2014-2015年浙江省杭州市滨江区高新实验学校八年级上学期期中数学试卷及参考答案
- 格式:doc
- 大小:460.00 KB
- 文档页数:25
浙江省杭州市2015-2016学年度八年级数学上学期期中试题一、选择题:每小题3分,共30分1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.下列命题是假命题的是()A.有一个角为60°的等腰三角形是等边三角形B.等角的余角相等C.钝角三角形一定有一个角大于90°D.同位角相等3.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:24.关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值为()A.1 B.C.﹣1 D.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°6.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=EC,∠A=∠D D.∠B=∠E,∠A=∠D7.已知a>b>0,那么下列不等式组中无解的是()A.B.C.D.8.如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=4,CD=2,点P在四边形ABCD的边上,若点P到BD的距离为3,则点P的个数为()A.2 B.3 C.4 D.59.给出以下五种说法:①若a,b,c为实数,且a>b,则ac2>bc2;②已知一个直角三角形的两边长分别为5和12,则该直角三角形的斜边上的中线长为6.5;③命题“三角形一条边的两个顶点到这条边上的中线所在直线的距离相等”是真命题;④如果一个等腰三角形的两边长为4cm和9cm,那么它的周长是17cm或22cm;⑤如果关于x的不等式﹣k﹣x+6>0的正整数解为1,2,3,那么k应取值为2≤k<3.其中说法正确的是()A.①②⑤B.③⑤ C.②③④D.①②④⑤10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是()A.70 B.74 C.144 D.148二、填空题:本题有6个小题,每小题4分,共24分11.不等式(a﹣b)x<a﹣b的解集是x>1,则a、b的大小关系是:a b.12.已知三角形三边长分别是1、x、2,且x为整数,那么x的值是.13.如图所示,∠C=∠D=90°,可使用“HL”判定Rt△ABC与Rt△ABD全等,则应添加一个条件是.14.若关于x的不等式组有解,则写出符合条件的一个a的值.15.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,若线段EB=4,则线段EF= .16.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有(填序号).三、解答题:本题共有7个小题,共66分17.(1)解不等式:3x﹣1<2x+4(2)不等式组并将其解集在数轴上表示出来.18.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.19.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F.(1)求证:∠E=∠AFE;(2)若AF=3,BF=5,求CE的长并直接写出△ABC周长的取值范围.20.如图,△A BC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC 运动,且它们的速度都为1cm/s.当点P到达点B时,P,Q两点停止运动,设点P的运动时间为t (s).(1)当t为何值时,△PBQ是直角三角形?(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.21.在△ABC中,AC=AB=5,一边上高为3,求底边BC的长(注意:请画出图形).22.某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送2015~2016学年度七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若2015~2016学年度七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.23.如图1,等边△ABC边长为6,AD是△ABC的中线,P为线段AD(不包括端点A、D)上一动点,以CP为一边且在CP左下方作如图所示的等边△CPE,连结BE.(1)点P在运动过程中,线段BE与AP始终相等吗?说说你的理由;(2)若延长BE至F,使得CF=CE=5,如图2,问:①求出此时AP的长;②当点P在线段AD的延长线上时,判断EF的长是否为定值,若是请直接写出EF的长;若不是请简单说明理由.浙江省杭州市2015~2016学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列命题是假命题的是()A.有一个角为60°的等腰三角形是等边三角形B.等角的余角相等C.钝角三角形一定有一个角大于90°D.同位角相等【考点】命题与定理.【分析】根据等边三角形的判定方法对A进行判断;根据余角的定义对B进行判断;根据钝角三角形的定义对C进行判断;根据平行线的性质对D进行判断.【解答】解:有一个角为60°的等腰三角形是等边三角形是真命题;等角的余角相等是真命题;钝角三角形一定有一个角大于90°是真命题;两直线平行,同位角相等,则同位角相等是假命题.故选D.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.3.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【考点】等腰三角形的判定.【分析】由等腰三角形的定义与等角对等边的判定定理,即可求得答案.【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选B.【点评】此题考查了等腰三角形的判定.此题比较简单,注意掌握等腰三角形的定义与等角对等边的判定定理是解题的关键.4.关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值为()A.1 B.C.﹣1 D.【考点】在数轴上表示不等式的解集.【分析】首先用a表示出不等式的解集,然后解出a.【解答】解:根据图示知,原不等式的解集是:x≤﹣1;又∵3x﹣2a≤﹣2,∴x≤,∴=﹣1,解得,a=﹣;故选D.【点评】本题考查了在数轴上表示不等式的解集.不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.【点评】理解能说明它是假命题的反例的含义是解决本题的关键.6.如图,在△ABC和△D EC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=EC,∠A=∠D D.∠B=∠E,∠A=∠D【考点】全等三角形的判定.【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.已知a>b>0,那么下列不等式组中无解的是()A.B.C.D.【考点】不等式的解集.【分析】利用求不等式解集的方法判定,【解答】解:A、x的解集为﹣b<x<a,故A有解;B、x的解集为x>﹣b,故B有解;C、无解,D、x的解集为﹣a<x<b.故D有解;故选:C.【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=4,CD=2,点P在四边形ABCD的边上,若点P到BD的距离为3,则点P的个数为()A.2 B.3 C.4 D.5【考点】勾股定理;点到直线的距离.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与3比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=4,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=4•sin45°=4>3,CF=CD═2<3,所以在AB和AD边上有符合P到BD的距离为3的点2个,故选A.【点评】本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD的最大距离比较得出答案.9.给出以下五种说法:①若a,b,c为实数,且a>b,则ac2>bc2;②已知一个直角三角形的两边长分别为5和12,则该直角三角形的斜边上的中线长为6.5;③命题“三角形一条边的两个顶点到这条边上的中线所在直线的距离相等”是真命题;④如果一个等腰三角形的两边长为4cm和9cm,那么它的周长是17cm或22cm;⑤如果关于x的不等式﹣k﹣x+6>0的正整数解为1,2,3,那么k应取值为2≤k<3.其中说法正确的是()A.①②⑤B.③⑤ C.②③④D.①②④⑤【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①若a,b,c为实数,且a>b,则ac2≥bc2,故原命题错误;②已知一个直角三角形的两边长分别为5和12,则该直角三角形的斜边上的中线长为6.5或6,故原命题错误;③命题“三角形一条边的两个顶点到这条边上的中线所在直线的距离相等”是真命题,正确;④如果一个等腰三角形的两边长为4cm和9cm,那么它的周长是22cm,故原命题错误;⑤如果关于x的不等式﹣k﹣x+6>0的正整数解为1,2,3,那么k应取值为2≤k<3,正确.其中说法正确的是③⑤,故选:B.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是()A.70 B.74 C.144 D.148【考点】全等三角形的判定与性质;平行线之间的距离;勾股定理;正方形的性质.【分析】过A作AM⊥直线b于M,过D作DN⊥直线c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根据AAS推出△AMD≌△CND,根据全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.【解答】解:如图:过A作AM⊥直线b于M,过D作DN⊥直线c于N,则∠AMD=∠DNC=90°,∵直线b∥直线c,DN⊥直线c,∴∠2+∠3=90°,∵四边形ABCD是正方形,∴AD=DC,∠1+∠2=90°,∴∠1=∠3,在△AMD和△CND中∴△AMD≌△CND,∴AM=CN,∵a与b之间的距离是5,b与c之间的距离是7,∴AM=CN=5,DN=7,在Rt△DNC中,由勾股定理得:DC2=DN2+CN2=72+52=74,即正方形ABCD的面积为74,故选B.【点评】本题考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线,并进一步求出△AMD≌△CND,难度适中.二、填空题:本题有6个小题,每小题4分,共24分11.不等式(a﹣b)x<a﹣b的解集是x>1,则a、b的大小关系是:a < b.【考点】不等式的性质.【分析】本题需先根据不等式不等式(a﹣b)x<a﹣b的解集是x>1,的解集是x<1,得出a﹣b 的关系,即可求出答案.【解答】解:∵不等式(a﹣b)x<a﹣b的解集是x>1,∴a﹣b<0,∴a<b,则a与b的大小关系是a<b.故答案为:<.【点评】本题主要考查了不等式的解集,在解题时要注意注意不等式两边同时乘以同一个负数时,不等号的方向改变.12.已知三角形三边长分别是1、x、2,且x为整数,那么x的值是 2 .【考点】三角形三边关系.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求解即可.【解答】解:∵三角形的三边长分别为1,x,2,∴第三边的取值范围为:1<x<3∵x为整数,∴x=2.故答案为:2.【点评】考查了三角形的三边关系,此类求范围的问题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可,确定x的值.13.如图所示,∠C=∠D=90°,可使用“HL”判定Rt△ABC与Rt△ABD全等,则应添加一个条件是AC=AD .【考点】直角三角形全等的判定.【专题】开放型.【分析】此题是一道开放型的题目,答案不唯一,还可以是BC=BD.【解答】解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.【点评】本题考查了直角三角形全等的判定的应用,能熟记定理是解此题的关键,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.14.若关于x的不等式组有解,则写出符合条件的一个a的值 6 .【考点】解一元一次不等式组.【专题】开放型.【分析】表示出不等式组的解集,根据不等式组有解确定出a的值即可.【解答】解:不等式整理得:,由不等式组有解,得到a>5,则满足题意a的值为6.故答案为:6.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.15.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,若线段EB=4,则线段EF= 2 .【考点】全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.【分析】延长EF交AC于点Q,利用EF∥CD,且CE平分∠ACD,可得∠QCE=∠QEC,所以QE=CE,结合等腰三角形的性质可得QE=2EF,且QC=BE,可得出结论.【解答】解:如图,延长EF交AC于点Q,∵EF⊥AD,AD⊥BC∴EQ∥BC∴∠QEC=∠ECB∵CE平分∠ACB∴∠ECB=QCE∴∠QEC=∠QCE∴QE=QC∵QE∥BC,且△ABC为等腰三角形∴△AQE为等腰三角形∴AQ=AE,QE=2EF,∴CQ=BE=QE,∴EF=BE=2.故答案为:2.【点评】此题主要考查等腰三角形的性质和判定及平行线的性质的应用,解题的关键是作出辅助线,找到BE和CQ的数量关系,进一步寻找BE和EF的数量关系.16.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△E BC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有①②④(填序号).【考点】全等三角形的判定与性质.【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即AD=AE=EC,根据AD=AE=EC可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②④.【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.三、解答题:本题共有7个小题,共66分17.(1)解不等式:3x﹣1<2x+4(2)不等式组并将其解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)移项、合并同类项可得解集;(2)分别求出每个不等式解集,找到其公共部分即可的不等式组解集,并表示在数轴上.【解答】解:(1)移项,得:3x﹣2x<4+1,合并同类项,得:x<5;(2)解不等式组:,解不等式①,得:x>﹣6,解不等式②,得:x<6,∴不等式组的解集为:﹣6<x<6,表示在数轴上如下所示:【点评】本题主要考查解一元一次不等式、不等式组的能力,严格遵循解不等式的基本步骤是关键.18.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.【考点】作图—复杂作图;线段垂直平分线的性质.【专题】应用题;作图题.【分析】(1)作AB的垂直平分线交BC于P点,则PA=PB;(2)设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后在Rt△ACP中根据勾股定理得到(8﹣x)2+42=x2,再解方程即可.【解答】解:(1)如图,点P为所作;(2)设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F.(1)求证:∠E=∠AFE;(2)若AF=3,BF=5,求CE的长并直接写出△ABC周长的取值范围.【考点】等腰三角形的判定与性质.【分析】(1)根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE;(2)根据等角对等边即可得出CE,然后又三角形的三边关系即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE;(2)∵∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=3,BF=5,∴CA=AB=8,AE=3,∴CE=11;∵0<BC<16,∴16<△ABC的周长<32.【点评】本题考查了等腰三角形的判定和性质,三角形的三边关系,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.20.如图,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC 运动,且它们的速度都为1cm/s.当点P到达点B时,P,Q两点停止运动,设点P的运动时间为t (s).(1)当t为何值时,△PBQ是直角三角形?(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】动点型.【分析】(1)需要分类讨论:分∠PQB=90°和∠BPQ=90°两种情况;(2)∠CMQ=60°不变.通过证△ABQ≌△CAP(SAS)得到:∠BAQ=∠ACP,由三角形外角定理得到∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.【解答】解:(1)设时间为t,则AP=BQ=t,PB=5﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得5﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(5﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(2)∠CMQ=60°不变.在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质.掌握判定三角形全等的方法,分类讨论是解决问题的关键.21.在△ABC中,AC=AB=5,一边上高为3,求底边BC的长(注意:请画出图形).【考点】勾股定理;等腰三角形的性质.【专题】分类讨论.【分析】分三种情况:①当底边BC边上的高为3时;②当腰上的高BD=3时;③当高在△ABC的外部时;根据勾股定理先求得AD,根据线段的和差求得BD,根据勾股定理求得底边BC的长.【解答】解:分三种情况:①当底边BC边上的高为3时,如图1所示,∵在△ACD中,AB=AC=5,高AD=3,∴BD=CD==4,∴BC=2BD=8;②当腰上的高BD=3时,如图2所示:则AD==4,∴CD=5﹣4=1,∴BC===;③当高在△ABC的外部时,如图3所示:∵在△BCD中,AB=AC=5,高BD=3,∴AD==4,∴CD=4+5=9,∴BC===3;综上所述:底边BC的长是8或或3.【点评】本题考查了勾股定理和等腰三角形的性质.注意熟练运用勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.22.某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送2015~2016学年度七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x 30(5﹣x)280(5﹣x)(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若2015~2016学年度七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【考点】一元一次不等式的应用.【分析】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【解答】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【点评】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.23.如图1,等边△ABC边长为6,AD是△ABC的中线,P为线段AD(不包括端点A、D)上一动点,以CP为一边且在CP左下方作如图所示的等边△CPE,连结BE.(1)点P在运动过程中,线段BE与AP始终相等吗?说说你的理由;(2)若延长BE至F,使得CF=CE=5,如图2,问:①求出此时AP的长;②当点P在线段AD的延长线上时,判断EF的长是否为定值,若是请直接写出EF的长;若不是请简单说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)先证明∠ACP=∠BCE,然后依据SAS证明△ACP≌△BCE,由全等三角形的性质可得到BE=AP;(2)过点C作CH⊥BE,垂足为H,先依据等腰三角形三线合一的性质求得∠CAD=30°,然后由△ACP≌△BCE可求得∠CBH=30°,依据含30°直角三角形的性质可求得CH的长,从而可求得BH的长,然后在△ECH中依据勾股定理可求得EH的长,故此可求得BE的长,最后根据AP=BE求解即可;(3)首先根据题意画出图形,过点C作CH⊥BE,垂足为H.先证△ACP≌△BCE,从而得到∠CBH=30°,由含30°直角三角形的性质可求得CH的长,依据勾股定理可求得FH的长,然后由等腰三角形三线合一的性质可得到HE=FH,故此可求得EF的长.【解答】解:(1)BE=AP.理由:∵△ABC和△CPE均为等边三角形,∴∠ACB=∠PCE=60°,AC=BC,CP=CE.∵∠ACP+∠DCP=∠DCE+∠PCD=60°,∴∠ACP=∠BCE.∵在△ACP和△BCE中,,∴△ACP≌△BCE.∴BE=AP.(2)如图2所示:过点C作CH⊥BE,垂足为H.∵AB=AC,AD是BC的中点,∴∠CAD=∠BAD=∠BAC=30°.∵由(1)可知:△ACP≌△BCE,∴∠CBE=∠CAD=30°,AP=BE.∵在Rt△BCH中,∠HBC=30°,∴HC=BC=3,NH=BC=3.∵在Rt△CEH中,EC=5,CH=3,∴EH==4.∴BE=HB﹣EH=3﹣4.∴A=3﹣4.(3)如图3所示:过点C作CH⊥BE,垂足为H.∵△ABC和△CEP均为等边三角形,∴AC=BC,CE=PC,∠ACB=∠ECP.∴∠ACB+∠BCP=∠ECP+BCP,即∠BCE=∠ACP.∵在△ACP和△BCE中,,∴△ACP≌△BCE.∴∠CBH=∠CAP=30°.∵在Rt△BCH中,∠CBH=30°,∴HC=BC=3.∵FC=CE,CH⊥FE,∴FH=EH.∴FH=EH==4.∴EF=FH+EH=4+4=8.【点评】本题主要考查的是全等三角形的性质和判定、勾股定理的应用、等边三角形的性质、含30°三角形的性质,证得△ACP≌△BCE是解题的关键.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各组数不可能是一个三角形的边长的是() A. 1,2,3 B. 4,4,4 C. 6,6,8 D. 7,8,9试题2:.若x>y,则下列式子错误的是()A. x﹣2>y﹣2 B. x+1>y+1 C.﹣5x>﹣5y D.>试题3:如图,△ABC中,∠ACB=90°,AD=BD,且CD=4,则AB=()A. 4 B. 8 C. 10 D. 16试题4:下列句子属于命题的是()A.正数大于一切负数吗? B.将16开平方C.钝角大于直角 D.作线段AB的中点试题5:评卷人得分对于一次函数y=kx﹣k(k≠0),下列叙述正确的是()A.当k>0时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<0时,函数图象一定交于y轴负半轴一点D.函数图象一定经过点(1,0)试题6:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB=DE,AC=DF,要使△ABC≌△DEF,还需要添加一个条件是()A. BE=CF B. BE=EC C. EC=CF D. AC∥DF试题7:若不等式组有解,则a的取值范围是()A. a>2 B. a<2 C. a≤2 D. a≥2试题8:已知点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是() A.(﹣3,3) B.(3,﹣3) C.(﹣3,3)或(﹣3,﹣3) D.(﹣3,3)或(3,﹣3)试题9:下列命题是真命题的是()A.等边对等角B.周长相等的两个等腰三角形全等C.等腰三角形的角平分线、中线和高线互相重合D.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等试题10:如图,等腰Rt△ABC中,∠ABC=90°,O是△ABC内一点,OA=6,OB=4,OC=10,O′为△ABC外一点,且△CBO≌△ABO′,则四边形AO′BO的面积为()A. 10 B. 16 C. 40 D. 80试题11:圆周长C与圆的半径r之间的关系为C=2πr,其中变量是,常量是.试题12:.一个等边三角形的边长为2,则这个等边三角形的面积为试题13:一次函数y=﹣x+4的图象与x轴、y轴分别交于A,B两点,则线段AB的长为试题14:如图,平面直角坐标系中有一正方形OABC,点C的坐标为(﹣2,﹣1),则点A坐标为,点B坐标为.试题15:如图,直线l:y=x+2交y轴于点A,以AO为直角边长作等腰Rt△AOB,再过B点作等腰Rt△A1BB1交直线l于点A1,再过B1点再作等腰Rt△A2B1B2交直线l于点A2,以此类推,继续作等腰Rt△A3B2B3﹣﹣﹣,Rt△A n B n﹣1B n,其中点A0A1A2…A n都在直线l上,点B0B1B2…B n都在x轴上,且∠A1BB1,∠A2B1B2,∠A3B2B3…∠A n﹣1B n B n﹣1都为直角.则点A3的坐标为,点A n 的坐标为.试题16:4x+5≥1﹣2x试题17:试题18:+﹣×(2+)试题19:如图,已知△ABC,其中AB=AC.(1)作AC的垂直平分线DE,交AC于点D,交AB于点E,连结CE(尺规作图,不写作法,保留作图痕迹);(2)在(1)所作的图中,若BC=7,AC=9,求△BCE的周长.试题20:已知y是关于x的一次函数,且当x=1时,y=﹣4;当x=2时,y=﹣6.(1)求y关于x的函数表达式;(2)若﹣2<x<4,求y的取值范围;(3)试判断点P(a,﹣2a+3)是否在函数的图象上,并说明理由.试题21:已知,△ABC的三个顶点A,B,C的坐标分别为A(4,0),B(0,﹣3),C(2,﹣4).(1)在如图的平面直角坐标系中画出△ABC,并分别写出点A,B,C关于x轴的对称点A′,B′,C′的坐标;(2)将△ABC向左平移5个单位,请画出平移后的△A″B″C″,并写出△A″B″C″各个顶点的坐标.(3)求出(2)中的△ABC在平移过程中所扫过的面积.试题22:如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.试题23:某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.试题24:如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.试题1答案:A 解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.试题2答案:C 解:A、两边都减2,故A正确;B、两边都加1,故B正确;C、两边都乘﹣5,故C错误;D、两边都除5,故D正确;故选:C.试题3答案:B 解:∵△ABC中,∠ACB=90°,AD=BD,CD=4,∴AB=2CD=8,故选B.试题4答案:C 解:A、正数大于一切负数吗?为疑问句,它不是命题,所以A选项错误;B、将16开平方为陈述句,它不是命题,所以B选项错误;C、钝角大于直角是命题,所以C选项正确;D、作线段的中点为陈述句,它不是命题,所以D选项错误.故选C.试题5答案:D 解:A、当k>0时,﹣k<0,函数图象经过第一、三、四象限,故本选项错误;B、当k>0时,y随x的增大而增大,故本选项错误;C、当k<0时,﹣k>0,函数图象一定交于y轴的正半轴,故本选项错误;D、把x=1代入y=kx﹣k得y=k﹣k=0,则函数图象一定经过点(1,0),故本选项正确.故选:D.试题6答案:A 解:可添加条件BE=CF,理由:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),试题7答案:B.试题8答案:C 解:∵点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,∴x=﹣3,∵B点到x轴的矩离等于3,∴|y|=3,即y=3或﹣3,∴B点的坐标为(﹣3,3)或(﹣3,3).试题9答案:D 解:A、在一个三角形中,等边对等角,所以A选项错误;B、周长相等的两个等腰三角形不一定全等,所以B选项错误;C、等腰三角形的顶角的平分线、底边上的中线和底边上的高线互相重合,所以C选项错误;D、三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D选项正确.故选D.试题10答案:C 解:如图,连结OO′.∵△CBO≌△ABO′,∴OB=O′B=4,OC=O′A=10,∠OBC=∠O′BA,∴∠OBC+∠OBA=∠O′BA+∠OBA,∴∠O′BO=90°,∴O′O2=OB2+O′B2=32+32=64,∴O′O=8.在△AOO′中,∵OA=6,O′O=8,O′A=10,∴OA2+O′O2=O′A2,∴∠AOO′=90°,∴S四边形AO′BO=S△AOO′+S△OBO′=×6×8+×4×4=24+16=40.故选C.试题11答案:C,r;2π.试题12答案:.考点:等边三角形的性质.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.解答:解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD===,∴S△ABC=BC•AD=×2×=,故答案为:.试题13答案:5 .考点:一次函数图象上点的坐标特征.分析:先求出A,B两点的坐标,再根据勾股定理即可得出结论.解答:解:∵一次函数y=﹣x+4的图象与x轴、y轴分别交于A,B两点,∴A(3,0),B(0,4),∴AB==5.故答案为:5.试题14答案:(﹣1,2)(﹣3,1)解:如图,过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,∵C(﹣2,﹣1),∴OE=2,CE=1,∵四边形OABC是正方形,∴OA=OC=BC,易求∠AOD=∠COE=∠BCF,又∵∠ODA=∠OEC=∠F=90°,∴△AOD≌△COE≌△BCF,∴AD=CE=BF=1,OD=OE=CF=2,∴点A的坐标为(﹣1,2),EF=2﹣1=1,点B到y轴的距离为1+2=3,∴点B的坐标为(﹣3,1).故答案为:(﹣1,2);(﹣3,1).试题15答案:14,16),(2n+1﹣2,2n+1).试题16答案:4x+2x≥1﹣5,6x≥﹣4,所以x≥﹣;试题17答案:,解①得x≥,解②得x≥﹣1,所以不等式的解为x≥;试题18答案:原式=2+﹣(2+2)=2+﹣2﹣2=﹣2.试题19答案:解:(1)如图所示:直线DE即为所求;(2)∵AB=AC=9,∵DE垂直平分AB,∴AE=EC,∴△BCE的周长=BC+BE+CE=BC+BE+AE=BC+AB=16.试题20答案:解:(1)设y与x的函数解析式是y=kx+b,根据题意得:,解得:,则函数解析式是:y=﹣2x﹣2;(2)当x=﹣2时,y=2,当x=4时,y=﹣10,则y的范围是:﹣10<y<2;(2)当x=a是,y=﹣2a﹣2.则点P(a,﹣2a+3)不在函数的图象上.试题21答案:解:(1)△ABC如图所示,A′(4,0),B′(0,3),C′(2,4);(2)△A″B″C″如图所示,A″(﹣1,0),B″(﹣5,﹣3),C″(﹣3,﹣4);(3)△ABC在平移过程中所扫过的面积=5×4+(4×4﹣×4×3﹣×1×2﹣×2×4),=20+(16﹣6﹣1﹣4),=20+5,=25.试题22答案:解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=25°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=70°.试题23答案:解:(1)由题意可得:y=120x+140(100﹣x)=﹣20x+14000;(2)据题意得,100﹣x≤3x,解得x≥25,∵y=﹣20x+14000,﹣20<0,∴y随x的增大而减小,∵x为正整数,∴当x=25时,y取最大值,则100﹣x=75,即商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)据题意得,y=(100+m)x+140(100﹣x),即y=(m﹣40)x+14000,25≤x≤60①当0<m<40时,y随x的增大而减小,∴当x=25时,y取最大值,即商店购进25台A型电脑和75台B型电脑的销售利润最大.②m=40时,m﹣40=0,y=14000,即商店购进A型电脑数量满足25≤x≤60的整数时,均获得最大利润;③当40<m<100时,m﹣40>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.试题24答案:解;(1)∵点P(m,3)为直线l1上一点,∴3=﹣m+2,解得m=﹣1,∴点P的坐标为(﹣1,3),把点P的坐标代入y2=x+b得,3=×(﹣1)+b,解得b=;(2)∵b=,∴直线l2的解析式为y=x+,∴C点的坐标为(﹣7,0),①由直线l1:y1=﹣x+2可知A(2,0),∴当Q在A、C之间时,AQ=2+7﹣t=9﹣t,∴S=AQ•|y P|=×(9﹣t)×3=﹣t;当Q在A的右边时,AQ=t﹣9,∴S=AQ•|y P|=×(t﹣9)×3=t﹣;即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得t>7或t<11.③存在;设Q(t﹣7,0),当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.。
M FEB CA 第7题第3题图八年级数学试卷温馨提示:亲爱的同学,请把所有答案写到答题卷上!一、选择题(每小题3分,共30分)1、下列各组长度的线段能构成三角形的是( )A 、1.5cm 3.9cm 2.3cmB 、3.5cm 7.1cm 3.6cmC 、6cm 1cm 6cmD 、4cm 10cm 4cm2、如图1,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A 、两点之间的线段最短;B 、两点确定一条直线;C 、三角形具有稳定性;D 、长方形的四个角都是直角; 3.如图,在△中,点是延长线上一点,=40°,=120°,则等于( )A. 60°B.70°C.80° 90°4.小明同学测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其 他数据弄混了,请你帮他找出来﹙ ﹚A.13,12,12B.12,12,8C.13,10,12D.5,8,45.把不等式组的解集表示在数轴上,下列选项正确的是( )A B C D 6.当21-=x 时,多项式12-+kx x 的值是负数,那么的值为 ( ) A .23-<k B .23<k C .23->k D .23>k7、如图,点P 是∠BAC 的平分线上一点,PB ⊥AB 于B ,且PB =5cm ,AC =12,则△APC 的面积是( )cm 2A .30B .40C .50D .608.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =5,BC =8,则△EFM 的周长是 ( )A .13B .18C .15D . 219.如图,已知AB ∥CD ,AD ∥BC ,AC 与BD 交于点O ,AE ⊥BD 于点E ,CF⊥BD 于点F ,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对BA CD EF 第9题图第2题图第8题图第15题D BACE10、若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a ≥1B .a >1C .a ≤-1D .a <-1 二、填空题(每小题4分,共32分)11、命题“相等的角是对顶角”是_________命题( 填“真”或“假”) 12. 如图,△ABC 中,∠C =90°,AB 的中垂线DE 交AB 于E , 交BC 于D ,若AB =10,AC =6,则△ACD 的周长为_________ 13.若+=0,则以为边长的等腰三角形的周长为 .14.若等腰三角形的一个外角为50°,则它的底角为_________度。
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案中,是轴对称图形的有()个.A. 1B. 2C. 3D. 42.下列语句是命题的是()A. 作直线AB的垂线B. 在线段AB上取点CC. 同旁内角互补D. 垂线段最短吗?3.已知等腰△两条边的长分别是3和6,则它的周长是()A. 12B. 15C. 12或15D. 15或184.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A. SSSB. ASAC. SSAD. HL5.若a<b,则下列各式中一定成立的是()A. a−1<b−1B. a3>b3C. −a<−bD. ac<bc6.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A. 5B. 2C. 4D. 87.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是()A. P为∠A、∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为AC、AB两边的垂直平分线的交点8.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为()A. ①②④B. ①②③C. ②③D. ①③9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A. 4.8B. 4.8或3.8C. 3.8D. 510.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A. 23B. 10C. 22D. 6二、填空题(本大题共6小题,共24.0分)11.等腰三角形的一个外角等于130°,则顶角是______ .12.写出“对顶角相等”的逆命题______ .13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.14.不等式组x>−1x<m有3个整数解,则m的取值范围是______ .15.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.16.如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共6.0分)17.解不等式1−7x−18>3x−24,并把它的解集在数轴上表示出来.四、解答题(本大题共6小题,共60.0分)18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并说明理由.(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.22. 阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法:解:∵x -y =2,x >1,∴y +2>1,即y >-1,又y <0,∴-1<y <0.…①同理得:1<x <2.…②由①+②得-1+1<y +x <0+2,∴x +y 的取值范围是0<x +y <2.请按照上述方法,完成下列问题:已知关于x 、y 的方程组 x +2y =5a −82x−y =−1的解都为非负数.(1)求a 的取值范围;(2)已知2a -b =1,求a +b 的取值范围;(3)已知a -b =m (m 是大于1的常数),且b ≤1,求2a +b 最大值.(用含m 的代数式表示)23. 如图,△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm ,设出发的时间为t 秒.(1)出发2秒后,求△ABP 的周长.(2)问t 满足什么条件时,△BCP 为直角三角形?(3)另有一点Q ,从点C 开始,按C →B →A →C 的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出发,当P 、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ把△ABC 的周长分成相等的两部分?答案和解析1.【答案】B【解析】解:根据轴对称图形的定义,可知第2个,第4个是轴对称图形,而第1个、第3个、第5个都不是轴对称图形.故选B.判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.本题考查轴对称图形的识别,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:A、是作图语言,不符合命题的定义,不是命题;B、是作图语言,不符合命题的定义,不是命题;C、符合命题的定义,是命题;D、是一个问句,不符合命题的定义,不是命题.故选C.根据命题的定义作答.一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.一般说来,对于仸何一个命题,都可以加上“是”或“不是”,如C,可以说同旁内角是互补的.注意,作图语言与问句都不是命题.3.【答案】B【解析】解:①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选B.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键.4.【答案】D【解析】解:∵OD⊥AB,OP⊥AC,∴△ADO和△APO是直角三角形,又∵OD=OP,AO=AO,∴Rt△AOD≌△Rt△AOP(HL).故选D.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.本题考查直角三角形全等的判定方法HL.5.【答案】A【解析】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a-1<b-1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>-b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.根据不等式的性质分析判断.主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.【答案】B【解析】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“仸何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.【答案】C【解析】解:∵P到∠A的两边的距离相等,∴P为∠A的角平分线;∵PA=PB,∴P为AB的垂直平分线,∴P为∠A的角平分线与AB的垂直平分线的交点.故选:C.首先根据P到∠A的两边的距离相等,应用角平分线的性质,可得P为∠A的角平分线;然后根据PA=PB,应用线段垂直平分线的性质,可得P为AB的垂直平分线,所以P为∠A的角平分线与AB的垂直平分线的交点,据此判断即可.此题主要考查了角平分线的性质的应用,以及线段垂直平分线的性质和应用,要熟练掌握.8.【答案】B【解析】解:∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故①正确;∵CD⊥AB,EF⊥AB,∴EF∥CD,∴∠AEF=∠CHE,∴∠CEH=∠CHE,∴CH=CE=EF,故②正确;∵角平分线AE交CD于H,∴∠CAE=∠BAE,在△ACE和△AEF中,,∴△ACE≌△AFE(AAS),∴AC=AF,故③正确;CH=CE=EF>HD,故④错误.故正确的结论为①②③.故选B.根据等角的余角相等可判断①;先判断CD∥EF,根据平行线的性质得出∠CEH=∠CHE,再由角平分线的性质可判断②;用AAS判定△ACE≌△AFE,可判断③;根据②,结合图形可判断④.本题考查了全等三角形的判定与性质及角平分线的性质,是一道综合性较强的题目,需要同学们把直角三角形的性质和三角形全等的判定等知识结合起来解答.9.【答案】A【解析】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.10.【答案】C【解析】解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.11.【答案】80°或50°【解析】解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角可以是50°,也可以是80°.故填50°或80°等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12.【答案】相等的角是对顶角【解析】解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.将原命题的条件及结论进行交换即可得到其逆命题.此题主要考查学生对命题及逆命题的理解及运用能力.13.【答案】4【解析】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.根据角平分线的性质定理,解答出即可;本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.【答案】2<m≤3【解析】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】9【解析】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.16.【答案】2【解析】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2,∠BAC=45°,∴BH=AB•sin45°=2×=,∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=.故答案为:.作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17.【答案】解:去分母得,8-(7x-1)>2(3x-2),去括号得,8-7x+1>6x-4,移项得,-7x-6x>-4-8-1,合并同类项得,-13x>-13,系数化为1得,x<1.在数轴上表示如下:【解析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错,去分母时没有分母的项也要乘以分母的最小公倍数.18.【答案】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°-37°=16°.【解析】(1)利用线段垂直平分线的作法得出D 点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.19.【答案】①证明:在△ABE 和△CBD 中,AB =CB∠ABC =∠CBD =90°BE =BD,∴△ABE ≌△CBD (SAS );②解:∵在△ABC 中,AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°,由①得:△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°.【解析】①利用SAS 即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB ,利用外角的性质求出∠AEB 的度数,即可确定出∠BDC 的度数.此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得: 50x +20y =88060x +30y =1080,解得 y =4x =16.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m -4)件,由题意得:16m +4(2m −4)≤296m +2m−4≥32,解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m -4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m-4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【解析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m-4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,难度一般,第二问需要分类讨论,注意不要遗漏.21.【答案】解:(1)AP=CQ.理由如下:∵∠PBQ=60°,且BQ=BP,∴△BPQ为等边三角形,∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,∴∠CBQ=∠ABP,在△ABP和△CBQ中,AB=CB∠ABP=∠CBQ,BP=BQ∴△ABP≌△CBQ(SAS),∴AP=CQ;(2)∵等边△ABC和等边△BPQ中,PB=PQ=4,PA=QC=3,∵PQ2+CQ2=PC2,∴△PQC为直角三角形(勾股定理逆定理).【解析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据PA=CQ,PB=BQ,即可判定△PQC为直角三角形.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理逆定理的运用,本题中求证△ABP ≌△CBQ 是解题的关键.22.【答案】解:(1)解方程组 x +2y =5a −82x−y =−1得:y =2a −3x =a−2, ∴ 2a −3≥0a−2≥0,解得:a ≥2; (2)由2a -b =1,a ≥2,可得:1+b 2≥2,解得:b ≥3,∴a +b ≥5;(3)由a -b =m ,a ≥2,可得m +b ≥2,∴b ≥2-m ,∴2-m ≤b ≤1,同理可得:2≤a ≤1+m ,∴6-m ≤2a +b ≤3+2m ,∴最大值为3+2m .【解析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围;(3)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求2a+b 的取值范围,即可得到最大值.本题考查了一元一次不等式(组)的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.【答案】解:(1)∵∠C =90°,AB =5cm ,BC =3cm , ∴AC =4cm ,动点P 从点C 开始,按C →B →A →C 的路径运动,速度为每秒1cm , ∴出发2秒后,则CP =2cm ,∵∠C =90°,∴PB = 22+32= 13cm ,∴△ABP 的周长为:AP +PB +AB =2+5+ 13=7+ 13(cm );(2)∵AC =4,动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm , ∴P 在AC 上运动时△BCP 为直角三角形,∴0<t ≤4,当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,∵12×AB ×CP =12×AC ×BC ,∴1 2×5×CP=12×3×4,解得:CP=125cm,∴AP= AC2−CP2=165cm,∴AC+AP=365cm,∵速度为每秒1cm,∴t=365,综上所述:当0<t≤4或t=365,△BCP为直角三角形;(3)当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t-3=3,∴t=2;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,∵直线PQ把△ABC的周长分成相等的两部分,∴t-4+2t-8=6,∴t=6,∴当t=2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【解析】(1)首先利用勾股定理计算出AC长,根据题意可得CP=2cm,再利用勾股定理计算出PB的长,进而可得△ABP的周长;(2)当P在AC上运动时△BCP为直角三角形,由此可得0<t≤4;当P在AB上时,CP⊥AB时,△BCP为直角三角形,首先计算出CP的长,然后再利用勾股定理计算出AP长,进而可得答案.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3=3;当P 点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.此题主要考查了勾股定理以及其逆定理等知识,利用分类讨论的思想求出是解题关键.。
杭州市滨江区2014-2015学年第一学期期末考试八年级数学试卷考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,必须在答题纸指定位置填写学校、班级、姓名、座位号(写在学校上面). 3.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明. 4.不能使用计算器;考试结束后,上交答题纸.试题卷一、选择题:(本题共有10小题,每小题3分,共30分) 1.下列各组数不可能是一个三角形的边长的是( )A .1,2,3,B .4,4,4C . 6,6,8D .7,8,9 2.若x >y ,则下列式子错误的是( )D .55yx > A .x ﹣2>y ﹣2 B .x +1>y +1 C .﹣5x >﹣5y 3.如图,△ABC 中,∠ACB =90°,AD=BD ,且CD =4,则AB =( ) A .4 B .8 C .10 D .16 4.下列句子属于命题的是( )A .正数大于一切负数吗?B .将16开平方C .钝角大于直角D .作线段AB 的中点 5.对于一次函数y=kx-k(k 0≠),下列叙述正确的是( )A .当k >0时,函数图象经过第一、二、三象限B .当k >0时,y 随x 的增大而减小C .当k <0时,函数图象一定交于y 轴负半轴一点D .函数图象一定经过点(1,0) 6. 如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB =DE ,AC=DF ,要使ΔABC ≌ΔDEF ,还需要添加一个条件是( ) A .BE=CF B . BE=EC C . EC=CF D .AC //DF 7. 若不等式组⎩⎨⎧<≥.2,x a x 有解,则a 的取值范围是( )A .2>aB .2<aC . 2≤aD .2≥a8. 已知点A (-3,2)与点B (x ,y )在同一条平行y 轴的直线上,且B 点到x 轴的矩离等于3,则B 点的坐标是( )A .(-3,3)B .(3,-3)C .(-3,3)或(-3,-3)D .(-3,3)或(3,-3) 9. 下列命题是真命题的是( ) A .等边对等角.B .周长相等的两个等腰三角形全等.C .等腰三角形的角平分线、中线和高线互相重合.D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等.DCAB(第3题)FEDCBA(第6题)10. 如图,等腰Rt △ABC 中,∠ABC =90°,O 是△ABC 内一点,OA =6,OB =24,OC =10, O '为△ABC 外一点,且△CBO ≌△AB O ',则四边形BO O A '的面积为( )A .10B .16C .40D . 80 二、填空题:(本题共有6小题,每小题4分,共24分) 11.使代数式x -4有意义的x 的取值范围是 ▲ .12.13.1415.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为 (-2,-1),则点A 坐标为 ▲ ,点B 坐标为 ▲ .16.如图,直线l :y=x+2交y 轴于点A ,以AO 为直角边长作等腰Rt ΔAOB , 再过B 点作等腰Rt Δ11BB A 交直线l 于点A 1 ,再过1B 点再作等腰Rt Δ212B B A 交直线l 于点A 2,以此类推,继续作等腰Rt Δ323B B A --- ,Rt Δn n n B B A 1-,其中点n A A A A ,...,,,21都在直线l 上, 点n B B B B ,...,,,21都在x 轴上,且1132321211,...,,,--∠∠∠∠n n n B B A B B A B B A BB A 都为直角.则点3A 的坐标为 ▲ ,点n A 的坐标为 ▲ . 三、解答题:(本题共有7小题,共66分) 17.(本小题满分10分) 解下列不等式(组):(1)2x -154≥+x ⎪⎩⎪⎨⎧≥+-+≤-x.-3)3(2,1512231)2(x x x )(3)82(32112+⨯-+18.(本小题满分6分)如图,已知△ABC ,其中AB=AC.(1)作AC 的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连结CE (尺规作图,不写作法,保留作图痕迹);(2)在(1)所作的图中,若BC =7,AC =9,求△BCE 的周长.19.(本小题满分8分)已知y 是关于x 的一次函数,且当x =1时,y =-4;当x =2时,y =-6. (1)求y 关于x 的函数表达式;(第3题)O 'O BA(第15题)x y CBAO(第18题)CBA(第16题)yxlB 2A 2B 1A 1B AO(2)若-2<x <4,求y 的取值范围;(3)试判断点P (a ,-2a+3)是否在函数的图象上,并说明理由.20. (本小题满分10分)已知,△ABC 的三个顶点A ,B ,C 的坐标分别为A (4,0),B (0,-3),C (2,-4).(1) 在如图的平面直角坐标系中画出△ABC ,并分别写出点A ,B ,C 关于x 轴的对称点A',B’,C’的坐标; (2)将△ABC 向左平移5个单位,请画出平移后的''''''C B A ∆,并写出''''''C B A ∆各个顶点的坐标.(3)求出(2)中的△ABC 在平移过程中所扫过的面积.21. (本小题满分10分)如图,△ABC 中,AB=BC , ∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF(1)求证:△ABE ≌△CBF;(2)若︒=∠25CAE ,求.的度数ACF ∠22. (本小题满分10分)某商店销售A 型和B 型两种型号的电脑,销售一台A 型电脑可获利120元,销售一台B 型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的3倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. (1)求y 与x 的关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A 型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A 型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.23. (本小题满分12分)如图,直线l 1: y 1= 2+-x 与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2: y 2=b x +21过点P .(1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.(第20题) xy–1–2–3–4–5–6–7–812345678–1–2–3–4–5–6–7–812345678O(第21题)EF BCA(第23题)xyQl 2l 1PCOA B①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.八年级数学答案一、选择题:(本题共有10小题,每小题3分,共30分)二、 填空题:(本题6小题,每小题4分,共24分) 11. 4≤x 12. )1(;C 2分少一个变量扣,,r π 13 . 3; 14. 5 ; 15. A(-1,2) ,B(-3, 1);16.(14,16),(2n+1-2,2n+1)三:解答题(本题7小题,满分66分) 17.(本小题满10分)解:(1)6x ≥-4 ---------1分;32-≥x ---------1分(2)由①得,-19x ≤-13(或19x ≥13)---------1分,1913≥x ---------1分 由②得,,1-≥x ---------1分.1913≥∴x ---------1分 分分)原式(1-------------62223623222323-=-------+=18. (本小题满分6分)(1)图正确2分(痕迹不全不得分), 结论1分 (2)由垂直平分线性质得AE=CE-----1分ΔBCE 的周长=AB+BC ----------1分 =16----------------1分19.(本小题满分8分)(1)解:设y=kx+b ,把x =1时,y =-4,x =2时,y =-6代入y=kx+b 得⎩⎨⎧-----=+-=+分2624b k b k。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -3D. 0.1010010001……2. 下列各数中,无理数是()A. √9B. -√16C. 0.3333……D. √23. 下列各式中,正确的是()A. a² = aB. (a + b)² = a² + b²C. (a - b)² = a² - b²D. (a + b)² = a² + 2ab + b²4. 已知x² + 4x + 4 = 0,则x的值为()A. -2B. 2C. -2 ± √2D. 2 ± √25. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |1|D. |0|6. 下列各数中,正数是()A. -3B. 0C. √4D. -√47. 下列各数中,负数是()A. 3B. -3C. 0D. √98. 下列各式中,等式成立的是()A. a² = b²B. a = bC. a² = b²D. a = -b9. 下列各式中,不等式成立的是()A. a > bB. a < bC. a ≥ bD. a ≤ b10. 下列各数中,正整数是()A. 0B. 1C. -1D. -2二、填空题(每题3分,共30分)11. 有理数a的相反数是________。
12. 绝对值符号表示一个数的________。
13. 一个数的平方根是________。
14. 下列各数中,平方根是整数的是________。
15. 下列各数中,平方根是分数的是________。
16. 下列各数中,平方根是无理数的是________。
17. 下列各数中,立方根是整数的是________。
18. 下列各数中,立方根是分数的是________。
杭州地区2014-2015学年第一学期期中教学质量检测八年级数学试卷考生须知:1.本卷分试题卷和答题卷两部分,满分120分,时间90分钟.2.必须在答题卷的对应答题位置答题.答题前,应先在答题卷上填写班级、姓名、学号.一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.下列各组数可能是一个三角形的边长的是( ▲ )A .1,2,4B .4,5,9C .4,6,8D .5,5,11 2.在平面直角坐标系中,点P(2,-1)在( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 3中,x 的取值范围在数轴上可表示为( ▲ )A B C D 4.如图,在△ABC 中,AB =AC ,∠B =40º,D 为BC 上一点,DE ∥AC 交AB 于E ,则∠BED 的度数为( ▲ ) A .140º B .80º C .100º D .70º5.如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是( ▲ )A .甲和乙B .乙和丙C .只有乙D .只有丙 6.下列关于不等式的解的命题中,属于假命题的是( ▲ )A .不等式2<x 有唯一的正整数解B .2-是不等式012<-x 的一个解C .不等式93>-x 的解集是3->x D7.满足下列条件的△ABC ,不是直角三角形的是( ▲ ) A .222c a b -= B .∠C =∠A-∠B C .∠A ∶∠B ∶∠C =3∶4∶5 D .5:13:12::=c b a八年级数学试题卷(第1页,共4页) 8.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( ▲ )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y9.有一个边长为1的正方形,经过一次“生长”后在它的上侧生长出两个小正方形,且三个正方形所围成的三角形是直角三角形;再经过一次“生长”后变成了右图,如此继续“生长”下去,则“生长”第k 次后所有正方形的面积和为( ▲ ) A .k B .1+k C .2k D .2)1(+k第9题图第10题图10.如图,在△ABC 中,∠BCA =90º,CA =CB ,AD 为BC 边上的中线,CG ⊥AD 于G ,交AB 于F ,过点B 作B C 的垂线交C G 于E .现有下列结论:①△ADC ≌△CEB ;②AB =CE ;③∠ADC =∠BDF ; ④F 为EG 中点.其中结论正确的个数为( ▲ ) A .1 B .2 C .3 D .4二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.直角三角形的斜边为5,则斜边上的中线长等于 ▲ .12.已知:如图,在Rt△ABC 中,∠A=90º,∠ABC 的平分线BD 交AC 于点D ,AD =3,BC =10,则△BDC 的面积是 ▲ .13.如图,已知△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE =CD ,不添加辅助线,请你写出四个不同类型的正确结论① ▲ ;② ▲ ;③ ▲ ;④ ▲ .第12题图 第13题图14.如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BDE 的面积 ▲ cm 2.八年级数学试题卷(第2页,共4页) 15.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 ▲ 道题,成绩才能在80分以上.16.如图,在△ABC 中,AB =AC =5,BC =6,若点P 在边AC 上AB D移动,则BP的最小值是▲三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本题6分)▲18.(本题8分)如图,在△ABC,∠BAC=80º,AD⊥BC于D,AE平分∠DAC,∠B=60º. (1)求∠AEC的度数;(2)想一想,还有其它的求法吗?写出你的思考.▲19.(本题8分)在平面直角坐标系中,已知点关于y轴的对称点Q在第四象限,且m为整数.(1)求整数m的值;(2)求△OPQ的面积.▲20.(本题10分)如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE 的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论.▲21.(本题10分)如图甲,已知:在△ABC中,∠BAC=90º,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,设BD=m,CE=n(1)求DE的长(用含m,n的代数式表示);(2)如图乙,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(0º<α<180º),设BD=m,CE=n.问DE的长如何表示?并请证明你的结论22.(本题12分)如图,是一个运算流程.(1)分别计算:当x=150时,输出值为▲,当x=27时,输出值为▲;(2)若需要经过两次运算,才能运算出y,求x的取值范围;(3)请给出一个x的值,使之无论运算多少次都不能输出,并请说明理由.23.(本题12分)如图,在△ABC中,已知AB=AC,∠BAC=90o,BC=6cm,,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上(向上或向下)以每秒1厘米的速度运动,连结AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).备用图▲八年级数学答题卷二、认真填一填(本题有6个小题,每小题4分,共24分)11. 12.13.14. 15.16.三、全面答一答(本题有7个小题,共66分)17.(本小题满分6分)18.(本小题满分8分) 19.(本小题满分8分) 20.(本小题满分10分)八年级数学答题卷(第2页,共4页)21.(本小题满分10分)22.(本小题满分12分)(1)当x =150时,输出值为 ,当x =27时,输出值为423.(本小题满分12分)备用图数学参考答案一、仔细选一选(每小题3分,共30分)1.C2.D3.D4.C5.B6.C7.C8.B9.B 10.B 二、认真填一填(每小题4分,共24分)11.5.2 12. 1513. CE=CD ;BD ⊥AC ;∠E=30°;△BDE 是等腰三角形等(同一类型只能算答对一个)三、全面答一答(本题有7小题,共66分) 17.(6分)解:6233+-≤+x x (2分) 54≤x(2分)解在数轴上表示(略)(2分)18.(8分)解:(1)∵AD⊥BC,∠B=60°,∠BAC=80°,∴∠BAD=30°,∠DAC=50°,∵AE平分∠DAC,∴∠DAE=∠EAC=25°,∴∠BAE=55°,∴∠AEC=∠B+∠BAE=115°;(4分)(2)也可利用三角形内角和求解.∵∠C=180﹣∠B﹣∠BAC=40°,∴∠AEC=180﹣∠C﹣∠EAC=180°﹣25°﹣40°=115°.(4分)19.(8分)解:(1关于y轴的对称点Q 坐标为(1分) ∵Q(2分)(1分)(2)PQ=2,(2分)S⊿OPQ2分)20.(10分)解:(1)如图所示:(3分)(2)△ADF是等腰直角三角形。
八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列图案中,是轴对称图形的有()个.A. 1B. 2C. 3D. 42.下列语句是命题的是()A. 作直线AB的垂线B. 在线段AB上取点CC. 同旁内角互补D. 垂线段最短吗?3.已知等腰△两条边的长分别是3和6,则它的周长是()A. 12B. 15C. 12或15D. 15或184.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A.SSSB. ASAC. SSAD. HL5.若a<b,则下列各式中一定成立的是()A. a−1<b−1B. a3>b3C. −a<−bD. ac<bc6.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A. 5B. 2C. 4D. 87.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是()A. P为∠A、∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为AC、AB两边的垂直平分线的交点8.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为()A. ①②④B. ①②③C. ②③D. ①③9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B. 4.8或3.8C. 3.8D. 510.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2√3B. √10C. 2√2D. √6二、填空题(本大题共6小题,共24.0分)11.等腰三角形的一个外角等于130°,则顶角是______ .12.写出“对顶角相等”的逆命题______ .13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.14.不等式组{x>−1x<m有3个整数解,则m的取值范围是______ .15.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.16.如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共6.0分)17.解不等式1−7x−18>3x−24,并把它的解集在数轴上表示出来.四、解答题(本大题共6小题,共60.0分)18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.如图,P 是等边三角形ABC 内的一点,连结PA ,PB ,PC ,以BP 为边作∠PBQ =60°,且BP =BQ ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并说明理由. (2)若PA =3,PB =4,PC =5,连结PQ ,判断△PQC 的形状并说明理由.22.阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解:∵x -y =2,x >1,∴y +2>1,即y >-1, 又y <0,∴-1<y <0.…① 同理得:1<x <2.…②由①+②得-1+1<y +x <0+2,∴x +y 的取值范围是0<x +y <2. 请按照上述方法,完成下列问题:已知关于x 、y 的方程组{x +2y =5a −82x−y=−1的解都为非负数.(1)求a 的取值范围;(2)已知2a -b =1,求a +b 的取值范围;(3)已知a -b =m (m 是大于1的常数),且b ≤1,求2a +b 最大值.(用含m 的代数式表示)23.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t满足什么条件时,△BCP为直角三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?答案和解析1.【答案】B【解析】解:根据轴对称图形的定义,可知第2个,第4个是轴对称图形,而第1个、第3个、第5个都不是轴对称图形.故选B.判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.本题考查轴对称图形的识别,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:A、是作图语言,不符合命题的定义,不是命题;B、是作图语言,不符合命题的定义,不是命题;C、符合命题的定义,是命题;D、是一个问句,不符合命题的定义,不是命题.故选C.根据命题的定义作答.一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.一般说来,对于任何一个命题,都可以加上“是”或“不是”,如C,可以说同旁内角是互补的.注意,作图语言与问句都不是命题.3.【答案】B【解析】解:①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选B.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键.4.【答案】D【解析】解:∵OD⊥AB,OP⊥AC,∴△ADO和△APO是直角三角形,又∵OD=OP,AO=AO,∴Rt△AOD≌△Rt△AOP(HL).故选D.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.本题考查直角三角形全等的判定方法HL.5.【答案】A【解析】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a-1<b-1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>-b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.根据不等式的性质分析判断.主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.【答案】B【解析】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.【答案】C【解析】解:∵P到∠A的两边的距离相等,∴P为∠A的角平分线;∵PA=PB,∴P为AB的垂直平分线,∴P为∠A的角平分线与AB的垂直平分线的交点.故选:C.首先根据P到∠A的两边的距离相等,应用角平分线的性质,可得P为∠A的角平分线;然后根据PA=PB,应用线段垂直平分线的性质,可得P为AB的垂直平分线,所以P为∠A的角平分线与AB的垂直平分线的交点,据此判断即可.此题主要考查了角平分线的性质的应用,以及线段垂直平分线的性质和应用,要熟练掌握.8.【答案】B【解析】解:∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故①正确;∵CD⊥AB,EF⊥AB,∴EF∥CD,∴∠AEF=∠CHE,∴∠CEH=∠CHE,∴CH=CE=EF,故②正确;∵角平分线AE交CD于H,∴∠CAE=∠BAE,在△ACE和△AEF中,,∴△ACE≌△AFE(AAS),∴AC=AF,故③正确;CH=CE=EF>HD,故④错误.故正确的结论为①②③.故选B.根据等角的余角相等可判断①;先判断CD∥EF,根据平行线的性质得出∠CEH=∠CHE,再由角平分线的性质可判断②;用AAS判定△ACE≌△AFE,可判断③;根据②,结合图形可判断④.本题考查了全等三角形的判定与性质及角平分线的性质,是一道综合性较强的题目,需要同学们把直角三角形的性质和三角形全等的判定等知识结合起来解答.9.【答案】A【解析】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.10.【答案】C【解析】解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.11.【答案】80°或50°【解析】解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角可以是50°,也可以是80°.故填50°或80°等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12.【答案】相等的角是对顶角【解析】解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.将原命题的条件及结论进行交换即可得到其逆命题.此题主要考查学生对命题及逆命题的理解及运用能力.13.【答案】4【解析】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.根据角平分线的性质定理,解答出即可;本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.【答案】2<m≤3【解析】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】9【解析】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.16.【答案】√2【解析】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2,∠BAC=45°,∴BH=AB•sin45°=2×=,∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=.故答案为:.作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17.【答案】解:去分母得,8-(7x-1)>2(3x-2),去括号得,8-7x+1>6x-4,移项得,-7x-6x>-4-8-1,合并同类项得,-13x>-13,系数化为1得,x<1.在数轴上表示如下:【解析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错,去分母时没有分母的项也要乘以分母的最小公倍数.18.【答案】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°-37°=16°.【解析】(1)利用线段垂直平分线的作法得出D 点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.19.【答案】①证明:在△ABE 和△CBD 中,{AB =CB ∠ABC =∠CBD =90°BE =BD,∴△ABE ≌△CBD (SAS );②解:∵在△ABC 中,AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°,由①得:△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°.【解析】①利用SAS 即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB ,利用外角的性质求出∠AEB 的度数,即可确定出∠BDC 的度数.此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得: {50x +20y =88060x+30y=1080,解得{y =4x=16.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m -4)件,由题意得: {16m +4(2m −4)≤296m+2m−4≥32,解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m -4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m-4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【解析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m-4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,难度一般,第二问需要分类讨论,注意不要遗漏.21.【答案】解:(1)AP=CQ.理由如下:∵∠PBQ=60°,且BQ=BP,∴△BPQ为等边三角形,∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,∴∠CBQ=∠ABP,在△ABP和△CBQ中,{AB=CB∠ABP=∠CBQ BP=BQ,∴△ABP≌△CBQ(SAS),∴AP=CQ;(2)∵等边△ABC和等边△BPQ中,PB=PQ=4,PA=QC=3,∵PQ2+CQ2=PC2,∴△PQC为直角三角形(勾股定理逆定理).【解析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据PA=CQ,PB=BQ,即可判定△PQC为直角三角形.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理逆定理的运用,本题中求证△ABP ≌△CBQ 是解题的关键. 22.【答案】解:(1)解方程组{x +2y =5a −82x−y=−1得:{y =2a −3x=a−2,∴{2a −3≥0a−2≥0,解得:a ≥2;(2)由2a -b =1,a ≥2,可得:1+b 2≥2,解得:b ≥3,∴a +b ≥5;(3)由a -b =m ,a ≥2,可得m +b ≥2,∴b ≥2-m ,∴2-m ≤b ≤1,同理可得:2≤a ≤1+m ,∴6-m ≤2a +b ≤3+2m ,∴最大值为3+2m .【解析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围;(3)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求2a+b 的取值范围,即可得到最大值.本题考查了一元一次不等式(组)的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.【答案】解:(1)∵∠C =90°,AB =5cm ,BC =3cm , ∴AC =4cm ,动点P 从点C 开始,按C →B →A →C 的路径运动,速度为每秒1cm , ∴出发2秒后,则CP =2cm ,∵∠C =90°,∴PB =√22+32=√13cm ,∴△ABP 的周长为:AP +PB +AB =2+5+√13=7+√13(cm );(2)∵AC =4,动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm , ∴P 在AC 上运动时△BCP 为直角三角形,∴0<t ≤4,当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,∵12×AB ×CP =12×AC ×BC ,∴12×5×CP =12×3×4, 解得:CP =125cm ,∴AP =√AC 2−CP 2=165cm ,∴AC +AP =365cm ,∵速度为每秒1cm ,∴t =365,综上所述:当0<t ≤4或t =365,△BCP 为直角三角形;(3)当P 点在AC 上,Q 在AB 上,则PC =t ,BQ =2t -3,∵直线PQ 把△ABC 的周长分成相等的两部分,∴t +2t -3=3,∴t =2;当P 点在AB 上,Q 在AC 上,则AC =t -4,AQ =2t -8,∵直线PQ 把△ABC 的周长分成相等的两部分,∴t -4+2t -8=6,∴t =6,∴当t =2或6秒时,直线PQ 把△ABC 的周长分成相等的两部分.【解析】 (1)首先利用勾股定理计算出AC 长,根据题意可得CP=2cm ,再利用勾股定理计算出PB 的长,进而可得△ABP 的周长;(2)当P 在AC 上运动时△BCP 为直角三角形,由此可得0<t≤4;当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,首先计算出CP 的长,然后再利用勾股定理计算出AP 长,进而可得答案.(3)分类讨论:当P 点在AC 上,Q 在AB 上,则PC=t ,BQ=2t-3,t+2t-3=3;当P 点在AB 上,Q 在AC 上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.此题主要考查了勾股定理以及其逆定理等知识,利用分类讨论的思想求出是解题关键.。
杭州市大江东教育集团2014-2015学年第一学期12月学习能力检测八年级数学试卷考试时间90分钟 满分120分 2014年12月一、仔细选一选(本题有10个小题,每小题3分,共30分) 1. 下列“表情图”中,属于轴对称图形的是( )A .B .C .D .2.若正比例函数kx y =的图象经过点(1,2),则k 的值为( )A.21-B.-2C.21D.2 3.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A .有一个内角是60°B .有一个外角是120° C.有两个角相等 D.腰与底边相等4.若n m +<0,mn >0,则一次函数n mx y +=的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.有3厘米,6厘米,8厘米,9厘米的四条线段,任选其中的三条线段组成一个三角形,最多能组成三角形的个数为( )A.1B.2C.3D.46.已知下列命题:①若b a =,则22b a =;②若2am >2bm ,则a >b ;③对顶角相等;④等腰三角形的两底角相等。
其中原命题和逆命题均为真命题的个数是( ) A.1 B.2 C.3 D.47.若把不等式组{3221-≥--≥-x x 的解集在数轴上表示出来,则其对应的图形为( )A.长方形B.线段C.射线D.直线8. 如图A ,B ,C ,D ,E 分别在∠MON 的两条边上,如果∠1=20°,∠2=40°,∠3=60°,AB ∥CD ,DE ∥B C 那么下列结论中错误的是( ) A . ∠4=80°B .∠BAC =80°C .∠CDE =40°D .∠CBD =120°9.已知一次函数b kx y +=,如图所示,当x <0时,y 的取值范围( )A.y >0B.y <0C.-2<y <0D. y <-2(第8题) (第9题)10.在平面直角坐标系中,O 为坐标原点,已知点A (4,0),B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,则满足上述条件的直角三角形(不包括与△ABO 重合)的未知顶点有( )A.7个B.8个C.9个D.10个 二、认真填一填(本题有6个小题,每小题4分,共24分)11.已知一个等腰三角形中有一个角为50°,则这个等腰三角形的顶角为 . 12.已知点P (-2,3)关于x 轴的对称点为Q(a ,b ),则=+b a .13.写出一个过点(0,3)且函数值y 随自变量x 的增大而减小的一次函数关系式 . 14.将直线x y 2=向右平移2个单位后得到直线,则直线的解析式是 . 15.不等式组{2153+<<-<<a x a x 的解是23+<<a x ,则a 的取值范围是 .16.如图,已知正方形ABCD 的边长是2厘米,E 是CD 边的中点,F 在BC 边上移动,当AE 恰好平分∠FAD 时,CF= 厘米.三、全面答一答(本题有7个小题,共66分) 17.(本小题满分6分)解不等式x x 5.11125.0-->-,把解表示在数轴上,并求出适合不等式的最小负整数DEFC 1 ONMEDCB A 2 3 4和最小正整数18.(本小题满分8分)如图,已知线段a 和线段b :(1)用直尺和圆规作等腰△ABC ,使底边BC=a ,BC 边上的高线AD=b .(保留作图痕迹) (2)当6=a ,4=b 时,求此等腰三角形腰上的高线长19.(本小题满分8分)如图,点D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作等边△EDC ,连接AE ,请探究在点D 的运动过程中,∠DAE 的度数是否会发生变化?如果发生变化,请说明理由;如果不发生变化,请求出这个度数20. (本小题满分10分)已知两个正比例函数x k y 11=与x k y 22=,当2=x 时,121-=+y y ;当3=x 时,1221=-y y .(1)求这两个正比例函数的解析式; (2)当4=x 时,求2111y y +的值.21. (本小题满分10分)下面,我们来研究代数式x 2+x+m 的一些相关问题:(1)如果对于任意的x ,代数式x 2+x+m 的值都是正数,那么m 的取值范围是什么? (2)当m = -1时,代数式x 2+x+m 的值等于0,试求以下代数式的值:①200820092010x x x -+ ②2010223-+x x22. (本小题满分12分)EDCBAab水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况: (1)每亩水面年租金为500元,。
杭州市滨江区高新实验学校2013--2014学年上学期期中考试八年级数学试卷一、仔细选一选 (本题有10个小题)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.从长为3cm ,6cm ,8cm ,9cm 的四条线段中任选三条线段,不能组成一个三角形为( ) A .3cm ,6cm ,8cm B .3cm ,6cm ,9cm C .3cm , 8cm ,9cm D .6cm ,8cm ,9cm2.下面有4个汽车标志图案,哪个不是轴对称图形的是 ( )A B C D3.已知a >b ,若c 是任意实数,则下列不等式中总是成立的是 ( ) A .a +c <b +c B .a -c >b -c C .ac <bc D .a b c c> 4.如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D , 点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .13 (第4题) 5.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是 ( ) A .120°,60° B .95.1°,104.9° C .30°,60° D .90°,90°6. 工人师傅常用角尺平分一个任意角.做法如下:如图所示, ∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON , 移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺 顶点C 的射线OC 即是∠AOB 的平分线.做法中用到三 角形全等的判定方法是 ( )A .SSSB .SASC .ASAD .HL 7. 到三角形三条边的距离都相等的点是这个三角形的 ( ) A .三条中线的交点 B . 三条高线的交点C . 三条垂直平分线的交点D . 三条角平分线的交点 8. 如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( ) A .15° B .25°C .30°D .10° (第8题)9.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x 元,并列出关系式为1000)1002(3.0<-x ,则下列哪项可能是小美告诉小明的内容?( )(第6题)A .买两件等值的商品可减100元,再打3折,最后不到1000元耶!B .买两件等值的商品可减100元,再打7折,最后不到1000元耶!C .买两件等值的商品可打3折,再减100元,最后不到1000元耶!D .买两件等值的商品可打7折,再减100元,最后不到1000元耶! 10. 如图,在锐角△ABC 中,AB=6,∠BAC=45°,∠BAC 的平分线交 BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值 是 ( )A. B . 6 C .D . 3二. 认真填一填 (本题有6个小题)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.已知等腰三角形的两边长分别是3㎝和8㎝,则此三角形的周长________.12. 如图,△ABC 的面积是12,BD =2CD ,点E 是AD 的中点,则△ACE 的面积是 . 13.写出不等式)(x x +<+2335所有的非负整数解___________.14.如图,已知△ABC 中,AB=AC ,D 点在BC 上,且BD=AD ,DC=AC ,则∠B 的度数 为_________. 15.如图,ABCD 是一张长方形纸片,AD =BC =1,AB =CD =5.在边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,(1)当点B 和点D 重合时,⑴ 若∠1=70°,则∠NDM 的度数为 ; (2)线段AM 的长度为 .(第14题)16.在△ABC 中,高AD 所在的直线.....和高BE 所在的直线.....相交于点H ,且BH =AC , 则∠ABC = .三.全面答一答(本题有7小题,要求写出文字说明、证明过程或推演步骤) 17.如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .(第10题)(第12题) DC B(第15题)18.(1) 不等式组⎩⎨⎧><mx x 8有解,求利用数轴m 的取值范围.(2) 表示不等式组⎩⎨⎧>>b x a x 的解集如图所示,求不等式组⎩⎨⎧≤<b x ax 的解集.19.如图,△ABC 中,∠BAC=110°,BC=10,若MP 和NQ 分别垂直平分AB 和AC ,求(1)∠PAQ 的度数; (2)△APQ 的周长。
2014-2015学年浙江省杭州市滨江区高新实验学校八年级(上)期中数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中的相应的格子内,注意可以用多种不同的方法来选取正确答案.1.(3分)下列“表情图”中,不属于轴对称图形的是()A.B.C.D.2.(3分)把三角形的面积分为相等的两部分的是()A.三角形的中线B.三角形的角平分线C.三角形的高D.以上都不对3.(3分)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.(3分)若x>y,则下列式子错误的是()A.x+2>y+2 B.﹣2x<﹣2y C.1﹣x>1﹣y D.5.(3分)长为9,6,5,3的四根木条,选其中三根组成三角形,选法有()A.1种 B.2种 C.3种 D.4种6.(3分)关于x的方程5x+12=4a的解都是负数,则a的取值范围()A.a>3 B.a<﹣3 C.a<3 D.a>﹣37.(3分)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.18.(3分)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130° D.155°9.(3分)如图,△ABC中,AB=AC,∠BAC=90°,P是BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CP;③PE=PF;④S=S△ABC,其中成立四边形AEPF的有()A.1个 B.2个 C.3个 D.4个10.(3分)如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为()A.6cm2B.5cm2C.4cm2D.3cm2二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案.11.(4分)如图,AC与BD交于点P,AP=CP,从以下四个论断①∠B=∠D,②BP=DP,③AB=CD,④AB∥CD中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是.12.(4分)将一副常规的三角板按如图方式放置,则图中∠AOB的度数为.13.(4分)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.14.(4分)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.15.(4分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠B=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.16.(4分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点难,那么把自己能写出的解答一部分也可以.17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=60°,∠C=70°,求∠DAC,∠BOA,∠EAD的度数.19.(8分)如图,已知△ABC中,∠ACB=90°.(1)利用尺规作图,作一个点P,使得点P到∠ACB两边的距离相等,且PA=PB;(2)试判断△ABP的形状,并说明理由.20.(8分)如图:F在△ABC的AC边的延长线上,D点在AB边上,DF交BC于点E,DE=EF,BD=CF.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)21.(10分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?22.(12分)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题;(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF,若PQ=,PR=,QR=3.①试判断△PQR与△PEF面积之间的关系,并说明理由.②求六边形AQRDEF的面积.23.(12分)如图1,Rt△ABC中,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P'),当AP旋转至AP'⊥AB时,点B、P、P'恰好在同一直线上,此时作P'E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)若AB﹣BC=4,AC=8,求AE的长;(3)当∠ABC=60°,BC=2,点N为BC的中点,在线段BP上确定点M,使MC+MN 的值最小,利用图2,作出点M,并求出这个最小值.2014-2015学年浙江省杭州市滨江区高新实验学校八年级(上)期中数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中的相应的格子内,注意可以用多种不同的方法来选取正确答案.1.(3分)下列“表情图”中,不属于轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选:B.2.(3分)把三角形的面积分为相等的两部分的是()A.三角形的中线B.三角形的角平分线C.三角形的高D.以上都不对【解答】解:把三角形的面积分为相等的两部分的是三角形的中线.故选:A.3.(3分)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42【解答】解:42是偶数,但42不是8的倍数.故选:D.4.(3分)若x>y,则下列式子错误的是()A.x+2>y+2 B.﹣2x<﹣2y C.1﹣x>1﹣y D.【解答】解:A、两边都加2,不等号的方向不变,故A不符合题意;B、两边都乘以﹣2,不等号的方向改变,故B不符合题意;C、两边都乘以﹣1,不等号的方向改变,故C符合题意;D、两边都除以2,不等号的方向不变,故D不符合题意;故选:C.5.(3分)长为9,6,5,3的四根木条,选其中三根组成三角形,选法有()A.1种 B.2种 C.3种 D.4种【解答】解:可以选:①9,6,5;②6,5,3;两种;故选:B.6.(3分)关于x的方程5x+12=4a的解都是负数,则a的取值范围()A.a>3 B.a<﹣3 C.a<3 D.a>﹣3【解答】解:解关于x的方程得到:x=,根据题意得:,解得a <3.故选:C.7.(3分)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.8.(3分)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130° D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.9.(3分)如图,△ABC中,AB=AC,∠BAC=90°,P是BC中点,∠EPF=90°,给=S△ABC,其中成立出四个结论:①∠B=∠BAP;②AE=CP;③PE=PF;④S四边形AEPF的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵P是BC的中点,∴AP=BP=CP,∴∠BAP=45°,∴∠B=∠BAP,故①正确;∵P是BC中点,且AB=C,∴AP⊥BC,∴∠APC=∠EPF=90°,∴∠APE+∠APF=∠APF+∠FPC,∴∠APE=∠FPC,在△AEP和△CFP中,∴△AEP≌△CFP(ASA),∴AE=CF,PE=PF,故②错误,③正确,;=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,故④正确;∴S四边形AEPF综上可知成立的有3个,故选:C.10.(3分)如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为()A.6cm2B.5cm2C.4cm2D.3cm2【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,在△ABP与△BEP中,∴△ABP≌△BEP(ASA),=S△BEP,AP=PE,∴S△ABP∴△APC和△CPE等底同高,=S△PCE,∴S△APC设△ACE的面积为m,∴S=S△ABC+S△ACE=10+m△ABES△ABE﹣S△ACE=﹣=5∴S△PBC=故选:B.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案.11.(4分)如图,AC与BD交于点P,AP=CP,从以下四个论断①∠B=∠D,②BP=DP,③AB=CD,④AB∥CD中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是③.【解答】解:①在△ABD和△CDB中,,∴△ABD≌△CDB(AAS);②在△ABD和△CDB中,,∴△ABD≌△CDB(SAS);③∵在△ABD和△CDB中,AP=CP、∠APB=∠CPD、AB=CD不满足全等三角形的判定定理的条件,∴添上AB=CD不能证出△APB≌△CPD;④∵AB∥CD,∴∠A=∠C.在△ABD和△CDB中,,∴△ABD≌△CDB(ASA).故答案为:③.12.(4分)将一副常规的三角板按如图方式放置,则图中∠AOB的度数为105°.【解答】解:如右图,∵∠COD=∠B+∠BCO=60°+45°=105°,∴∠AOB=∠COD=105°.故答案是105°.13.(4分)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为78cm.【解答】解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.14.(4分)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.15.(4分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠B=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.【解答】解:“有趣中线”有三种情况:若“有趣中线”为斜边AC上的中线,直角三角形的斜边的中点到三顶点距离相等,不合题意;若“有趣中线”为AB边上的中线,则“有趣中线”为1,不符合题意;若“有趣中线”为另一直角边BC上的中线,如图所示,AB=1,设AD=2x,则BD=x,在Rt△ABD中,根据勾股定理得:AD2=AB2+BD2,即(2x)2=12+x2,解得:x=,则这个三角形“有趣中线”长等于.故答案为:.16.(4分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点难,那么把自己能写出的解答一部分也可以.17.(8分)解不等式组:并把解集在数轴上表示出来.【解答】解:,解①得x≥1,解②得x<4.则不等式组的解集是1≤x<4.18.(8分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=60°,∠C=70°,求∠DAC,∠BOA,∠EAD的度数.【解答】解:∵AD是高,∴∠ADC=90°,∵∠C=70°,∴∠DAC=90°﹣∠C=90°﹣70°=20°,∵∠ABC+∠C+∠BAC=180°,∴∠BAC=180°﹣(∠ABC+∠C)=180°﹣(60°+70°)=50°,∵AE、BF是角平分线,∴∠ABF=∠ABC=×60°=30°,∠BAE=∠EAC=∠BAC=×50°=25°,∴∠BOA=180°﹣(∠1+∠2)=180°﹣(30°+25°)=125°,∠EAD=∠EAC﹣∠DAC=25°﹣20°=5°.19.(8分)如图,已知△ABC中,∠ACB=90°.(1)利用尺规作图,作一个点P,使得点P到∠ACB两边的距离相等,且PA=PB;(2)试判断△ABP的形状,并说明理由.【解答】解:(1)如图所示:(2)过点P作PH⊥CA延长线于点H,PG⊥CB于点G,∵CP平分∠ACB,在Rt△PHA和Rt△PGB中∴Rt△PHA≌Rt△PGB(HL),∴∠HPA=∠BPG,由题意可得:∠HPG=90°,∴∠APB=90°,∴△APB是等腰直角三角形.20.(8分)如图:F在△ABC的AC边的延长线上,D点在AB边上,DF交BC于点E,DE=EF,BD=CF.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)【解答】证明:过D作DG∥AC交BC于G,∵DG∥AC,∴∠GDF=∠CFE,∠DGE=∠FCE.在△DGE和△FCE中∵,∴△DGE≌△FCE(AAS).∵BD=CF,∴DG=BD.∴∠DGB=∠B.∵DG∥AC,∴∠DGB=∠ACB.∴∠B=∠ACB.∴AB=AC.∴△ABC是等腰三角形.21.(10分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,由题意得,解得答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.22.(12分)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题;(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF,若PQ=,PR=,QR=3.①试判断△PQR与△PEF面积之间的关系,并说明理由.②求六边形AQRDEF的面积.【解答】解:(1)图1中△ABC的面积为3×3﹣×1×2﹣×1×3﹣×2×3=,故答案为:;(2)①如图所示:②△DEF的面积为4×5﹣×2×3﹣×2×4﹣×2×5=8;(3)①如图3,△PEF的面积为6×2﹣×1×6﹣×1×3﹣×3×2=,△PQR的面积为×3×3=,∴△PQR与△PEF面积相等;②六边形AQRDEF的面积为()2+++()2=13+9+10=32.23.(12分)如图1,Rt△ABC中,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P'),当AP旋转至AP'⊥AB时,点B、P、P'恰好在同一直线上,此时作P'E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)若AB﹣BC=4,AC=8,求AE的长;(3)当∠ABC=60°,BC=2,点N为BC的中点,在线段BP上确定点M,使MC+MN 的值最小,利用图2,作出点M,并求出这个最小值.【解答】解:(1)∵AP=AP',∴∠APP′=∠A P′P,∵∠BCA=∠BAP′=90°,∴∠BCA﹣∠BPC=∠BAP′﹣∠AP′P,即∠CBP=∠ABP;(2)过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠PAD+∠EAP′=90°,∴∠PAD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=CP,∵AB﹣BC=4,AC=8,∴AB=10,BC=6,∴AE=CP=3;(3)由题意得,点C与点D关于BP对称,连接DN交BP于M,则点M即为所求,∵∠ABC=60°,BD=BC=2,∴MN+MC=ND=BD•sin∠ABC=,∴MC+MN的值最小值为.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。