高桩码头计算说明
- 格式:doc
- 大小:244.50 KB
- 文档页数:16
q=37.59KN/m2三丘田码头工程下横梁底模计算书一、模板计算主要参数1、允许挠度: [f/l]=1/400(见JTS202-2011,page27)2、A3钢材允许抗弯和抗拉强度:[σ]=1.7×105KN/m 2,A3钢材弹性模量:E=2.1×108KN/m 2(见JTJ025-86,page3、page4)3、杉木允许抗弯和抗拉强度:[σ]=11×103KN/m 2杉木允许抗弯和抗拉强度:E=9×106KN/m 2(见JTJ025-86,page50)4、九合板允许抗弯和抗拉强度:[σ]=90×103KN/m 2九合板弹性模量:E=6.0×106 KN/m 2二、荷载组合(参照JTS202-2011)1、模板和支架自重木材按5KN/m 3计;25b 工字钢重度为0.42KN/m 2;2、新浇混凝土及钢筋的重力钢筋混凝土按25KN/m 3计3、施工人员和设备的重力(1)计算模板和直接支撑模板的楞木时,取均布荷载 2.5KN/m 2,并以集中荷载 2.5KN 进行验算;(2)计算支撑小楞的梁和楞木构件时,取均布荷载1.5KN/m 2;(3)计算支架立柱及支撑架构件时,取均布荷载1.0KN/m 2。
三、模板和支架验算1、九合板验算取1m 宽九合板计算,方木间距为0.3m,取5跨连续梁计算:(1)、施工人员和设备的荷载按均布荷载时施工人员和设备的荷载q1=2.5KN/m 2 ×1m=2.5 KN/m九合板自重荷载q2=5KN/m 3 ×1m ×0.018m=0.09 KN/m钢筋混凝土荷载q3=25KN/m 3×1m ×1.4m=35 KN/m总荷载q=q1+q2+q3=0.09 KN/m +2.5 KN/m+35 KN/m =37.59 KN/m由结构力学求解器计算得,M max =ql 2/8=37.59×0.32/8=0.36 KN.mW=bh 2/6=1×0.0182/6=5.4×10-5m 3强度验算:σ= M max /W=0.36KN.m /5.4×10-5m 3=6.7×103 KN/m 2<[σ]=90×103KN/m 2满足要求。
⾼桩码头课程设计计算书⽬录第⼀章设计资料 (1)1.1 码头⽤途 (1)1.2 ⼯艺要求 (1)1.3⾃然条件 (1)1.3.1地形 (1)1.3.2 原有护岸情况 (1)1.3.3地基⼟壤物理⼒学性质指标 (2)1.3.4 ⽔位 (3)1.4 建材供应 (3)1.5 施⼯条件 (3)1.6 码头规划尺度 (3)第⼆章码头结构选型 (4)第三章码头结构布置及构造 (4)3.1 码头结构总尺度的确定 (4)3.1.1码头结构的宽度 (4)3.1.2 码头结构沿码头长度⽅向的分段 (4)3.1.3 桩顶⾼程 (5)3.2 码头上⼯艺设备的型式及布置 (5)3.2.1 门机轨道的布置 (5)3.2.2 ⼯艺管沟的位置和尺⼨ (5)3.2.3 系船柱的型式和布置 (5)3.2.4 橡胶防冲设备的型式和布置 (6)3.2.5 护轮槛 (7)3.3码头上部结构系统的布置和型式 (7)3.3.1 横向排架 (7)3.3.2 纵梁 (8)3.3.3 ⾯板和⾯层 (9)3.3.4 靠船构件 (10)3.4 基桩的布置及构造 (10)3.4.1 横向排架中桩的布置 (10)3.4.2桩的纵向布置 (10)3.4.3 桩的构造 (11)3.4.4 桩帽的构造 (11)第四章码头荷载 (12)4.1 永久荷载 (12)4.1.1 永久荷载计算图⽰ (12)4.1.2 永久荷载的计算 (13)4.2 可变荷载 (14)4.2.1 船舶荷载 (14)4.2.2 堆货荷载 (16)4.2.3 门机荷载 (16)4.3 作⽤效应组合设计值的确定 (18)第五章横向排架计算 (19)5.1 计算基本假定 (19)5.2 桩的刚性系数 (19)5.3 桩上荷载及符号定义 (21)5.4 桩顶的变位 (22)5.5 桩顶断⾯的内⼒ (22)5.6 静⼒平衡⽅程 (22)5.7 基桩承载⼒验算 (24)第六章附件 (26)(1) ⾼桩码头平⾯图与⽴⾯图 (26)(2)⾼桩码头断⾯图 (26)第⼀章设计资料1.1 码头⽤途拟设计的码头系天津港所属船舶修理⼚的配套⼯程之⼀,供待修船舶系靠、检修、修理和新建船舶舾装之⽤。
高桩梁板式码头桩基荷载计算与施工技术高桩梁板式码头是一种常见的码头结构形式,其桩基荷载计算与施工技术是码头建设中非常重要的环节。
本文将从桩基荷载计算和施工技术两个方面来探讨高桩梁板式码头的建设过程。
一、桩基荷载计算高桩梁板式码头的桩基荷载计算是确保码头结构稳定安全的重要环节。
在进行桩基荷载计算时,需要考虑以下几个因素:1.1 码头荷载特点:根据高桩梁板式码头的使用需求,确定码头的设计荷载,包括静荷载和动荷载。
静荷载主要来自于码头上的设备、货物和人员等,动荷载主要来自于码头上的交通流量和波浪荷载等。
1.2 地基条件:在进行桩基荷载计算时,需要对码头所处的地基条件进行详细的调查和分析。
地基条件的好坏将直接影响到桩基的承载能力和稳定性。
1.3 桩基类型:根据地基条件和荷载特点,选择适合的桩基类型。
常见的桩基类型包括钢筋混凝土桩、钢管桩和预应力桩等。
1.4 桩基承载能力:通过现场试验和理论计算等方法,确定桩基的承载能力。
桩基的承载能力要求能够满足码头的设计荷载,并有一定的安全系数。
二、施工技术高桩梁板式码头的施工技术是保证码头质量和工期的关键。
在施工过程中,需要注意以下几个方面:2.1 基坑开挖:根据设计要求进行基坑的开挖,保证基坑的平整度和尺寸的准确性。
开挖过程中要注意地下水位的控制,以免影响桩基的施工。
2.2 桩基施工:根据桩基类型的不同,采用相应的施工方法。
钢管桩可以采用挖孔灌注桩施工法,预应力桩可以采用预制桩体施工法。
施工过程中要注意桩基的垂直度和水平度,保证桩基的质量和稳定性。
2.3 梁板施工:在桩基施工完成后,进行梁板的施工。
梁板的施工包括预制梁板的安装和现浇梁板的浇筑。
在进行梁板施工时,要注意梁板的尺寸和平整度,保证梁板的质量和稳定性。
2.4 防腐处理:高桩梁板式码头处于潮湿的环境中,容易受到腐蚀。
为了延长码头的使用寿命,需要对桩基和梁板进行防腐处理,以提高其耐久性。
三、总结高桩梁板式码头的桩基荷载计算和施工技术是码头建设中非常重要的环节。
q=37.59KN/m2三丘田码头工程下横梁底模计算书一、模板计算主要参数1、允许挠度: [f/l]=1/400(见JTS202-2011,page27)2、A3钢材允许抗弯和抗拉强度:[σ]=1.7×105KN/m 2,A3钢材弹性模量:E=2.1×108KN/m 2(见JTJ025-86,page3、page4)3、杉木允许抗弯和抗拉强度:[σ]=11×103KN/m 2杉木允许抗弯和抗拉强度:E=9×106KN/m 2(见JTJ025-86,page50)4、九合板允许抗弯和抗拉强度:[σ]=90×103KN/m 2九合板弹性模量:E=6.0×106 KN/m 2二、荷载组合(参照JTS202-2011)1、模板和支架自重木材按5KN/m 3计;25b 工字钢重度为0.42KN/m 2;2、新浇混凝土及钢筋的重力钢筋混凝土按25KN/m 3计3、施工人员和设备的重力(1)计算模板和直接支撑模板的楞木时,取均布荷载 2.5KN/m 2,并以集中荷载 2.5KN 进行验算;(2)计算支撑小楞的梁和楞木构件时,取均布荷载1.5KN/m 2;(3)计算支架立柱及支撑架构件时,取均布荷载1.0KN/m 2。
三、模板和支架验算1、九合板验算取1m 宽九合板计算,方木间距为0.3m,取5跨连续梁计算:(1)、施工人员和设备的荷载按均布荷载时施工人员和设备的荷载q1=2.5KN/m 2 ×1m=2.5 KN/m九合板自重荷载q2=5KN/m 3 ×1m ×0.018m=0.09 KN/m钢筋混凝土荷载q3=25KN/m 3×1m ×1.4m=35 KN/m总荷载q=q1+q2+q3=0.09 KN/m +2.5 KN/m+35 KN/m =37.59 KN/m由结构力学求解器计算得,M max =ql 2/8=37.59×0.32/8=0.36 KN.mW=bh 2/6=1×0.0182/6=5.4×10-5m 3强度验算:σ= M max /W=0.36KN.m /5.4×10-5m 3=6.7×103 KN/m 2<[σ]=90×103KN/m 2满足要求。
高桩码头课程设计系名称:建筑工程系专业:港口航道与海岸工程班级:班学号: 60122071姓名:王指导教师:刘佳2015年11 月30 日目录(居中,宋体小二,自动生成,全文多倍行距1.25)1.课程设计目的(宋体小四,数字英文均为新罗马)...........................................2.设计资料 .............................................................................................................2.1码头用途(宋体小四,首行缩进2个字符) ................................................2.2工艺要求 ............................................................................................................2.2.1靠泊作业船舶要求(宋体五号,首行缩进4个字符)2.2.2起重机作业要求2.2.3堆货荷载要求2.2.4码头设施2.3自然条件2.3.1地理位置2.3.2地质条件2.3.3水位资料2.4施工条件2.5码头规划尺度3.码头结构设计3.1码头形式选择3.2码头结构尺度3.2.1码头宽度的确定3.2.2码头结构沿长度方向的分段3.3桩基3.3.1钢筋混凝土桩3.3.2桩长计算3.3.3桩帽尺寸3.4上部结构3.4.1结构系统3.4.2横梁3.4.3纵梁3.4.4面板3.4.5面层4.码头附属设备4.1缓冲设备4.2系船设备4.3工艺管沟4.4护轮坎4.5接岸结构5.荷载计算5.1永久荷载5.2可变荷载5.2.1堆货荷载5.2.2门机荷载5.2.3船舶荷载5.2.4纵梁1.课程设计目的高桩码头课程设计是港口工程课的重要教学环节之一,是在学完港口工程课的基础上进行的,通过课程设计要达到以下教学目的:1.巩固和加深港工课所学的知识;2.培养运用所学知识解决实际工程问题的能力,掌握设计方法;3.提高计算和绘图技能,培养编写技术文件的能力。
某海港18000吨五金钢铁高桩码头工程设计摘要:上海港原有2#码头由于货运任务愈来愈繁重,码头破旧不堪,原有机械不配套,装卸通过能力又过低,远不满足生产发展需要。
现迫切需要扩建码头以满足年吞吐量40万吨的运量要求,本次设计拟拆掉原有码头2#而改建成一个18000吨级泊位的码头。
根据该码头的营运资料和自然条件,码头的总平面布置为:码头前沿宽14.5m,长198m,设三个后方桩台,宽27m,与陆域形成整片连岸式码头,由于货种主要为五金钢铁,装卸船采用门座起重机,水平运输采用牵引车或平板车,堆场作业采用轮胎式起重机。
根据码头的用途及其上的作用,初步确定了码头结构的两种设计方案,第一种为纵横梁不等高连接的高桩梁板式结构,第二种为纵横梁等高连接的高桩梁板式结构,经过比选确定第一种方案为推荐方案。
根据第一种方案进行了技术设计,对面板进行了施工期和使用期内力计算,对横梁进行了施工期内力计算,同时用PJJS电算软件对横梁进行了使用期内力计算,并根据计算结果对面板和横梁进行了配筋计算,设计成果主要有计算书、说明书、总平面布置图、码头三视图、横梁和面板配筋图。
关键词:上海港;改建;总平面布置;方案比选;内力计算Reconstruction of ShangHai PortHU Xionghui(School of Traffic and Ocean,Hohai University,Nanjing,Jiangsu,210098,China)Abstract:With the development of the input-output, the original two berths can’t meet the requirements of cargo transporation, ShangHai port have to be rebuilded. My task of graduation project is to extend aquay berth about tonnage of eighteen thousand at the original mark-two dock in ShangHai port.According to the trading and natural information, the whole plane layout of dock is that the length of apron space is 198m and the width is 14.5m and 3 rear platforms with the width of 27m becoming a solid deck pier. The main types of goods are iron and steel hardware so that the cargo-handling technology includes portal slewing cranes,flatbed tricycles or tractors and hoists.I have designed two programs. One is the longerons and the beams with the different height . The other has the same height . By the schemes comparison, I choose the first program as the final program.At last I make the technical design by the first program. In the construction period I make the internal force and strength calculation of the deckss and the beams. With the help of PJJS software, I calculate the internal force and strength calculation of the beams at the used period. And I design and reinforcement calculation of the decks and the beams.Keywords:Shanghai port, Reconstruction, whole plane layout of dock, schemes comparison, internal force and strength calculation.目录1 设计基本条件和依据 (1)1.1 工程概况 (1)1.2 设计依据 (1)1.3 设计任务 (1)2 营运资料 (1)2.1 货运任务 (1)2.2 船舶资料 (1)2.3 机械设备 (2)3 港口自然条件 (2)3.1 水文条件 (2)3.2 地形地质条件 (2)3.3 气象条件 (3)4 材料供应及施工条件 (3)4.1 材料供应 (3)4.2 施工条件 (3)5 总平面布置 (4)5.1 平面布置原则 (4)5.2 码头设计尺度 (4)5.3 陆域平面布置 (5)5.4 辅助生产和辅助生活建筑物 (5)5.5 装卸工艺 (5)6 码头结构初步设计 (7)6.1 码头上作用的确定 (7)6.2 拟定码头结构方案一 (9)6.3 拟定码头结构方案二 (17)6.4 码头结构方案比选 (22)7 码头结构技术设计 (23)7.1 面板技术设计 (23)7.2 横向排架技术设计 (26)8 结束语 (33)参考文献 (34)1 设计基本条件和依据1.1 工程概况上海地处入海河口地区,既承担运河任务,停靠千吨级货船,也承担海运任务,停靠万吨级的货轮。
第二章高桩码头一、工程概述本算例为钢筋混凝土高桩梁板结构,码头前沿水深为-14米,码头面定稿成为4.5米,码头结构由前桩台、后桩台和接岸结构组成。
前桩台宽37.5米,后桩台款15米。
前桩台基桩为650mm X 650mm 的预应力混凝土空心方桩,后桩台为600mm X 600mm 的预应力混凝土空心方桩,排架间距为7米。
二、设计条件1.设计船型设计船型为5万吨级集装箱船。
船长:L=280m;船宽:B=39.8m;型深:D=25m;满载吃水:T=12.5m。
2.水位及气象资料1)水位设计高水位:2.64m;极端高水位:3.68m;设计地水位:0.2m;极端地水位:-0.94m2)波浪第四章防波堤第一节斜坡堤一、设计条件二、断面尺寸确定三、护面块体稳定重量和护面层厚度四、垫层块石的重量和厚度五、堤前护底块石重量和厚度六、胸墙的作用标准值计算及相应的组合七、胸墙的抗滑、抗倾稳定性计算八、地基稳定性演算九、地基沉降计算高柱码头设施与施工规范3 一般规定3.1 一般要求3.1.1 在符合使用要求、保证质量、经济合理和施工可能的前提下,宜简化解耦形式,采用预应力混凝土构件,增加码头的整体性和使用年限,采用先进的施工工艺进行施工。
3.1.2 高桩码头基桩一般采用预应力混凝土桩、预应力混凝土管桩和钢管桩。
内河中小型码头可采用钢筋混凝土桩。
此外,也可采用灌注桩和嵌岩桩等其他形式基桩。
基桩设计和施工按现行行业标准《港口工程基桩规范》(JTJ254)规定执行。
3.1.3 码头伸缩缝的间距,应根据本地区的温度差、上部结构的刚度、桩的自由长度和刚度等因素综合考虑。
上部结构为装配整体式结构时,宜取60m—70米;上部结构为现场整体浇筑混凝土时,宜取35m左右。
沉降缝的位置应根据荷载情况、结构形式和地址条件确定,沉降缝宜与伸缩缝相结合。
注:当有实践经验或可靠论证时,伸缩缝的间距可适当增减。
3.1.4 码头上部结构在伸缩缝和沉降缝分段处,可采用悬臂式结构或简支结构。
排架计算报告书工程编号: 计算: 校核: 审定:工程条件1.基本说明1.1 设计采用的技术规范a.《高桩码头设计与施工规范》(JTS167-1-2010)b.《港口工程荷载规范》c.《水运工程抗震设计规范》d.《海港水文规范》e.《港口工程混凝土结构设计规范》f.《港口工程桩基规范》g.《港口工程灌注桩设计与施工规程》h.《港口工程预应力混凝土大直径管桩设计与施工规程》i.《港口工程嵌岩桩设计与施工规程》1.2 参数坐标说明a.坐标系约定X方向为沿横梁方向,X零点为码头前沿。
Y方向为沿码头前沿方向,Y零点为横梁轴线。
Z方向为竖向方向, Z零点为高程零点,Z的值代表高程。
b.作用效应值的正负号说明:轴力:受拉为负、受压为正。
弯矩:弯矩图画在受拉一侧,横梁上部受拉为负,下部受拉为正。
应力:受拉为负、受压为正。
c.参数采用的量纲:长度单位采用m,力采用kN,其它衍生的量纲以此为标准(特殊说明的除外)。
1.3 计算方法说明a.荷载计算1、施工期永久荷载包含:上横梁自重 + 纵梁自重 + 面板自重 + 靠船构件自重2、门机自动在轨道上滚动一遍得到支座的反力,然后将支座的反力最大值作为集中力反加到横梁上。
3、面板上均载按照面板的长宽比自动按照单向板或双向板方式进行传递到横梁和纵梁,集中力按照简支梁传递4、由于船舶力产生的横梁端部弯矩、竖向力传递到横梁时将被乘以分配系数6、程序不考虑超出横梁右侧的竖向荷载7、双向板上的集中力荷载先传递到纵梁8、计算时桩单元顶点取与横梁底部或桩帽底部的交点b.结构内力计算计算中将结构简化为平面刚架,采用杆系有限单元法进行求解;桩顶与横梁形心采用刚性连接9、计算中对横梁桩帽附近的包络值不进行削峰c.效应组合作用d.效应组合计算承载能力极限状态持久状况作用效应的持久组合采用下列公式计算:承载能力极限状态短暂组合采用下列公式计算:注:rQj 是第j个可变最用分项系数,按照分项系数表中所列值减小0.1;承载能力极限状态偶然组合采用下列公式计算:注:偶然作用的分项系数取1.0,与偶然作用同时出现的可变作用取标准值;承载能力极限状态地震组合采用下列公式计算:注:地震作用的分项系数取1.0,参考《水运工程抗震设计规范》执行;正常使用极限状态持久状况作用效应的标准组合采用下列公式计算:注:式中可变作用组合系数Ψ0 取 0.7;正常使用极限状态持久状况作用效应的频遇组合采用下列公式计算:注:式中频遇值系数Ψ1 取 0.7;正常使用极限状态持久状况准永久组合采用下列公式计算:注:式中准永久值系数Ψ2 取 0.6;正常使用极限状态短暂状况效应组合采用下列公式计算:正常使用极限状态持久状况的标准组合用途:预应力梁截面抗裂验算;预应力桩截面抗裂验算正常使用极限状态持久状况的准永久组合用途:预应力梁截面抗裂验算;梁截面裂缝宽度计算;预应力桩截面抗裂验算;桩截面裂缝宽度计算2.工程情况2.1 基本信息结构断面图结构立面图a.结构重要性等级:结构安全等级_二级;结构重要性系数1c.有无纵向联系:有纵梁系d.桩地基模型:假想嵌固点法;嵌固点深度:根据土层M值;嵌固点计算深度系数η:2.2 e.桩端支撑方式:摩擦桩f.水重度(kN/m^3):10g.计算中考虑如下水位:h.排架间距(m):6.5;排架榀数:8;码头顶面高程 (M):7;码头前沿泥面高程(m):-8 i.土层参数:单桩垂直承载力分项系数:1.55土抗拉折减系数:.7单桩抗拔承载力分项系数:1.55地基参数-#桩1地基参数-#桩2地基参数-#桩366-481930004015000 77-501930004515000地基参数-#桩4层序土层名称层底高程(m)天然重度(kN/m^3)地基m系数(kN/m^4)桩的极限侧阻力标准值(KPa)桩的极限端阻力标准值(KPa)土容许承载力q0(kPa)11-11193000120022-18193000160033-22193000220044-33193000200055-40193000351500066-48193000401500077-5019300045150002.2 梁截面编号截面名称类型参数1横梁截面1B=1.2H=3.5b1=.6h1=22纵梁截面1B=.6H=1.5b1=.3h1=.15h2=.15h3=.353纵梁截面2B=.5H=1.5b1=.3h1=.15h2=.15h3=.354梁截面2B=1.2H=2.5b1=.6h1=1截面名称截面面积(m^2)截面惯性矩(m^4)弹性模量(kPa材料重度(kN/m^3)材料名称横梁截面13.3 2.973296 3.25E+0725C40纵梁截面1.5175.089434 3.25E+0725C40纵梁截面2.495.08789 3.25E+0725C40梁截面2 2.1 1.072321 3.25E+0725C40 2.3 护轮坎参数b1(m):.3; b2(m):.25; h1(m):.25码头后沿是否有护轮坎:无2.4 面板参数面板预制部分厚度(m):.2;面板现浇部分厚度(m):.15;面板空心部分厚度(m):0面板磨耗层厚度(m):0~0面板现浇部分材料:C302.5 纵梁参数纵梁悬臂长度(m):2.00;轨道梁凹槽宽(m):0.00;轨道梁凹槽高(m):0.00纵梁中心坐标X(m)截面名称纵梁类型1.15纵梁截面2边梁2 3.75纵梁截面1纵梁37.25纵梁截面1纵梁410.85纵梁截面2边梁2.6 横梁参数注:分段是横梁从左到右依次布置的各分段的情况横梁长(m)截面1 2.2横梁截面128.8梁截面22.7 靠船构件参数沿码头前沿方向宽度(m)=1;靠船构件底部高程(m)=1;B1(m)=1.25;B2(m)=.6;H1(m)=2.5;H2(m)=0 2.8 设计时采用的桩截面混凝土空心方桩名称边长(m)内径(m)净面积(m^2)毛面积(m^2扭转惯性矩(m^4)截面惯性矩Iy(m^4)材料桩截面1.6.3.289314.36.020805.010402C40 2.9 桩截面承载力数桩截面1(根据容许轴力、弯矩、应力判定)注意:应力判定时钢桩根据材料系统自动判断;应力受压为正,受拉为负2.10 桩参数容许最小桩间净距(m)0;开口时桩内水位(m):0固定桩头时水位(m):0桩几何参数桩其它参数注:K值:桩的轴向刚性系数,即桩顶轴向单位变形所需的轴向力(kN/m)转角:桩在水平面上投影与X轴的夹角,逆时针为正。
第6章水工建筑物6.1 建设内容本工程拟建5万t级通用泊位2个。
水工建筑物包括码头平台、固定引桥与护岸。
结构安全等级均为二级。
6.2 设计条件6.2.1 设计船型5万t级散货船:船长×船宽×型深×满载吃水=223×32.3×17.9×12.8m6.2.2 风况基本风压 0.70Kpa按九级风设计,风速为22m/s,超过九级风时,船舶离港去锚地避风。
6.2.3 水文(1)设计水位(85国家高程)设计高水位: 2.77m 极端高水位: 4.18m设计低水位: -2.89m 极端低水位: -3.96m(2)水流水流设计流速 V=1.2m/s流向:与船舶纵轴线平行。
(3)设计波浪:波浪重现期为50年,设计高水位下H1%=1.81m; H4%=1.52m;H13%=1.22m;T mean=3.8s,L=22.96m。
6.2.4 地质条件码头平台与固定引桥区在勘察控制深度范围内地基土层为海陆交互相沉积、陆相冲洪积成因类型和凝灰岩风化岩层,从上而下分别为淤泥、块石、残积粘性土、强风化凝灰岩与中风化凝灰岩。
其中淤泥层厚为20.95m ~51.15m ;块石厚度分布不均;残积粘性土厚度3.5~9.69m ;强风化凝灰岩厚度分布不均;中风化凝灰岩最大揭露厚度为5.70m ,未揭穿。
其物理力学性质指标见表3-2。
护岸与陆域部分在勘察控制深度范围内地基土层自上而下分别为耕土、淤泥、粘土、角砾混粉质粘土、粘土、含角砾粉质粘土、强风化基岩与中等风化基岩等。
其中,淤泥厚15.50~37.00m ;粘土层厚0.7~26.00m ;角砾混粉质粘土厚0.8~16.00m ;含角砾粉质粘土厚4.5~32.80m ;强风化基岩厚0.2~3.70m ;中等风化基岩最大揭露深度为6.90m ,未揭穿。
其物理力学性质指标见表3-3。
6.2.5 设计荷载 6.2.5.1 船舶荷载 (1)系缆力[]sin cos cos cos y x F F K N n αβαβ=+∑∑ 式中:∑x F ,∑y F ——分别为可能同时出现的风和水流对船舶作用产生的横向分力总和及纵向分力总和(kN);K ——系船柱受力分布不均匀系数,K 取1.3; n ——计算船舶同时受力的系船柱数目,取n=5; α——系船缆的水平投影与码头前沿线所成的夹角(°),取α=30°;β——系船缆与水平面之间的夹角(°),取β=15°。
情况一:风向与船舶纵轴线垂直时,22/x V m s =;0y V =。
857.1105.646.91009.6x F kN =++=∑;88.5y F kN =∑ 计算得:N=476KN情况二:风向与船舶纵轴线平行时,0x V =;22/y V m s =。
105.646.9152.5x F kN =+=∑;184.188.5272.6y F kN =+=∑ 计算得:N=139KN根据《港口工程荷载规范》(JTS144-1-2010)(本章以下简称“规范”)表10.2.5-1,5万吨级船舶计算系缆力小于650kN 时,按650kN 选用,故系缆力标准值为650kN 。
系缆力标准值N 的横向分力N x ,纵向分力N y ,竖向分力N z :sin cos 650sin 30cos15313.93x N N kN αβ==⨯⨯=cos cos 65030cos15543.74y N N cos kN αβ==⨯⨯=sin 650sin15168.23z N N kN β==⨯=(2)撞击力船舶靠岸时的有效撞击能量:202n E mV ρ=式中:ρ——有效动能系数,取0.75;m ——船舶质量,按满载排水量计算,查“规范”表H.0.1,m=61100t ;n V ——船舶靠岸时法向速度,查“规范”表10.4.4-1对于有掩护的海港,取0.1m/s 。
2200.75611000.1229.122n E mV kJ ρ==⨯⨯= 选用SUC1150H 超级鼓型橡胶护舷,吸能:E=294kJ 反力R=589kN 。
(3)波浪引起的船舶撞击力因码头前波浪较小,经验算比较,小于船舶靠岸时的撞击能量。
(4)挤靠力F’j=(K’j/n)×ΣFx式中:F’j——橡胶护舷间断布置时,作用于一组或一个橡胶护舷上的挤靠力标准值(KN);K’j——挤靠力分布不均匀系数,取1.3;ΣFx——可能同时出现的风和水流对船舶作用产生的横向分力总和(KN),计1009KN;n——与船舶接触的橡胶护舷的组数或个数,取5个。
经计算,F’j=1.3×1009/5=262KN前边梁前沿采用DA-A400H橡胶护舷(L=1.5m),其吸能量67.6KJ,反力达404.7KN。
6.2.5.2 永久作用码头结构自重力:钢筋混凝土:γ=25KN/m3素混凝土:γ=24KN/m36.2.5.3 可变作用6.2.5.3.1 方案一6.2.5.3.1.1 码头平台(1)桥式抓斗卸船机轨距:12m,轮数:8×4,基距:18m,其它参数参考“规范”表C.0.4中X1250-30型选取。
(2)40t多用途门座式起重机轨距:12m,轮数8×4,基距:12m,其它参数参考“规范”表C.0.1中Mh-40-35型选取。
(3)堆货荷载:码头前沿: 20kPa前方堆场: 80kPa(构件计算)60Kpa(整体计算)6.2.5.3.1.2 护岸后方填料:乱毛石,容重为22KN/m3前沿线后15m内考虑40t平板车或10Kpa的均布荷载前沿线后15m外考虑100Kpa的均布荷载6.2.5.3.2 方案二6.2.5.3.2.1 码头平台(1)带斗门座式起重机轨距:12m,轮数:8×4,基距:18m,其它参数参考“规范”表C.0.3中Mh-40-35型选取。
(2)40t多用途门座式起重机同方案一(3)堆货荷载同方案一6.2.5.3.2.2 护岸同方案一6.3 结构方案6.3.1 水工结构方案(1)方案一:码头结构为高桩梁板式。
平台长度为521m,宽度为40m。
平台共分为7段,其中,首尾段长度为74.5m,中间5段长度均为74.4m。
各段之间变形缝宽20mm。
每段桩台排架间距均为10m。
除首尾悬臂长2.3m外,其余悬臂均为2.2m。
每榀排架下设φ1500钢管桩8根,均为直桩。
根据地质钻孔揭示的土层表明,在厚层淤泥软土以下的土层为块石和强风化至中风化基岩,均可作为持力层。
但桩基直接打入有困难,拟采用先将基桩沉桩至块石层顶面,然后采用钻孔灌注砼芯柱法成桩。
桩顶现浇倒T型横梁,下横梁底宽1.8m,高1.5m;上横梁宽 1.2m,高(含现浇面层厚度)2.5m。
下横梁间搁置预应力轨道梁与非预应力纵(前边)梁,梁上搁置预制面板,而后通过现浇节点及面层使结构整体化。
排架前沿设靠船构件,并采用SUC1150H鼓型橡胶护舷,同时在前边梁处设DA-A400H型橡胶护舷(L=1.5m)。
平台前沿设650KN系船柱。
固定引桥分为4座,自北向南分别为1#、2#、3#、4#引桥。
引桥长度分别为189.31m、166.782m、143.341m、115.062m。
除1#引桥宽度为12m外,其它引桥宽度均为9m。
引桥分为架空段与实体段。
实体段做法同护岸挡墙。
架空段引桥桩基采用φ1000PHC预应力管桩,桩端入块石层或中风化基岩1m。
桩顶现浇帽梁,而后安装预应力空心板、实心板及非预应力空心板,而后现浇面层。
引桥两侧设仿木栏杆。
护岸采用低桩挡墙结构。
基础为两根φ800PHC管桩,桩端入角砾混粉质粘土层1.6m。
桩基横向间距为5m。
桩基之间塞填碎石垫层,而后现浇钢筋混凝土底板(厚1m)与挡墙。
挡墙上部外侧坡度为10:1,内侧坡度为3.5:1。
挡墙上现浇胸墙(1.75m高),并设1m高的混凝土护栏。
挡墙、胸墙及护栏每隔20m设变形缝,缝宽20mm,以沥青砂浆塞填。
挡墙后设泄水孔,并设倒滤设施,而后回填乱毛石,并铺筑二片石垫层与倒滤层。
护岸挡墙前抛填块石镇压,宽度不小于5m,厚度不小于80cm。
(2)方案二码头结构为高桩梁板式,码头平台长度为521m,宽度为40m,平台共分为7段,其中,首尾段长度为74.5m,中间5段长度均为74.4m。
各段之间变形缝宽20mm。
每段桩台横向排架间距为7m。
除首尾悬臂长2.3m外,其余悬臂均为2.2m。
每榀排架下设φ1500钻孔灌注桩8根,均为直桩。
基桩钢护筒穿过淤泥层,沉至块石层顶面,然后采用钻孔灌注砼芯桩成桩。
桩顶现浇倒T型横梁。
下横梁底宽1.8m,高1.5m;上横梁宽1.2m,高(包括现浇面层厚度)2.5m。
下横梁间搁置预制轨道梁与纵梁,梁上搁置预制面板,而后通过现浇节点及面层使结构整体化。
其它同方案一。
固定引桥平面布置同方案一。
基础采用φ1000钻孔灌注桩,桩端入块石或中风化基岩1m。
桩基上现浇帽梁,安装预制T梁。
护岸平面布置同方案一,基础采用φ800钻孔灌注桩,桩端入中风化基岩0.5m。
6.3.2 结构计算6.3.2.1 作用效应组合6.3.2.1.1 码头平台(1)承载能力极限状态持久组合(设计高低水位分别验算)①1.2×自重+1.4×堆载+0.7×(1.5×船舶撞击力+1.5×门机(桥抓)非工作状态)②1.2×自重+1.4×堆载+0.7×(1.4×系缆力+1.5×门机(桥抓)非工作状态)③1.2×自重+1.4×系缆力+0.7×(1.4×堆载+1.5×门机(桥抓)非工作状态)④1.2×自重+1.4×系缆力+0.7×1.5×门机(桥抓)非工作状态⑤1.2×自重+1.5×船舶撞击力+0.7×(1.4×堆载+1.5×门机(桥抓)非工作状态)⑥1.2×自重+1.5×船舶撞击力+0.7×1.5×门机(桥抓)非工作状态)⑦1.2×自重+1.5×门机(桥抓)工作状态+0.7×1.4×堆载(2)正常使用极限状态持久状况下的短期效应组合⑧自重+0.8×(堆载+船舶撞击力+门机(桥抓)非工作状态)⑨自重+0.8×(堆载+门机(桥抓)工作状态)⑩自重+0.8×(堆载+系缆力+门机(桥抓)非工作状态)6.3.2.1.2 固定引桥(1)承载能力极限状态持久组合(设计高低水位分别验算)①1.2×自重+1.4×人群荷载+0.7×1.4×水流力②1.2×自重+1.4×水流力+0.7×1.4×人群荷载③1.2×自重+1.4×汽车荷载+0.7×1.4×水流力(2)正常使用极限状态持久状况下的短期效应组合④自重+0.8×(人群荷载+水流力)⑤自重+0.8×(汽车荷载+水流力)6.3.2.1.3 护岸①1.0×自重+1.35×土压力(稳定性验算时)②1.2×自重+1.35×土压力(桩基计算时)6.3.2.2 主要计算结果码头平台主要计算结果表表6-1引桥排架主要计算结果表表6-2表6-36.3.2.3.1 码头平台下桩基计算(1)φ1500钢管桩竖向极限承载力标准值按ZK32计算,淤泥层厚31.90m,块石层厚5.3m,强风化基岩④层厚6.1m,强风化基岩⑤层按3.9m计。