂岩(0.05-0.005)泥质岩(<0.005)碳酸盐岩灰岩内碎屑灰岩生物碎屑灰岩鲕状灰岩生物灰岩白云岩火山碎屑岩集块岩(>64mm) 火山角砾岩(64-2) 凝灰岩(<2)其它沉积岩硅质岩磷质岩铁质岩绝对渗透率:若岩石中仅有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,这种条件下所反映的渗透率称为岩石的绝对渗透率。
单相渗透率:指单相流体通过岩体孔、裂隙时的渗透率。
有效渗透率:岩石孔隙中多相流体共存时,岩石对其中每相流体的渗透率,称相渗透率。
Ko、Kg、Kw。
相对渗透率:有效渗透率与绝对渗透率的比值油水气饱和度油、气、水在储层孔隙中的体积分别占总孔隙体积的百分数分别称为油、气、水的饱和度。
束缚水:被吸附在颗粒表面或孔隙内,不能自由流动,在油气排采中,不能驱除的那部分水分。
微细毛管孔道中的毛管滞水,亲水岩石颗粒表面的薄膜滞水束缚水饱和度:含油岩层中不可驱替水的体积与岩石总孔隙体积之比。
影响束缚水饱和度的主要因素:孔隙结构泥质含量流体性质残余油饱和度:当被工作剂驱洗过或油藏能量枯竭,不能够继续产出工业油流的时候,油层中仍滞留的石油体积占油层孔隙总体积的百分数,称残余油饱和度。
剩余油:目前尚未采出、并且尚未经工作剂驱洗或波及到的,通过加深对地下储层的认识、改善开发方案或开采工艺水平等措施可以采出的油,称剩余油。
剩余油饱和度:剩余油占油层孔隙总体积的百分数,为剩余油饱和度孔隙结构的测试:压汞法,毛细管压力曲线排驱压力的物理意义:润湿相被非润湿相流体排替所需要的最小压力。
在毛管压力曲线上,就是沿着曲线的平坦部分作切线与纵轴相交的压力值。
03 储集层和盖层一、名词解释:1、孔隙2、绝对孔隙度3、有效孔隙度4、渗透率5、绝对渗透率6、有效渗透率7、原生孔隙8、次生孔隙9、排驱压力10、盖层二、综合思考题:1、盖层应具备哪些条件?通常有利于作盖层的岩层的哪些?2、论述影响碎屑岩储集性的因素。
论述影响碳酸盐岩储集性的因素。
3、分别论述碎屑岩储集岩和碳酸盐岩储集岩的孔隙类型,它们有何差异?三、填空:1、储层孔隙中,地下水存在的三种状态包括、和自由水。
2、和是储集岩所具有的基本特性。
3、有效孔隙度是指岩石中与比值。
4、储集岩的储集空间按孔径大小可以划分为孔隙、孔隙和孔隙。
5、储集岩的储集空间按成因可以划分为两大类型,即和。
6、储集岩的储集空间按形态可以划分为两大类型,即和。
7、形成碳酸盐次生孔隙最有利成岩后生作用主要是和。
8、一般良好的盖层,地质上除考虑其岩石类型和具有较高的排潜压力之外,还应考虑其和。
四、选择性填空(每题选择一正确答案):1、对同一岩样来说,其有效孔隙度通常绝对孔隙度。
A、小于;B、等于;C、大于;D、可大于也可小于。
2、当某种流体饱和度为时,其相渗透率等于绝对渗透率。
A、5%;B、50%;C、75%;D、100%。
3、与储层比较,盖层的排替压力储层的排替压力。
A、大于;B、等于;C、小于;D、可小于也可大于。
五、是非判断题:1、岩石孔隙度大,其单个孔隙体积也一定大。
()2、同一岩样其有效孔隙度不可能大于其绝对孔隙度。
()3、在流体饱和度相同的条件下,有效渗透率越高,其孔隙愈粗大。
()4、只要是盖层,其排驱压力就比相邻的储层高。
()5、除泥质岩外很难找到其它岩石类型的盖层。
()。
《石油地质学》课程笔记第一章绪论1.1 石油和天然气在现代社会中的地位石油和天然气是现代社会最重要的化石能源,对于全球经济发展和社会进步具有举足轻重的作用。
它们不仅是能源的主要来源,还是化学工业、农业、医药、制冷和运输等行业不可或缺的原材料。
随着全球经济的快速增长,石油和天然气需求持续增加,导致资源紧张和价格波动。
因此,石油和天然气资源的勘探、开发和利用成为各国政府和企业关注的焦点。
1.2 我国油气地质与勘探发展简史我国石油和天然气的开发利用历史悠久,早在公元前就有关于石油和天然气的记载。
20世纪初,我国开始引进西方的地质理论和勘探技术,开展油气资源的调查和勘探。
新中国成立后,我国油气地质与勘探事业取得了举世瞩目的成就。
1950年代,发现了大庆、胜利等大型油田,使我国成为石油生产大国。
此后,我国在陆地和海域油气勘探不断取得突破,形成了多个重要的油气产区。
1.3 世界油气地质与勘探发展简史世界油气地质与勘探的发展历程与人类对能源的需求密切相关。
19世纪初,人们开始使用煤油作为照明燃料,推动了石油勘探的兴起。
随着内燃机的发明和应用,石油需求激增,促使勘探技术不断进步。
20世纪初,地质学家们提出了油气成因理论,为油气勘探提供了科学依据。
此后,地震勘探、钻井技术、油气藏评价等技术的突破,使得油气勘探领域不断扩大,发现了大量油气田。
第二章石油、天然气、油田水的基本特征2.1 石油的元素组成石油是一种复杂的混合物,主要由碳(C)和氢(H)两种元素组成,碳的含量约占83%至87%,氢的含量约占11%至14%。
此外,石油中还含有少量的硫(S)、氮(N)、氧(O)和微量金属元素等。
2.2 石油的化合物组成石油中的化合物主要包括烷烃、环烷烃和芳香烃。
烷烃是石油中含量最高的化合物,主要包括甲烷、乙烷、丙烷等。
环烷烃包括环戊烷、环己烷等。
芳香烃包括苯、甲苯、二甲苯等。
2.3 石油的馏分组成与组分组成石油可以通过蒸馏分离成不同的馏分,主要包括:轻馏分(液化石油气、汽油)、中馏分(柴油、煤油)、重馏分(润滑油、沥青)和残余油(重油、渣油)。