固体激光器谐振腔稳定性分析与光束仿真
- 格式:docx
- 大小:941.00 KB
- 文档页数:14
固体激光器谐振腔稳定性分析与光束仿真首先,光腔的几何稳定性是一种描述光的传播路径不随外界条件变化的性质。
在固体激光器中,主要有两种谐振模式,即横向模式和纵向模式。
横向模式是通过逆向应用的两片反射片实现的,在激光器腔的两端形成一定的光学场,从而实现激光放大。
纵向模式则是通过长度为谐振长的路径来实现的。
光腔的设计应尽量使横向模式稳定,即尽量减小模场的大小。
这可以通过选择适当的反射片反射率和位置来实现。
此外,合理选择激光器腔的长度也可以有效地提高光腔的稳定性。
比如,在选择激光谐振腔的大小时,可以选择较小的光腔面积以减小激光束的散焦程度,从而提高激光束的聚焦质量。
其次,热稳定性是指在激光器工作过程中,激光结晶体受到的热效应不会改变其工作状态。
固体激光器的热稳定性可以通过合理设计激光器的冷却方式来实现。
一种常用的方式是通过激光器内部通冷却剂的方式来降低激光器内部温度。
此外,还可以通过选择合适的激光结晶体材料来提高固体激光器的热稳定性。
在对固体激光器的谐振腔稳定性进行分析的基础上,可以进一步进行光束的仿真工作。
光束仿真是通过计算机模拟的方式来研究光束在传输过程中的特性和性能。
在固体激光器中,光束的质量主要包括波前畸变和焦散等方面。
光束的稳定性可以通过调整激光器的谐振腔参数来实现,如减小激光腔的长度、调整反射镜的位置等。
此外,合理选择固体激光器的激光结晶体材料也可以改善光束的品质。
总之,固体激光器的谐振腔稳定性分析和光束仿真是对固体激光器性能提升非常重要的一步。
通过合理设计固体激光器的谐振腔参数和光学元件的位置,可以提高固体激光器的输出功率和光束质量,满足不同应用需求。
谐振腔的稳定性分析和自在现高斯光束计算姓名:刘聪学号:2905201020在任务 1 中,需要用Matlab 程序计算光线在腔内的轨迹,演示腔稳定和不稳定时光线在腔内往返次数增加时的光纤轨迹,已知M1 的曲率半径R1=500mm,M2的曲率半径R2=600mm,这里选取左边球面镜M1为初始平面,Matlab程序如下:L=input('input L:=');r0=3;theta0=0.01; %初始化光线方程相关参数R1=500;R2=600;T1=[1,L;0,1];T2=[1,0;-2/R2,1];T3=T1;T4=[1,0;-2/R1,1];T=T4*T3*T2*T1;S=(T(1,1)+T(2,2))/2 %稳定性判据C=[r0;theta0];for k=1:100 %利用for语句完成光线往返100次x=0:.1:L;y=C(1)+C(2).*x;plot(x,y,'r'),hold on %光线从M1 到M2 的轨迹C=T1*C;C=T2*C;x=L:-.1:0;y=C(1)-C(2).*(x-L);plot(x,y,'r'),hold on %光线从M1 到M2 的轨迹C=T3*C;C=T4*C;end“ in put L: =” 700时,即当腔长为700m m 时,输出S= -0.8677, 5在(-1,1)的范围内,即腔是稳定的,其稳定的光线在腔内往返100次的轨迹如下图所示:100 100 200 300 400 500 600 7005-5-10-15“ in put L: =” 1200时,即当腔长为1200m m时,S=1.800,在(-1, 1)范围之外,即腔是不稳定的,其不稳定的光线在腔内往返100次的轨迹如下图所示:任务2中的谐振腔,由球面反射镜和平面反射镜之间插入一薄透镜构成。
这里在解决问题的过程中,一律选择平面镜为初始平面,这样比较方便。
中北大学课程设计说明书2014/2015 学年第一学期学院:信息与通信工程学院专业:光电信息工程学生姓名:赵策学号:1105104138 课程设计题目:基于MATLAB的谐振腔稳定性分析和高斯光束传输特性计算起迄日期:2015年1月12日~2015年1月30日指导教师:王小燕中北大学课程设计任务书2014/2015 学年第一学期学院:信息与通信工程学院专业:光电信息工程学生姓名:赵策学号:1105104138课程设计题目:基于MATLAB的谐振腔稳定性分析和高斯光束传输特性计算起迄日期:2015年1月12日~2015年1月30日指导教师:王小燕课程设计任务书摘要此次课程设计主要针对激光原理、激光技术课程中出现的诸多理论模型进行数值求解,通过MATLAB软件进行仿真验证,从而锻炼运用数值分析方法解决专业问题的能力,进一步学习高斯光束的特性和传播规律。
关键词:激光原理高斯光束MATLAB仿真设计AbstractThis course design principle of laser, the laser technology course many theoretical models appeared in numerical simulation by MATLAB software and ability to exercise using numerical methods to solve professional problems, further study characteristics and propagation of Gaussian beams.Key words: Principle of laser Gaussian beam The MATLAB simulation目录一、总体设计方案: (9)二、共轴球面腔稳定性分析: (9)三、任务一具体设计: (10)四、任务二具体设计: (12)五、任务三具体设计: (14)六、心得体会: (15)一、总体设计方案:此次课程设计主要为了完成谐振腔稳定性的分析、高斯光束的传播规律,理解谐振腔稳定振荡的条件,利用稳定震荡的条件区别稳定腔、临界腔、非稳腔,以及利用Q参数来描述高斯光束的基本特征和传输规律。
固体激光器谐振腔稳定性分析与光束仿真固体激光器在工业、医疗、通信等领域发挥着越来越重要的作用,其性能受到谐振腔稳定性的影响。
因此,对固体激光器的谐振腔稳定性进行分析和光束仿真是非常重要的。
在本文中,将对固体激光器谐振腔稳定性进行分析,并通过光束仿真的方式来验证分析结果。
首先,对固体激光器的谐振腔进行稳定性分析。
固体激光器的谐振腔一般由两个反射镜构成,一个为输出镜,一个为反射镜。
稳定性分析的主要目的是确定谐振腔的稳定工作范围,防止光束在谐振腔中发生退化,从而影响激光器的输出功率和光束质量。
通过计算谐振腔的稳定性参数,如G参数、α参数等,可以确定谐振腔的稳定性。
其次,利用光束仿真的方法对固体激光器的光束进行仿真。
光束仿真是通过计算机模拟光束在固体激光器中的传播路径和性能,包括模式的分布、光束的聚焦程度等参数。
通过光束仿真可以分析固体激光器的光束质量、光束的稳定性等重要性能指标。
同时,通过对光束的仿真可以验证谐振腔稳定性分析的结果,进一步优化固体激光器的设计和性能。
最后,对固体激光器的谐振腔稳定性分析和光束仿真结果进行总结和讨论。
通过对固体激光器的谐振腔稳定性分析和光束仿真的研究,可以更好地了解固体激光器的工作原理和性能特点,为固体激光器的设计、优化和应用提供参考。
总之,固体激光器的谐振腔稳定性分析和光束仿真是固体激光器研究的重要内容,通过这些分析可以更好地了解固体激光器的性能特点,提高其性能和应用效果。
希望本文的研究可以对固体激光器领域的相关研究提供一定的参考和借鉴。
专业课程设计固体激光器谐振腔稳定性分析与光束仿真学院:姓名:学号:班级:指导教师:二〇二〇年六月目录摘要 (1)一、概述 (1)1.1 课程设计的目的 (1)1.2课程设计的任务 (1)二、课程设计相关理论 (2)2.1光束的传输矩阵 (2)2.2 谐振腔稳定性条件 (3)三、课程设计结果 (3)3.1 任务一 (3)3.1.1问题分析 (3)3.1.2程序代码 (4)3.1.3 运行结果 (6)3.1.4 结果分析 (6)3.2任务二 (6)3.2.1问题分析 (7)3.2.2程序代码 (7)3.2.3 运行结果 (9)3.2.4 结果分析 (11)四、遇到问题及问题解决 (11)五、体会与收获 (12)固体激光器谐振腔稳定性分析与光束仿真摘要:本次课程设计主要进行固体激光器谐振腔稳定性分析与光束仿真。
学习了解光线传输矩阵与谐振腔稳定条件的基本原理,分析光线的传播过程,得出ABCD 矩阵。
利用MATLAB软件编写程序,分析谐振腔的稳定性,并对谐振腔内的光线进行追迹,直观的观察到光线在稳定性不同的谐振腔内的传播轨迹。
关键词:MATLAB、固体激光器谐振腔、稳定性分析、光线仿真一、概述1.1 课程设计的目的1、掌握光线传输的ABCD矩阵和谐振腔稳定条件;2、使用MATLAB软件编程分析谐振腔稳定性,并仿真谐振腔内光束传输;1.2课程设计的任务1、如下图所示的谐振腔:(1)用MATLAB程序计算光线在腔内的轨迹;(2)演示腔的稳定时和非稳定时光线在腔内往返次数增加时光线轨迹,初始光线任意选择;)确定能够使谐振腔达到稳定状态的腔长L的范围。
(3图1 两球面镜组成的谐振腔122、如图所示的谐振腔,由球面放射镜和平面放射镜之间插入一薄透镜构成。
图2 平面镜和凹面镜之间插入薄透镜谐振腔(1)分析计算透镜与平面镜之间的距离在什么范围内腔是稳定的;(2)在腔稳定情况下,演示在腔内往返100次以上时光线轨迹;二、课程设计相关理论2.1光束的传输矩阵光学传输矩阵表示形式如下:(r 1θ1)=(AB C D )(r 0θ0) 其中,r 0是离轴距离,θ0是光线与轴线夹角。
以下是几种常见光学器件的传输矩阵:(1) 光在均匀介质中传播的传输矩阵:[1L01](2) 光在球面反射镜表面反射的传输矩阵: [1−2R 1](3) 光在两界面折射时的传输矩阵:[1n 1n 2] R1=1000mmF=50mmL1L=800mm(4)光透射薄透镜的传输矩阵:[10−1f1] 2.2 谐振腔稳定性条件ABCD矩阵表示谐振腔的状态有三种:(1)稳定谐振腔:−1<A+D2<1(2)临界稳定谐振腔:A+D2=−1或者1(3)非稳定谐振腔:A+D2<−1或者A+D2>1三、课程设计结果3.1 任务一3.1.1问题分析首先利用列阵[rθ]描述任光线的坐标,而用传输矩阵T i=[A iB iC iD i]描述光线经过一段空间后所引起的坐标变换。
假设光线在腔内经n次往返时其参数的变换关系以矩阵的形式表示:[r nθn]=∏T ini=1[r1θ1]用此计算出光线的路径。
如此循环得到腔内的光线轨迹。
对于图1所示谐振腔光线传输过程如下图所示:3具体分析过程为:先确定一个初始光线起点,定于R1反射表面,经过R1反射后在腔内传输,再经过R2反射,在腔内传输返回起始点,整个过程中,光线的传输矩阵可以表示为ABCD矩阵:T=[10−2R11][1L01][10−2R21][1L01]=[A BC D]3.1.2程序代码1.寻找腔长范围的程序:clcclear %清除全部数据r=3;theta=0.01; %初始光线参数I=[r;theta]; %初始光线坐标R1=2000;R2=1000; %球面镜半径LM=input('input LM='); %输入腔长for L=0:1:LM %间隔1取一个数T1=[1,L;0,1];T2=[1,0;-2/R2,1];T3=T1;T4=[1,0;-2/R1,1]; %光线传输矩阵T=T4*T3*T2*T1; %光线往返一次矩阵L=L; %腔长S=(T(1,1)+T(2,2))/2; %谐振腔稳定条件plot(L,S,'k.','markersize',5),hold on %画腔长和谐振腔稳定系数的关系图plot(L,1,'k.','markersize',5),hold on %腔长和纵坐标1为黑色线plot(L,-1,'k.','markersize',5),hold on %腔长和纵坐标-1为黑色线axis([-inf,inf,-2,2]); %横纵坐标范围4xlabel('腔长L','Fontsize' , 14); %定义X轴为腔长ylabel('稳定性系数S','Fontsize' , 14); %定义y轴为稳定系数title('S、L对应曲线关系', 'Fontsize' , 20)%标题end2.演示稳定时、临界时和非稳定时光线轨迹的程序:clcclear %清除全部数据r=3;theta=0.01 %定义初始光线参数I=[r;theta]; %定义初始光线坐标R1=2000;R2=1000; %定义球面镜参数L=800; %定义腔长T1=[1,L;0,1];T2=[1,0;-2/R2,1];T3=T1;T4=[1,0;-2/R1,1]; %光线传输矩阵for k=1:100 %循环100次x=0:.1:L; %间隔y=I(1)+I(2).*x;plot(x,y,'k'),hold onI=T4*T3*I;x=L:-.1:0;y=I(1)-I(2).*(x-L);I=T2*T1*I;56title('谐振腔光线追迹','Fontsize' , 20) end3.1.3 运行结果1.谐振腔稳定性系数S 与腔长的关系稳定腔 临界腔 非稳腔 2.往返光线轨迹:稳定腔 临界腔 非稳定腔3.1.4 结果分析当谐振腔腔长0<L<1000mm 时,为稳定腔; 当谐振腔腔长L=1000mm 时,为临界腔; 当谐振腔腔长L>1000mm 时,为非稳腔。
3.2任务二3.2.1问题分析对于图2所示谐振腔光线传输过程如下图所示:整理后可得光束传输的ABCD矩阵为:T=[10−2R1][1L01][10−1f1][1L101][1001][1L101][10−1f1][1L01]=[A BC D]3.2.2程序代码1.寻找透镜到平面腔距离范围的程序:clcclearr=3;theta=0.01;I=[r;theta];R=2000;f=50;L=800;LM=input('input LM=');for L1=40:0.1:LMT1=[1,0;0-2/R,1];T2=[1,L;0,1];T3=[1,0;-1/f,1];T4=[1,L1;0,1];T5=[1,0;0,1];T6=T4;T7=T3;T8=T2;T=T1*T2*T3*T4*T5*T6*T7*T8;L1=L1;S=(T(1,1)+T(2,2))/2;7plot(L1,S,'k.','markersize',5),hold onplot(L1,1,'k.','markersize',5),hold onplot(L1,-1,'k.','markersize',5),hold onaxis([-inf,inf,-2,2]);xlabel('腔长L1','Fontsize' , 14);ylabel('稳定性系数S','Fontsize' , 14);title('S、L1对应曲线关系', 'Fontsize' , 20)end2.演示稳定时、临界时和非稳定时光线轨迹的程序clcclearr=3;theta=0.01;I=[r;theta];R=2000;f=50;L=800;L1=input('input L1=');T1=[1,0;-2/R,1];T2=[1,L;0,1];T3=[1,0;-1/f,1];T4=[1,L1;0,1];T5=[1,0;0,1];T6=T4;T7=T3;T8=T2;T=T1*T2*T3*T4*T5*T6*T7*T8;x1=linspace(0,L,L);x2=linspace(L,L+L1,L1);for k=1:100y=I(1,1)+I(2,1).*x1;plot(x1,y,'r'),hold onI=T3*T2*I;y=I(1,1)+I(2*1).*(x2-L);plot(x2,y),hold onI=T5*T4*I;8y=I(1,1)+I(2,1).*(L1-(x2-L));plot(x2,y),hold onI=T7*T6*I;y=I(1,1)+I(2,1).*(L-x1);plot(x1,y),hold onI=T1*T8*I;title('谐振腔光线追迹','Fontsize' , 20) end3.2.3 运行结果1.谐振腔稳定性系数S与腔长的关系稳定腔临界腔非稳定腔2.往返光线轨迹:稳定腔临界腔非稳定腔3.2.4 结果分析当透镜与平面镜之间距离为48.0mm<L1<53.3mm时,谐振腔为稳定腔;当透镜与平面镜之间距离为L1=48.0mm或者L1=53.3mm时,谐振腔为临界腔;当透镜与平面镜之间距离为L1<48.0mm或者L1>53.3mm时,谐振腔为非稳定腔。
四、遇到问题及问题解决问题:在加入薄透镜后,由于对MATLAB语言不熟悉,使用MATLAB软件编写程序分析透镜与平面镜之间距离L1和对谐振腔光线追迹时,程序编写不准确,会产生错误,无法进行仿真分析。
解决方法:主动上网学习MATLAB语言正确的使用方式,查阅相关固体激光器谐振腔稳定性分析与光束仿真文献,认真分析光线传输过程,得到正确的光线传输矩阵,配合MATLAB语言解决问题。
五、体会与收获通过本次固体激光器谐振腔稳定性分析与光束仿真课程设计,让我对光线传输的ABCD矩阵和谐振腔稳定条件有了更加深刻的理解和认识;同时也能较好的使用MATLAB软件编程分析谐振腔稳定性,并对谐振腔内光线传输进行追迹,直观的观察到光线踪迹。