经热处理的蛇纹石粉体对金属磨损特性的影响_英文_
- 格式:pdf
- 大小:1.32 MB
- 文档页数:5
蛇纹石应用效果分析一、高炉相关计算现高炉炉料结构(4#高炉):机烧:球团:块矿=77:15:8 ,矿批17900kg,负荷4.30,焦炭水份6%,小时料批8批,小时喷煤量13000kg,【si】=0.38%,生铁成分【Fe】=94.5%相关物料分析:焦炭灰分=13% 煤粉灰分=12%入炉矿综合品味=77×56.6%+15×63%+8×59%=57.75%每批料干焦量=17900÷4.3=4163kg每批料喷煤量=13000÷8=1625kg每批料出铁量=17900×57.75%÷94.5%=10938kg经计算每批料带入总的:CaO(总)=17900×77%×9.11%+17900×15%×0.69%+17900×8%×0.1%+4163×13%×7%+1625×12%×6%=1325.17kgAl2O3(总)=17900×77%×1.8%+17900×15%×0.9%+17900×8%×1.92%+4163×13%×15%+1625×12%×15%=410.18kgMgO(总)=17900×77%×2.18%+17900×15%×0.63%+17900×8%×0.1%+4163×13%×0.72%+1625×12%×0.83%=324.33kgSiO2(总)=17900×77%×4.64%+17900×15%×5.76%+17900×8%×5.52%+4163×13%×50%+1625×12%×50%-10938×60÷28×0.38%=1152kg结合上述结果,高炉炉渣成分为:上述四种成分占总渣量的96%镁铝比为0.79 R2=1.15 渣比=3346÷10938=306kg二、高炉配加蛇纹石后数据对比影响高炉焦比因素:方案一:按照蛇纹石1的成分分析高炉每批料配加100kg和200kg蛇纹石以及烧结不加轻烧云石高炉配加蛇纹石烧结成分、渣比及焦比变化表:计算条件维持高炉炉渣碱度R2=1.15,渣中镁铝比=0.79经计算烧结不加轻烧云石高炉配加蛇纹石渣中镁铝比=0.76时,需配加450kg蛇纹石每吨焦炭价格按照1700元计算,不考虑高炉配加蛇纹石本身价格方案二:按照蛇纹石2的成分分析高炉每批料配加100kg和200kg蛇纹石以及烧结不加轻烧云石高炉配加蛇纹石烧结成分、渣比及焦比变化表:计算条件维持高炉炉渣碱度R2=1.15,渣中镁铝比=0.79经计算烧结不加轻烧云石高炉配加蛇纹石渣中镁铝比=0.76时,需配加450kg蛇纹石。
第26卷 第4期Vol 126 No 14材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第114期Aug.2008文章编号:167322812(2008)0420554205铜2石墨烧结材料中第三体对摩擦磨损性能的影响符 蓉,高 飞,宋宝韫,于庆军(大连交通大学材料科学与工程学院,辽宁大连 116028) 【摘 要】 采用粉末冶金技术制备了铜和铜-石墨粉末冶金材料。
通过定速摩擦试验机测试了材料的摩擦磨损性能,观察比较了两种材料摩擦学特征和表面摩擦第三体的变化过程。
结果表明:摩擦表面第三体状态与材料成分密切相关,并影响材料的摩擦系数和磨损量。
纯铜摩擦时,形成的第三体颗粒尺寸大、粘着性强,金属间的粘着撕裂造成摩擦系数剧烈波动和磨损量加大;添加石墨,细化了第三体颗粒尺寸,流动性好的第三体容易覆盖表面的损伤区,这有利于增加真实接触面积,减少应力集中,起到稳定摩擦系数、降低磨损量的作用。
【关键词】 第三体;摩擦磨损;铜石墨烧结材料中图分类号:TF125;TB333 文献标识码:ACharacteristics of Third Bodies and the FrictionProperties of the Sintered Cu 2graphiteFU Rong ,G AO Fe ,SONG B ao 2yun ,Y U Q ing 2jun(College of Materials Science and E ngineering ,Dalian Jiaotong U niversity ,Dalian 116028,China)【Abstract 】 Powder metallurgy techniques were employed to fabricate Cu and Cu 2graphite materials ,whose friction andwear properties were measured by a constant 2speed tester.The tribological characteristics and the evolution of the third bodies at the surface were investigated.The results show that the states of third bodies are relevant to the composition and they have effects on the f riction coefficients as well as the wear.In case of pure Cu ,third bodies have large sizes and the adhesive abrasion occurs between the metals ,resulting in oscillation of f riction coefficients and a large loss of mass.Adding some graphite ,which brings third bodies with good mobility ,can refine the size of third bodies.These third bodies cover the interfaces ,increase the real contacting areas ,reduce the stress concentration ,and as a result ,stabilize the f riction coefficients and reduce the wear.【K ey w ords 】 third bodies ;f riction and wear ;sintered Cu 2graphite收稿日期:2007208205;修订日期:2007210215基金项目:国家863计划资助项目(2006AA03Z515)和国家自然科学基金资助项目(50375025)作者简介:符 蓉(1965-),女,副教授,主要从事摩擦磨损及第三体摩擦机理的研究。
收稿日期:2006-05-11 联系人:李艳茹(114009)辽宁鞍山市鞍钢技术中心设计与研究鞍钢烧结配加蛇纹石的实验室研究李艳茹 周明顺 翟立委 张立国(鞍钢技术中心)摘 要 蛇纹石作为熔剂部分或全部取代菱镁石的烧结试验表明,随蛇纹石配比增加,烧结固体燃耗降低,烧结矿转鼓强度与烧结机利用系数提高,烧结矿粒度组成趋于合理,冶金性能得到改善。
配加蛇纹石对烧结产、质量有利,但每增加1%的蛇纹石,烧结矿品位约降低016个百分点。
关键词 烧结 蛇纹石 冶金性能1 前 言烧结矿中含有适量M gO 可有效改善高炉炉渣性能,降低烧结矿在炉内的低温还原粉化率。
根据鞍钢的生产实践,高炉炉渣中MgO 含量以9%~12%为宜,相应要求烧结矿MgO 含量为213%~215%。
多年来,鞍钢烧结一直配加菱镁石粉作为MgO 源,也曾做过配加白云石的烧结试验。
近年来,国内一些烧结厂根据各自的原料条件相继对使用蛇纹石作为含氧化镁矿源进行了试验,并取得了较好效果。
为此,鞍钢也进行了烧结配加蛇纹石部分和全部取代菱镁石的试验研究,以探求生产中MgO 的有效配加方式,希望在保证烧结矿MgO 含量的同时,使各项指标得以提升,从而为优化生产提供有益的尝试。
2 试验原料及方法211 蛇纹石蛇纹石是一种层状高镁、高硅矿物,它是由一层硅氧四面体与一层氢氧镁石八面体结合而成,其化学式为:Mg 6[Si 4O 10](OH )8,理论含M gO 4316%,SiO 24313%,H 2O 1311%。
蛇纹石的颜色随所含杂质成分不同而呈现程度不同的绿色,如浅绿、黄绿、暗绿及黑绿,也有呈灰白色的。
本次试验所用蛇纹石为浅绿色、片状。
其化学成分列于表1。
表1 蛇纹石的化学成分(%)SiO 2CaO M gO Ig 3614621034314116147212 其它试验原料试验所用铁料、熔剂、燃料均取自炼铁总厂烧结生产现场,其化学成分见表2。
表2 试验所用原料的化学成分(%)品名TFe FeO SiO 2CaO M gO Ig 精矿A 67171141503140011201220198精矿B 67108101913180010701091118粉矿C 6717101181119010601051143粉矿D 6211201273177010201065130粉矿E 6114211084160010101125128粉矿F 63124261764170013311600126石灰石01280118118552172116942125生石灰01280118215863126215823113镁石粉01630136318521244415148176焦粉灰分挥发分固定碳硫SiO 2CaOM gO 61497156851950116838110121405150213 试验方案及条件以蛇纹石替代菱镁石,保持烧结矿设计碱度为2105,M gO 设计含量为215%不变,蛇纹石配比分别设为015%、1%、2%、3%、4%及全部替代菱镁石粉。
热处理对NiTi形状记忆合金冲蚀磨损性能的影响的报告,600
字
热处理对NiTi形状记忆合金冲蚀磨损性能的影响报告
NiTi形状记忆合金(SMAs)是一种新兴材料,具有良好的力
学性能和独特的形状记忆效应。
然而,由于其结构中的氧化物层和其它部分的不均衡,SMA常常会受到冲蚀磨损的影响。
因此,在冲击,平面摩擦或其他冲蚀工况下,热处理技术可以提高NiTi形状记忆合金的磨损性能。
具体来说,热处理可以增加NiTi形状记忆合金的疲乏抗压强
度和抗拉强度,改善比表面粗糙度和可疲乏衰减的能力,从而降低冲蚀磨损的发生率。
具体而言,在650℃的热处理下,
NiTi形状记忆合金的表面粗糙度降低了10-30%,并且其疲劳
抗拉强度和抗压强度得到了有效改善。
因此,以上结果显示,热处理可以通过减少材料表面的衰减,达到减少NiTi形状记
忆合金冲蚀磨损的效果。
此外,热处理还可以改变NiTi形状记忆合金的表面组织,引
起部分元素的浓度增加,从而改变材料的表面形态和表面性质。
在一定温度下,NiTi形状记忆合金原声结构会被金属间化合
物所取代,从而产生更硬的表面。
研究表明,热处理使NiTi
形状记忆合金表面有效抵抗冲蚀磨损,从而改善其磨损性能。
综上所述,热处理可以改善NiTi形状记忆合金的磨损性能,
这是由于它可以增加材料的疲劳性能、改变材料表面的表面结
构和形态、改变部分元素的浓度。
因此,热处理是一种有效的方法来提高NiTi形状记忆合金的冲蚀磨损性能。
蛇纹石在陶瓷生产中的应用研究蛇纹石是一种特殊的矿石,它的独特纹理和颜色使其成为陶瓷生产中的重要原料。
蛇纹石在陶瓷生产中的应用研究可以从矿石的性质、处理方法以及陶瓷产品的特性等方面来探讨。
首先,我们来看一下蛇纹石的性质。
蛇纹石是一种由镁铁榴矿和石英组成的岩石,它的主要成分是二氧化硅和氧化镁,同时还含有一定量的氧化铁和其他杂质。
蛇纹石的颜色和纹理都是由于其中的镁铁榴矿含量的不同而产生的,因此每一块蛇纹石都具有独特的外观。
蛇纹石在陶瓷生产中的应用可以分为两个方面。
一方面,蛇纹石可以用作陶瓷材料的原料。
通过将蛇纹石研磨成粉末状,然后与其他材料进行混合,可以制成各种陶瓷材料,如瓷器、陶瓷砖等。
蛇纹石粉末的添加可以改变陶瓷材料的颜色、纹理和质地,使其具有更加独特的外观。
另一方面,蛇纹石还可以用作陶瓷产品的装饰材料。
在制作陶瓷产品的过程中,可以将蛇纹石粉末喷涂在表面,然后进行烧制,这样可以使陶瓷产品的表面呈现出蛇纹石特有的纹理和色彩。
这种装饰方法可以使陶瓷产品更加美观,并增加其艺术价值。
在蛇纹石的处理方法方面,最常见的方法是将其研磨成粉末状。
蛇纹石研磨成粉末后可以更方便混合到其他材料中,并且可以更好地与其他材料充分交融,提高陶瓷产品的质量。
除了研磨成粉末,蛇纹石还可以进行烧结和压制等处理。
这些处理方法可以改变蛇纹石的物理和化学性质,使其更加适合用于陶瓷生产。
最后,我们来探讨一下蛇纹石在陶瓷产品中的特点。
蛇纹石在陶瓷产品中的应用可以使产品表面呈现出独特的纹理和色彩,增加产品的美观度。
此外,蛇纹石还具有一定的抗氧化和抗酸性能,使得陶瓷产品更加耐用。
另外,蛇纹石还具有一定的导热性和导电性,可以在陶瓷产品中起到调节温度和导电的作用。
综上所述,蛇纹石在陶瓷生产中的应用研究涉及到蛇纹石的性质、处理方法以及陶瓷产品的特性等方面。
通过合理利用蛇纹石,可以制造出具有独特外观和艺术价值的陶瓷产品。
因此,进一步深入研究蛇纹石的应用,有助于推动陶瓷产业的发展,并丰富人们的生活。
蛇纹石润滑油添加剂摩擦反应膜的力学特征与摩擦学性能摩擦和磨损是机械设备中常见的问题,为了减少这些问题的发生,添加剂润滑油是广泛使用的解决方案。
在添加剂润滑油中,蛇纹石是一种非常受欢迎的添加剂,因为它可以形成摩擦反应膜。
在本文中,我们将研究蛇纹石润滑油添加剂摩擦反应膜的力学特征和摩擦学性能。
首先,我们将介绍蛇纹石润滑油添加剂的作用机制。
蛇纹石可以被吸附在金属表面上,形成一个摩擦反应膜,因此减少了金属表面之间的接触,并使摩擦系数降低。
摩擦反应膜的形成和生长也可以起到防止磨损的作用。
其次,我们将讨论蛇纹石润滑油添加剂的力学特征。
蛇纹石颗粒具有一定的硬度和韧性,因此可以在金属表面上形成一个坚韧的薄膜。
这个薄膜有很好的耐磨性和耐高温性,因此可以在高温和高压下保持其结构和性能。
此外,蛇纹石颗粒还具有很好的润滑能力,可以在表面形成一个滑动的润滑层,减少金属之间的直接接触。
最后,我们将探讨蛇纹石润滑油添加剂的摩擦学性能。
使用蛇纹石润滑油添加剂可以显着降低金属的摩擦系数,具有显著的减摩和降噪效果。
此外,蛇纹石润滑油添加剂还可以改善机械设备的耐用性和寿命,减少维修和更换的次数。
综上所述,我们可以得出结论:蛇纹石润滑油添加剂的力学特征和摩擦学性能与其在机械设备中的广泛应用密切相关。
使用蛇纹石润滑油添加剂可以改善机械设备的性能和寿命,减少维修和更换的次数,从而为机械设备的高效运转提供了可靠的保障。
除了以上提到的力学特征和摩擦学性能,蛇纹石润滑油添加剂还有其他一些值得我们关注的特点。
首先,它具有很好的润湿性,可以快速地覆盖金属表面,并形成一个均匀的润滑层。
其次,蛇纹石润滑油添加剂还具有很好的抗氧化性和耐腐蚀性,可以保护金属表面不被氧化和腐蚀。
此外,蛇纹石还可以通过改善润滑油的流动性和降低粘度,在低温条件下保持稳定的润滑性能。
这对于在极端气候条件下运行的机械设备特别重要。
当然,蛇纹石润滑油添加剂也有其局限性。
例如,蛇纹石颗粒可能会在高速高温运行下被压碎和磨损,降低其润滑性能。
冶金(Metallurgy)英汉对照词汇abichite 砷铜矿abnormal steel 反常钢abnormal structure 反常结构abnormality of steel 钢的反常性abradability 磨损性abradant 研磨剂abrading 研磨修整abraser 研磨剂abrasion 磨耗abrasion marks 研磨斑痕abrasion test 磨耗试验abrasion tester 磨耗试验机abrasion testing machine 磨耗试验机abrasive 研磨剂abrasive belt 磨光砂带abrasive cloth 砂布abrasive cutting off machine 砂轮切断机abrasive dust 磨屑abrasive grain 磨粒abrasive hardness 耐磨硬度abrasive paste 研磨膏abrasive powder 研磨粉abrasive wear 磨蚀abscess 气孔absolute error 绝对误差absolute humidity 绝对湿度absolute pressure 绝对压力absolute temperature 绝对温度absolute zero 绝对零度absorbability 吸收性absorbed energy 吸收能量absorbent 吸收剂absorber 吸收体absorbing column 吸收塔absorbing medium 吸收介质absorbite 活性碳absorption 吸收absorption capacity 吸收能力absorption chromatography 吸收色谱法absorption edge 吸收端absorption extraction 吸收萃取absorption limit 吸收端absorption spectrum 吸收光谱absorption tower 吸收塔absorptive power 吸收能力absorptivity 吸收性ac arc welder 交羚弧焊机ac arc welding 交羚弧焊ac electrode 交粮条acanthite 硫银矿accelerated cooling 加速冷却accelerated creep 加速蠕变accelerated diffusion 加速扩散accelerated leaching 加速浸出accelerated rolling 加速轧制acceptance inspection 接收检查acceptance test 验收试验accidental error 偶然误差accompanying element 伴生元素accretion 炉结accumulator 蓄电池;贮料塔accumulator metal 极板用合金accuracy 准确度accuracy of reproduction 再现精度acetate 醋酸盐acetic acid 醋酸acetylene 乙炔acetylene burner 乙炔燃烧器acetylene cutting 氧乙炔焰切割acetylene cutting torch 乙炔截割吹管acetylene cylinder 乙炔瓶acetylene generator 乙炔发生器acetylene welding 氧乙炔焊acheson furnace 艾奇逊电炉acicular cast iron 针状结构铸铁acicular crystal 针状结晶acicular ferrite 针状铁素体acicular iron ore 针铁矿acicular martensite 针状马氏体acicular powder 针状粉末acicular structure 针状结构acid 酸acid bath 酸浴acid bessemer converter 酸性转炉acid bessemer process 酸性转炉炼钢法acid bessemer steel 酸性转炉钢acid bottom 酸性炉底acid brick 酸性砖acid brittleness 酸洗脆性acid bronze 耐酸青铜acid corrosion 酸腐蚀acid electric furnace 酸性电炉acid electrolyte 酸性电解液acid embrittlement 酸洗脆性acid extraction 酸性萃取acid furnace 酸性炉acid hearth 酸性炉底acid leaching 酸性浸出acid lined furnace 酸性炉acid lining 酸性内衬acid medium 酸性介质acid open hearth furnace 酸性平炉acid open hearth process 酸性平炉法acid open hearth steel 酸性平炉钢acid oxide 酸性氧化物acid process 酸性法acid pump 酸泵acid refractory 酸性耐火材料acid resistance 耐酸性acid resistant steel 耐酸钢acid resisting cast iron 耐酸铸铁acid resisting casting 耐酸铸件acid resisting steel 耐酸钢acid slag 酸性渣acid solution 酸性溶液acid steel 酸性钢acid tank 酸性槽acidity 酸度acidproof alloy 耐酸合金acidproof brick 耐酸砖acidproof cast iron 耐酸铸铁acidproof casting 耐酸铸件acidulated bath 酸性化槽acierage 表面钢化acoustic absorbing material 吸音材料acoustic diagnosis 音响诊断acoustic emission 声发射acoustic fatigue 声波振动疲劳acoustic inspection 音响检查actinium 锕actinouranium 锕铀activated alumina 活性氧化铝activated carbon 活性碳activated chlorine 活性氯activated sintering 活化烧结activation 活化activation analysis 活化分析activation energy 活化能activation volume 活化容积activator 活化剂active material 放射性物质active mixer 预炼混铁炉active power 有效功率active solvent 活性溶剂active surface 活性表面activity 活度activity coefficient 活度系数activity factor 活度系数activity probe 活度探示器actual load 有效负载actual solution 实际溶液actual stress 实际应力actual throat 实际角焊缝厚度adamite 水砷锌矿adamite roll 阿达迈特高碳铬镍耐磨铸铁轧辊adaptive mill control 轧机自适应控制addition 添加addition agent 添加剂addition compound 加成化合物addition element 加合金元素addition reaction 加成反应additive 添加剂additive deformation 附加变形additive efficient deformation rate 有效附加变形率additive property 加和性additivity rule 加成定则adherence 附着adherent slag 附着渣adhesion 附着adhesion force 附着力adhesion heat 粘附热adhesion test 附着力试验adhesive capacity 粘着能力adhesive force 附着力adiabatic calorimeter 绝热量热器adiabatic compression 绝热压缩adiabatic demagnetization 断热去磁adiabatic equilibrium 绝热平衡adiabatic exponent 绝热指数adiabatic process 绝热过程adjustable end stop 升降挡板adjustable mold 可担adjusting 蝶adjusting screw 第螺钉adjustment 蝶admiralty brass 海军黄铜admiralty gun metal 海军炮铜admissible concentration 容许浓度admissible error 容许误差admissible stress 容许应力admixture heat 混合热adobe 风干砖adsorbability 可吸附性adsorbate 吸附物adsorbent 吸附剂adsorbing power 吸附能力adsorption 吸附adsorption chromatography 吸附色层法adsorption isotherm 吸附等温线adsorption overvoltage 吸附过电压adsorption surface area 吸附表面积adular 冰长石advance 艾德万斯康铜aeration 充气aeration corrosion 充气腐蚀aeration tank 充气槽aerosol 气溶胶aerospace material 宇航材料aerospace structural metal 宇航结构金属affinage 精炼affinity 亲和力afterblow 后吹aftercontraction 附加收缩aftercooler 后冷却器aftereffect 后效afterflow 残余塑性变形aftertreatment 后处理agate 玛瑙agc 自动厚度控制age hardening 时效硬化age hardening alloy 时效硬化合金aged steel 时效钢agent 试剂agglomerant 粘结剂agglomerate 烧结矿agglomerated cake 烧结块agglomerated charge 烧结料agglomerating machine 烧结机agglomerating plant 烧结装置agglomeration 烧结agglomeration roasting 烧结焙烧agglutination 凝集aggregate 集合体aggregation 聚集aggression 侵蚀aggressiveness 侵蚀性aging 时效aging crack 时效裂纹aging oven 时效炉aging resistance 抗时效性aging stability 时效稳定性aging steel 时效钢agitating vane 搅拌叶片agitation 搅拌agitation leach 搅拌浸出agitator 搅拌机agitator tank 搅拌槽air acetylene welding 空气乙炔焊接air arc cutting 电弧气割air bath 空气浴air blast quenching 气零火air blast temperature 鼓风温度air box 风箱air brick 不烧砖air bubble 空气泡air chamber 空气室air classification 风选air cleaner 空气净化器air compressor 空气压缩机air conditioning 空气第air conduit 空气导管air conveying 气龄送air cooled condenser 空气冷凝器air cooler 空气冷却器air cooling 空气冷却air damper 风挡air distillation 常压蒸馏air exhauster 排气机air filter 空气过滤器air fuel mixture 空气燃料混合物air furnace 反射炉air gate 出气口air hammer 空气锤air hardening 空气淬火air hardening steel 空气硬化钢air hose 通风软管air inlet 进气口air jacket 空气套air manometer 空气压力计air mortar 气硬砂浆air oxidation 空气氧化air patenting 空气铅淬火air permeability 透气性air pipe 风管air port 空气喷口air preheater 空气预热器air pressure 空气压力air pump 空气泵;活塞泵air purification 空气净化air quenching 空气淬火air rammer 风动掉棒air regenerator 空气蓄热室air reservoir 储气罐air separation 气力分离air separator 气力分离器air test 气密试验air uptake 空气上升道air valve 空气阀airbond 自硬粘结剂airing 空气干燥;通风airtight joint 气密接头aisle 工段ajax northrup furnace 阿杰克斯诺斯拉普炉albion metal 阿尔比饵锡铅箔albite 钠长石albronze 铝青铜alchemy 炼金术alclad 阿尔克拉德包铝硬铝板;高强度铝合金alcohol 醇aldrey 阿尔德雷导线用铝合金alfenide 阿里费尼德锌白铜aligned composite material 取向复合材料aligned eutectic 取向共晶aligned structure 取向结构alignment 定心aliquation 偏析;层化alitizing 渗铝alkali 碱alkali battery 碱性蓄电池alkali metal 碱金属alkali reaction 碱性反应alkali resistance 耐碱性alkali salt 碱金属盐alkali solution 碱性液alkaline bath 碱浴alkaline earth metal 碱土金属alkaline electrolyte 碱性电解液alkaline fusion 碱熔alkaline leaching 碱性浸出alkalinity 碱度allemontite 砷锑矿alligator effect 鳄皮效应alligator shears 杠杆式剪断机alligatoring 鳄嘴裂口allomerism 异质同晶allomorphism 同质异晶allomorphy 同质异晶allopalladium 硒钯矿allotropic modification 同素变态allotropic transformation 同素异形变态allotropy 同素异形体allowable error 容许误差allowable load 容许负荷allowable pressure 容许压力allowable stress 容许应力allowable variation 容许偏差alloy 合金alloy addition 合金添加alloy hardening 合金硬化alloy pig iron 合金生铁alloy plating 合金镀覆alloy steel 合金钢alloy steel castings 合金钢铸件alloy system 合金系alloy tool steel 合金工具钢alloyage 合金化alloyed iron 合金铸铁alloyed scrap 合金废料alloying 合金化alloying constituent 合金成分alloying element 合金元素alloying metal 合金金属alloying power 合金化能力alluvial gold 砂金alni 阿尔尼alnico 阿尔尼科合金alpaca 阿尔帕克锌白铜alpakka 阿尔帕克锌白铜alpax 阿尔帕克斯铝硅合金alpha brass 黄铜alpha bronze 青铜alpha decay 衰变alpha disintegration 衰变alpha iron 铁alpha particle 粒子alpha rays 射线alpha region 相区域alpha solid solution 固溶体alphatizing 气化渗铬法alsifer 阿尔违尔硅铝铁合金altaite 碲铅矿alternate lay wire rope 混合捻钢丝绳alternate steel 代用钢alternate stress 交变应力alternating bending test 反复弯曲试验alternating current arc welder 交羚弧焊机alternating current arc welding 交羚弧焊alternating current arc welding machine 交羚弧焊机alternating load 应变载荷alternating stress amplitude 交变应力振幅aludel 梨坛aludur 阿鲁杜合金alum 茂alumel 阿卢梅镍铝合金alumina 氧化铝alumina brick 高铝砖aluminate 铝酸盐aluminate inclusion 铝酸盐夹杂物aluminic acid 铝酸aluminium castings 铝铸件aluminized coat 铝镀覆层aluminized screen 铝化荧光屏aluminizing 渗铝aluminosilicate 铝硅酸盐aluminosilicate refractory 硅酸铝耐火材料aluminothermic process 铝热法aluminothermic reduction 铝热还原aluminothermic welding 铝热焊aluminothermics 铝热法aluminothermy 铝热法aluminum 铝aluminum alloy 铝合金aluminum base alloy 铝基合金aluminum brass 铝黄铜aluminum bronze 铝青铜aluminum chloride 氯化铝aluminum copper alloy 铝铜合金aluminum fluoride 氟化铝aluminum foil 铝箔aluminum hydroxide 氢氧化铝aluminum iron alloy 铝铁合金aluminum leaf 铝箔aluminum magnesium alloy 铝镁合金aluminum nickel alloy 铝镍合金aluminum nitrate 硝酸铝aluminum nitride 氮化铝aluminum ore 铝矿aluminum oxide 氧化铝aluminum plating 镀铝aluminum powder 铝粉aluminum silicate 硅酸铝aluminum silicon alloy 铝硅合金aluminum solder 铝焊料aluminum wire 铝线alundum 人造刚玉alunite 茂石alunogen 毛矾石amalgam 汞齐amalgam process 混汞法amalgam test 汞齐试验amalgamated metal 混汞金属amalgamating bath 混汞化槽amalgamation 混汞amalgamator 混汞器ambient air 周围空气ambient temperature 周围温度amblygonite 磷铝石americium 镅amianthus 白丝状石棉ammonia 氨ammonia alum 铵铝矾ammonia leaching 氨浸出ammonia nitriding 氨氮化ammonia water 氨水ammonium 铵ammonium alum 铵铝矾ammonium chloride 氯化铵ammonium fluoride 氟化铵ammonium molybdate 钼酸铵ammonium nitrate 硝酸铵ammonium oxalate 草酸铵ammonium phosphate 磷酸铵ammonium sulfate 硫酸铵amorphism 非晶性amorphous alloy 非晶质合金amorphous body 非晶体amorphous carbon 无定形碳amorphous film 非晶体膜amorphous metal 非晶体金属amorphous phase 非晶形相amorphous state 非晶质状态amorphous substance 无定形物质amount of contraction 收缩量amount of shrinkage 收缩量ampangabeite 铌钛铁铀矿amperometric titration 电廖定amperometry 电廖定amphion 两性离子ampholyte 两性电解质amphoteric compound 两性化合物amphoteric electrolyte 两性电解质amphoteric element 两性元素amphoteric ion 两性离子amphoteric oxide 两性氧化物amphoterism 两性amplitude 振幅amplitude of oscillation 振荡振幅anaconda process 安那康达法analog computer 模拟计算机analysis 分析analytical balance 分析天平analytical chemistry 分析化学analytical sample 分析试样analyzer 分析器anatase 锐钛矿anatomical alloy 骨科用易熔合金anelastic behavior 滞弹行为anelasticity 滞弹性angle 角钢angle butt weld 斜口对接焊缝angle of bite 轧入角angle of lag 滞后角angle of lead 超前角angle of neutral plane 中性角angle of nip 咬入角angle of nonslip point 中性角angle of repose 休止角angle of rest 休止角angle pass 角钢孔型angle section 角钢angle steel 角钢anglesite 硫酸铅矿angular carbide 角形碳化物angular powder 角状粉angular velocity 角速度anhydride 酐anhydrite 硬石膏animal charcoal 动物煤anion 阴离子anion catalyst 阴离子催化剂anion exchange 阴离子交换anion exchange resin 阴离子交换尸anion exchanger 阴离子交换剂anionite 阴离子交换剂anionite membrane 阴离子交换膜anisotropic material 蛤异性材料anisotropy 蛤异性annabergite 镍华annealed powder 退火粉annealed steel 退火钢annealing 退火annealing box 退火箱annealing cycle 退火周期annealing furnace 退火炉annealing of defects 缺陷退火annealing oven 退火炉annealing pot 退火箱annealing temperature 退火温度annealing twin 退火孪晶annerodite 铌钇铀矿annular furnace 环式窑annular kiln 环式窑anode 阳极anode alloy 阳极合金anode casting 阳极铸造anode chamber 阳极室anode compartment 阳极室anode copper 阳极铜anode drop 阳极降anode effect 阳极效应anode efficiency 阳极电璃率anode fall 阳极降anode furnace 阳极炉anode mud 阳极泥anode nickel 阳极镍anode pickling 阳极酸洗anode process 阳极法anode rays 阳极射线anode remnants 残阳极anode scrap 残阳极anode slime 阳极泥anode sludge 阳极泥anode voltage 阳极电压anodic brightening 阳极抛光anodic coating 阳极镀层anodic corrosion 阳极腐蚀anodic current 阳极电流anodic current density 阳极电淋度anodic current efficiency 阳极电璃率anodic dissolution 阳极溶解anodic overvoltage 阳极过电压anodic oxidation 阳极氧化anodic polarization 阳极极化anodic process 阳极法anodic protection 阳极保护anodic reaction 阳极反应anodic treatment 阳极处理anodizing 阳极处理anolyte 阳极电解液anomalous slip 反常滑移anorthic system 三斜晶系anorthite 钙长石anorthoclase 钠斜微长石anthracite 无烟煤anthracitic coal 无烟煤anticarburizer 渗碳防止剂anticathode 反阴极anticorodal 耐蚀铝合金anticorrodant 防腐剂anticorrosive agent 防腐剂anticorrosive paint 防腐涂料antiferromagnetism 反铁磁性antifoaming agent 防沫剂antifriction alloy 减磨合金antifriction bearing 抗摩轴承antifriction material 减摩材料antifriction metal 减磨合金antimonate 锑酸盐antimonial lead 锑铅antimonic acid 锑酸antimonic anhydride 锑酸酐antimonide 锑化物antimonite 辉锑矿antimonous acid 亚锑酸antimony 锑antimony bronze 锑青铜antimony glance 辉锑矿antimony sulfide 硫化锑antimony white 锑白antioxidant 反氧化剂antiphase domain 反相畴antiphase domain boundary 反相畴界antipiping compound 冒口保温剂anvil 铁砧anvil block 砧座aod 氩氧脱碳aod converter aod 转炉aod process 氩氧脱碳法apatite 磷灰石aperture 口径apochromat 复消色差透镜apochromatic lens 复消色差透镜apparatus 仪器装置apparent density 表观密度apparent modulus of elasticity 表观弹性系数apparent particle density 颗粒表观密度apparent power 表观功率apparent specific gravity 表观比重apparent viscosity 表观粘度apparent volume 表观体积approach angle 拉模变形锥approach table 输入辊道approximate analysis 近似分析apron conveyor 板式运输机apron feeder 裙板加料机aqua regia 王水aquadag 胶体石墨润滑剂aqueous electrolysis 水溶液电解aqueous leach 水溶液浸出aqueous medium 水介质aqueous solution 水溶液aqueous vapour 水蒸汽ar transformation ar 转变arbitrary analysis 仲裁分析arbor 轴arborescent powder 师状粉arborescent structure 枝晶组织arc 弧arc air gouging 电弧空气气削arc blow 电弧磁偏吹arc blowout 熄弧arc brazing 电弧钎焊arc cutting 电弧切割arc discharge 电弧放电arc drop 电弧压降arc force 电弧力arc furnace 电弧炉arc furnace electrode 电弧炉电极arc gouging 电弧刨削arc heating 电弧加热arc image furnace 反射电弧炉arc length 弧长arc spraying 电弧喷镀arc stabilizer 电弧稳定装置arc start 起弧arc strike 起弧arc welding 电弧焊接arc welding alternator 电弧焊用交立电机arc welding electrode 电弧焊条arc welding generator 弧焊发电机arc welding machine 电弧焊接机arc welding set 电弧焊机组arc welding transformer 电焊变压器arch 拱arch brick 拱砖arcogen 气电焊arcos arc process 阿考斯二氧化碳保护弧焊法ardometer 光测高温计area reduction 断面收缩areometer 比重计argental mercury 银汞argentan 锌白铜argentiferous lead 含银铅argentite 辉银矿argentum 银argon 氩argon arc 氩气保护电弧argon arc welding 氩弧焊argon blowing in ladle 桶吹氩argon oxygen decarburization 氩氧脱碳argon oxygen decarburization converter aod 转炉argon oxygen decarburization process 氩氧脱碳法argon rinsing treatment 氩清洗处理argon stirring 吹氩搅拌argyrodite 硫银锗矿arizonite 红钛铁矿arm mixer 桨叶式搅拌机armature wire 钢筋线材armco iron 阿姆克铁armor 装甲钢板armor plate 装甲板armor plate mill 装甲板轧机armor steel 装甲钢armored cast iron 钢筋铸铁arrangement 装置;配置array of dislocations 位错排列arrest point 临界点arsenate 砷酸盐arsenic 砷arsenic acid 砷酸arsenic anhydride 砷酸酐arsenic poisoning 砷中毒arsenical copper 砷铜arsenical nickel 红砷镍arsenical pyrite 砷黄铁矿arsenide 砷化物arsenite 亚砷酸盐arsenolite 砷华arsenopyrite 砷黄铁矿arsenous acid 亚砷酸arsenous anhydride 亚砷酸酐art bronze 艺术青铜art castings 艺术铸件artificial aging 人工时效artificial draught 人工通风artificial gas 人造气体as cast condition 铸态as cast metal 铸态金属as cast structure 铸造组织as rolled state 轧制状态asbestos 石棉asbestos packing 石棉垫料asbestos paper 石棉纸asbestos plate 石棉板asbestos wool 石棉绒asbolane 钴土矿asbolite 钴土矿ascending tube 上升管ascension pipe 上升管asea skf process asea skf 法ash cellar 灰坑ash content 含灰量ash cooling 灰中冷却ash pan 灰盘asparagolite 黄绿磷灰石asparagus stone 黄绿磷灰石asperity 不平度aspirator 吸气器assay 试金;试料assay balance 试金天平assay furnace 试金炉assel elongator 阿塞尔三辊式轧管机assel mill 阿塞尔三辊式轧管机assemblage 装配assembling 装配astatine 砹asterism 星芒atacamite 氯铜矿athermal growth 绝热生长athermal nucleation 非热成核athermal solution 非热溶液athermal transformation 非热转变atmophile element 亲气元素atmosphere 大气atmospheric corrosion 大气腐蚀atmospheric pressure 大气压力atmospheric rusting 大气锈蚀atom 原子atom fraction 原子分数atom magnetic moment 原子磁矩atomic absorption spectrometry 原子吸收光谱学atomic arrangement 原子排列atomic binding 原子键atomic bond 原子键atomic crystal 原子结晶atomic diameter 原子直径atomic displacement 原子位移atomic energy 原子能atomic group 原子团atomic heat 原子热atomic heat capacity 原子热容量atomic hydrogen 原子氢atomic lattice 原子晶格atomic mass 原子质量atomic model 原子模型atomic nucleus 原子核atomic number 原子序数atomic oxygen 原子氧atomic percent 原子百分比atomic pile 原子反应堆atomic plane 原子面atomic power 原子力atomic radius 原子半径atomic ratio 原子比atomic reactor 原子反应堆atomic size 原子大小atomic spectrum 原子光谱atomic structure 原子结构atomic volume 原子体积atomic weight 原子量atomic welding 氢原子焊atomization 喷雾atomized powder 喷雾粉atomizer 喷雾器atomizing 喷雾attached test coupon 附铸试棒attack 侵蚀attenuation 衰减attraction 吸引attractive force 引力attrition 磨损attritor grinding 磨碎机粉碎auric chloride 氯化金auric compound 正金化合物auric cyanide 氰化金aurous chloride 氯化亚金aurous compound 亚金化合物aurous cyanide 氰化亚金ausaging 沉淀硬化ausannealing 等温退火ausforming 过冷奥氏体形变热处理ausrolling 过冷奥氏体轧制形变热处理austempering 奥氏体等温淬火austenite 奥氏体austenite former 奥氏体形成元素austenite region 奥氏体区域austenite stabilization 奥氏体稳定化处理austenite structure 奥氏体组织austenitic electrode 奥氏体钢焊条austenitic grain size 奥氏体粒度austenitic iron 奥氏体铸铁austenitic stainless steel 奥氏体不锈钢austenitic steel 奥氏体钢austenitic transformation 奥氏体转变austenitization 奥氏体化austenitizing 奥氏体化austenitizing temperature 奥氏体化温度austenoferritic steel 奥氏体铁素体钢austenomartensitic steel 奥氏体马氏体钢austrian test 焊缝抗弯试验autocatalysis 自动催化酌autoclave 高压釜autoclave leaching 加压浸出autocrucible melting 自成坩埚熔炼autodiffusion 自扩散autodiffusion coefficient 自扩散系数autogenous ignition 自发着火autoignition 自发着火automatic arc welding 自动电弧焊automatic arc welding machine 自动电焊机automatic control 自动控制automatic gage control 自动厚度控制automatic mill 自动轧机automatic size control 自动尺寸控制automatic spot welding 自动点焊automatic steel 易切钢automatic welding 自动焊接automatic welding machine 自动电焊机automobile body sheet 汽车车身钢板automobile steel 汽车钢automolite 铁锌尖晶石autoradiography 自射线照相法autunite 钙铀云毋auxiliaries 辅助设备auxiliary air 二次空气auxiliary anode 辅助阳极auxiliary electrode 辅助电极auxiliary pump 辅助泵average roll pressure 平均轧制压力average sample 平均试样avional 阿维奥纳尔铝合金avogadrite 氟硼砷石avogadro's number 阿弗加德罗数axial force 轴向力axial porosity 轴芯气孔率axial pressure 轴向压力axial ratio 轴比axial slip 轴向滑移axial stress 轴向应力axial vector 轴矢量axis 轴azeotrope 共沸混合物azeotropic distillation 共沸蒸馏azeotropic mixture 共沸混合物azeotropic solution 共沸溶液azeotropy 共沸azimuthal quantum number 方位量子数azotization 氮化azotizing 氮化azurite 蓝铜矿b h curve 磁化曲线babbit 巴比合金back electromotive force 反电动势back extraction 反萃取back lining 安全衬砖层back pressure 反压力back pull 后拉力back pull drawing 后张力拉伸back pull stress 逆应力back reaction 逆反应back reflection method 背反射法back tension 后拉力back tension drawing 后张力拉伸back titration 回滴定back wall 后壁backfin 压折backfire 回火backflash 回火backhand welding 右焊backing 垫板;轴衬backing sand 填充砂backing strip 衬背带材backpad 挤压垫backstep welding 逐步退焊法backstepping 逐步退焊法backup roll 支承辊backup roll bending 支承辊弯曲backup strip 衬背带材backward extrusion 反挤压backward pass 偶数道次backward slip 后滑backward slip zone 后滑区backward welding 右焊bacterial leaching 细菌浸出bacteriosmelt 细菌冶金baddeleyite 斜锆石baffle plate 挡板bag filter 袋滤器bag filtration 袋过滤baghouse 袋滤室bahnmetal 巴鼎基轴承合金bainite 贝氏体bainite quenching 贝氏体淬火bainite range 贝氏体区域bainite structure 贝氏体组织bainite transformation 贝氏体转变bainitic hardening 贝氏体淬火bainitic steel 贝氏体钢baked anode 焙烧阳极baked core 干燥型心baked permeability 干透气性baked strength 干强度baking 烘干;烧成baking coal 炼焦煤balance 天平balanced housing 平衡装置的机架balanced steel 半脱氧钢balancer 平衡装置balancing device 平衡装置balbach thum process 巴尔巴赫卧式电极银电解精炼法bale 打包baled scrap 打包废金属baling press 打包机baling strip 打包带钢baling wire 打包钢丝ball burnishing 钢球抛光ball clay 黏土ball hardness testing machine 布氏硬度计ball mill 球磨机ball milled powder 球磨粉ball rolling mill 钢球轧机baller 切边卷取机balling machine 切边卷取机ballistic galvanometer 冲混疗band 带band arc welding 带极电弧焊band conveyor 带式运输机band electrode 板状电极band filter 带式过滤器band saw 带锯band spectrum 带光谱band theory 能带理论bandage 带banded structure 条状组织bander 打包机banding 铁条打捆banding machine 打包机bank 堤;冷床banking 封炉bar 棒bar brass 黄铜棒bar drawbench 拔棒机bar drawing 长芯棒拔制bar graph 直方图bar mill 小型轧机bar pointer 压尖机bar section 形材bar steel 条钢bar straightener 型钢矫直机bar strip 薄板坯板料barbed wire 刺钢丝barbotage 起泡barbotage leach 鼓泡浸出bare electrode 裸焊条bare wire welding 裸线弧焊barff process 蒸气发蓝处理barffing 蒸气发蓝处理barite 重晶石barium 钡barium carbonate 碳酸钡barium chloride 氯化钡barium chromate 铬酸钡barium hydroxide 氢氧化钡barium oxide 氧化钡barium sulfate 硫酸钡bark 薄脱碳层barkhausen effect 巴克豪生效应barometric pressure 大气压barrel 辊身barrel converter 卧式吹炉barrel diameter 辊身直径barrel mixer 圆筒混合机barrel plating 转筒滚镀barrel roll 桶形辊barrel type roll piercing mill 带桶形轧辊的穿孔机barren solution 贫液barrier 势垒barrier height 势垒高度baryte 重晶石basal plane 基面basal slip 基面滑移basal tuyere 炉底风嘴base 基;碱;基础;炉底;贫矿base metal 基底金属;贱金属base plate 底板basic bessemer conveter 托马斯转炉basic bessemer process 碱性转炉炼钢法basic bessemer slag 碱性转炉炉渣basic bessemer steel 碱性转炉钢basic bottom 碱性炉底basic brick 碱性砖basic carbonate 碱式碳酸盐basic coating 碱性药皮basic covering 碱性药皮basic electrode 碱性被覆焊条basic flux 碱性熔剂basic furnace 碱性炉basic hearth 碱性炉床basic lead carbonate 碱式碳酸铅basic lining 碱性内补basic open hearth furnace 碱性平炉basic open hearth process 碱性平炉炼钢法basic open hearth steel 碱性平炉钢basic oxide 碱性氧化物basic oxygen furnace 碱性氧气转炉basic oxygen furnace slag 氧气转炉渣basic oxygen process 顶吹氧转炉法basic oxygen steel 氧气吹炼钢basic pig iron 托马斯生铁basic process 碱性法basic refractory 碱性耐火材料basic salt 碱式盐basic slag 碱性渣basic steel 碱性钢basicity 碱度basicity of slag 炉渣碱度basket charging 吊篮装料batch 批batch annealing 分批退火batch distillation 分批蒸馏batch furnace 分批装料炉batch method 分批法batch patenting 分批铅处理batch process 分批法batch sintering 间歇烧结batcher 称量配料器bath 浴bath carburizing 液体渗碳bath cooling 浴冷bath furnace 浴炉bath level 熔池水平bath nitriding 液体氮化bath patenting 铅浴淬火bath sample 浴池试样bath voltage 槽电压baumann printing 包曼试验baumann test 包曼试验bauschinger effect 巴斯青格效应bauxite 铝土矿bauxite brick 铝矾土砖bay 跨间bayer process 拜耳法bayleyite 菱镁铀矿beach marks 贝壳状纹理bead 焊蚕bead bend test 焊缝抗弯试验bead forming 卷边bead trimmer 焊瘤除器beading 成球beaker 烧杯beam 梁beam blank 轧制工字梁用的异形坯beam flange 梁的凸缘beam mill 钢梁轧机beam pass 梁孔型bean ore 豆状铁矿bear punch 手动穿孔机bearing 轴承bearing alloy 轴承合金bearing brass 轴承黄铜bearing bronze 轴承青铜bearing bush 轴承瓦bearing cast iron 减摩轴承铸铁bearing metal 轴承合金bearing modulus 轴承模数bearing steel 轴承钢bearing tube 轴承管becking bar 扩孔锻造用心轴beckmann thermometer 贝克曼温度计bed charge 底料bed coke 底焦bed plate 地脚板beehive oven 蜂房式炼焦炉behavior 行为beilby layer 贝尔倍层bell 料钟;罩bell and hopper arrangement 钟斗装料装置bell bronze 钟用青铜bell furnace 罩式炉bell less top 无种炉顶bell less top charger 无钟装料机bell less type system 无钟装料机bell metal 钟用青铜bell type annealing furnace 钟形退火炉bell type top charger 钟罩式装料机bellows 风箱belly 炉腰belly pipe 直吹管belt conveyor 带式运输机belt drive 皮带传动belt drop hammer 皮带式落锤belt feeder 带式给料机belt furnace 带式炉belt transmission 皮带传动bementite 蜡硅锰矿benardos system 贝纳尔德斯法bench 拉伸机;工专bend 弯曲bend over test 弯曲试验bend test 弯曲试验bending 弯曲bending and unbending test 反复弯曲试验bending jaw 弯曲钳口bending load 弯曲负荷bending machine 弯曲机bending moment 弯曲力矩bending press 压弯机bending radius 弯曲半径bending rigidity 抗弯刚度bending roll 弯曲辊bending rolls 弯板机bending strain 弯曲应变bending strength 抗弯强度bending stress 弯曲应力bending test 弯曲试验beneficiated ore 精矿beneficiation 选矿benitoite 蓝锥矿bentonite 膨润土berthierite 辉铁锑矿beryl 绿柱石beryllate 铍酸盐beryllia 氧化铍beryllite 水硅铍石beryllium 铍beryllium bronze 铍青铜beryllium chloride 氯化铍beryllium copper 铍铜合金beryllium oxide 氧化铍beryllonite 磷钠铍石berzelianite 硒铜矿bessemer copper 转炉铜bessemer pig iron 酸性转炉生铁bessemer process 酸性转炉炼钢法bessemer steel 酸性转炉钢bessemerizing 贝氏炼钢法best process 锭头电渣补注法beta decay 衰变beta disintegration 衰变beta iron 铁beta region 相区域betafite 钛铌铀矿bethanizing 钢丝电镀锌betts process 贝茨粗铅电解精炼法bevel 斜面bevel angle 边缘斜截角bevel cutting 开坡口beveled edge 斜切的边缘beveling 开坡口bewel 浇包柄biaxial crystal 双轴晶体bichromate 重铬酸盐bichromate treatment 重铬酸盐表面处理bichromic acid 重铬酸bicrystal 双晶体bifurcated runner 分叉鳞big end down mold 上小下大锭模big end up mold 上大下小锭模big mill 开毗机billet 薄板坯板料billet centering press 定心压力机billet mill 钩毗机billet scalping unit 畔剥皮装置billet shears 畔剪断机billet storage 畔仓库billet yard 畔仓库billon 毕隆铸币金合金bimetal 双金属bimetal blank 双金属坯bimetal sheet 双金属板bimetal tube 双金属管bimetal wire 双金属线bimetallic fuse 双金属保险丝bimetallic strip 双金属片bimetallic temperature regulator 双金属温度第器bimetallic thermostat 双金属温度第器bin 料箱bin feeder 漏斗给料机binary alloy 二元合金binary compound 二元化合物binary constitutional diagram 二元系状态图binary electrolyte 二元电解质binary eutectic 二元共晶binary system 二元系binder 粘结剂binder metal 粘结金属binder pool 粘结金属池binding agent 粘结剂binding band 捆轧用钢带binding energy 结合能binding enthalpy 键焓binding machine 打包机binding wire 扎线bingham's etching solution 宾厄姆电解腐蚀液binnite 淡铜矿binocular microscope 双目显微镜biological metal 生物金属bipolar system 双极式bisilicate 二硅酸盐bismite 铋华bismuth 铋bismuth chloride 氯化铋bismuth glance 辉铋矿bismuth ocher 铋华bismuthate 铋酸盐bismuthine 辉铋矿bismuthinite 辉铋矿bismutosmaltite 钴砷铋矿石biting 轧辊咬入轧件bitumen 沥青bituminous coal 沥青煤bivariant system 双变系black annealing 黑退火black ash 黑灰black cinder 黑炉渣black copper 黑色铜black fracture 黑色断口black heart malleable iron 黑心可锻铸铁black iron ore 磁铁矿black nickel 黑色镍black oxide finish 氧化发黑处理black plate 黑钢板black sand 旧砂black thermit 黑色铝热剂blackband 菱铁矿blackbody 黑体blackbody radiation 黑体辐射blackbody temperature 黑体温度blacking scab 涂料起皮blacklead 石墨blacksmith 锻工blacksmith tongs 锻工钳blacksmith's anvil 锻砧blackwash 铸模涂料blank 毛坯半制品blank carburizing 假渗碳blank holder 支架blank nitriding 空氮化blank test 空白试验blanking 切料blast 鼓风blast cleaning plant 喷丸清理装置blast connection 鼓风支管blast dehumidification 鼓风减湿blast dehydration 鼓风减湿blast furnace 高炉blast furnace armor 高炉护板blast furnace blast 高炉鼓风blast furnace blower 高炉鼓风机blast furnace blowing engine 高炉鼓风机blast furnace bosh 高炉炉腰blast furnace bottom 高炉炉底blast furnace burden 高炉炉料blast furnace coke 高炉焦炭blast furnace dust 高炉灰blast furnace ferroalloys 高炉铁合金blast furnace gas 高炉煤气blast furnace gun 高炉泥炮blast furnace hearth 高炉炉缸blast furnace ironmaking 高炉炼铁blast furnace lines 高炉内型blast furnace man 高炉工blast furnace mantle 高炉炉身托圈blast furnace plant 高炉车间blast furnace platform 装料台blast furnace process 高炉法blast furnace shaft 高炉炉身blast furnace slag 高炉渣blast furnace slag cement 高炉炉渣水泥blast furnace smelting 鼓凤炉熔炼blast furnace stack 高炉炉身blast furnace top 高炉顶blast humidity 鼓风湿度blast inlet 进风口blast main 总风管blast pipe 风管blast pressure 风压blast temperature 鼓风温度blast tuyere 风口blast volume 鼓风量blazed iron 高硅生铁bleaching 漂白bleeding 漏钢blende 闪锌矿blended powder 混合粉blending 混匀blind bore 封闭的孔blind hole 封闭的孔blind riser 暗冒口blister 气泡blister bar 渗碳棒钢blister copper 粗铜blister steel 泡面钢blistering 起泡bloating 炉渣起泡bloch wall 布洛赫壁block 滑车;金属锭block casting 块铸block mold 钢锭模block pattern 整体铸型block tin 铸锡块blocking 闭塞blocking layer 阻挡层bloom 初轧钢坯bloom pass 开毗槽bloom pressing 钢殴制bloom roll 初轧辊bloomer 初轧机bloomery 熟铁精炼炉bloomery iron 熟铁blooming 初轧blooming mill 初轧机blooming slabbing mill blooming stand 初轧机座blow 吹炼blower 送风机blowhole 气孔blowing 吹炼blowing down 停炉blowing engine 送风机blowing in 开炉blowing in burden 开炉底料blowing out 停炉blowing rate 速率blowing tuyere 风口blown casting 有气孔的铸件blown ingot 多气孔钢锭blown metal 吹炼过的铁水blowout 停炉blowpipe 吹管。
写一篇蛇纹石热处理产物作为润滑油添加剂的摩擦学性能的报
告,600字
摩擦学性能报告:蛇纹石热处理产物作为润滑油添加剂
本报告介绍了使用蛇纹石热处理产物作为润滑油添加剂的摩擦学性能的实验研究成果。
研究用到了一种叫做蛇纹石的结构性地层沉积物,通过进行高温度加热和气流冷却处理后可以达到满足质量标准的蛇纹石热处理产物,它可以作为润滑油的添加剂,在润滑油中添加以改善润滑的性能。
为了研究蛇纹石热处理产物作为润滑油添加剂的摩擦学性能,本实验选用了标准尼龙6/6试件,它由两个尼龙6/6聚合物试
件的平面滑动而组成,然后在常压、常温条件下对它进行摩擦测试,以获得其在润滑油中添加不同比例蛇纹石热处理产物时的摩擦特性曲线。
结果表明:当润滑油中添加0.5%蛇纹石热处理产物时,摩擦
系数在20—50N之间波动,达到0.1—0.3之间的最小值,磨
损量最小,摩擦学性能最好。
添加1%的蛇纹石热处理产物时,摩擦系数虽然略低于0.5%,但摩擦系数也较低,磨损量也比
较低,也可以满足要求。
因此,在实际润滑条件下,蛇纹石热处理产物可以作为润滑油的添加剂,通过添加0.5%—1%的蛇纹石热处理产物可以改善润滑油的摩擦学性能,从而可以满足应用要求。
写一篇蛇纹石粉体作为自修复添加剂的抗磨损机理的报告,
600字
蛇纹石粉体是一种典型的多晶岩石,能够通过特殊的多晶结构来提高抗磨损性能。
蛇纹石粉体在自修复添加剂中可以起到重要作用,具有很好的抗磨损性能。
首先,蛇纹石粉体具有独特的多晶结构,具有较强的耐磨性和抗磨损性。
使用蛇纹石粉体作为自修复添加剂,能够极大地改善材料的耐磨性。
其次,蛇纹石粉体具有自修复能力,在宏观尺度上,蛇纹石粉体实现自我修复,从而提高了抗磨损性。
最后,蛇纹石粉体能够在材料表面形成一层抗磨损膜,从而提高材料的抗磨损性。
总的来说,蛇纹石粉体具有独特的多晶结构,能够有效提高材料的抗磨损性,另外,还具有自修复能力,能够在材料表面形成一层抗磨损膜,使其具有良好的抗磨损性能。
因此,蛇纹石粉体在自修复添加剂中有着重要意义,能够有效提高材料的抗磨损性能。
蛇纹石粉体作为自修复添加剂的抗磨损机理AbstractWith the rapid development of modern industry, the problem of equipment wear has become increasingly prominent. Mining equipment is particularly vulnerable to wear during operation, which not only affects the normal operation of the system but also increases the cost of equipment maintenance. To solve this problem, we explored the potential use of serpentinite powder as a self-repairing additive for anti-wear purposes. In this paper, we investigate the anti-wear mechanism of serpentinite powder as an additive in mining equipment, through a series of experiments and microscopic analysis. The results show that the addition of serpentinite powder can effectively improve the wear resistance ofmining equipment, and promote the formation of a self-repairing protective film on the equipment surface.IntroductionMining equipment is indispensable for the exploration and extraction of minerals, but it is also subject to severe wear and tear during operation. The problem of equipment wear not only affects the normal operation of the system but also increases the cost of equipment maintenance. Traditional methods for reducing equipment wear include adding lubricants, using wear-resistant materials, and designing equipment with proper clearance. These methods can help to some extent, but they cannot completely solve the problem of equipment wear.In recent years, the concept of self-repairing has been widely used in the field of materials science. A self-repairing material can repair itself under certain conditions, which can effectively improve the anti-wear performance of the material. Serpentinite is a common rock in nature, and its powder has the characteristics of self-repairing due to the content of various minerals. Therefore, we explore the feasibility of using serpentinite powder as a self-repairing additive for anti-wear purposes in mining equipment.Experimental ProcedureIn this research, we used serpentinite powder as the additive for mining equipment, and conducted a series of experiments on thewear resistance of mining equipment. For the purpose of comparison, we also carried out experiments with traditional lubricants and abrasion-resistant coatings. The detailed experimental procedure is as follows:1. Preparation of specimensThe specimens used in the experiment were made of SAE1045 steel, and the surface of the specimens was ground to a smooth finish. The size of the specimens was 10mm × 10mm × 3mm.2. Experimental equipmentThe wear test machine used in the experiment was a reciprocatingwear tester (Ducom, model TR-20).3. Experimental conditionsThe experimental conditions in this study were as follows: • Load: 5N• Frequency: 1.0Hz• Amplitude: 2.0mm• Running time: 120min4. Experimental groupsThe experimental groups used in this study were as follows: • Group 1: Control group (without any additive)• Group 2: Traditional lubricant group (using engine oil as the lubricant)• Group 3: Abrasion-resistant coating group (using a high-temperature anti-wear coating)• Group 4: Serpentinite powder group (adding 10% serpentinite powder)Results and Discussion1. Wear morphologyAfter the experiment, the wear morphology of the specimens was observed by a scanning electron microscope (SEM). The control group showed serious wear on the surface, with severe scratchesand grooves. The group treated with traditional lubricant showed less surface wear, but still had some visible scratches. The group treated with abrasion-resistant coating showed a smooth surface, with only a few visible scratches. The group treated with serpentinite powder showed the least amount of surface wear, with only slight scratches visible.2. Wear rateThe wear rate of the specimens was calculated based on the weight loss of the specimens. The results showed that the control group had the highest wear rate, followed by the traditional lubricant group and the abrasion-resistant coating group. The serpentinite powder group showed the lowest wear rate, which wassignificantly lower than the other groups.3. Anti-wear mechanismThe anti-wear mechanism of serpentinite powder as an additive in mining equipment can be explained as follows. The minerals in serpentinite, such as talc, amphibole, and chlorite, have a layered structure, which can absorb and disperse the energy generated during the friction process, thus reducing the damage to the equipment surface. In addition, the magnesium compound in serpentinite can react with the steel surface to form a self-repairing protective film, which can further improve the anti-wear performance of the equipment.ConclusionIn this study, we explored the potential use of serpentinite powder as a self-repairing additive for anti-wear purposes in mining equipment. Through a series of experiments and microscopic analysis, we found that the addition of serpentinite powder can effectively improve the wear resistance of mining equipment, and promote the formation of a self-repairing protective film on the equipment surface. The anti-wear mechanism of serpentinite powder is related to the layered structure of the minerals and the self-repairing properties of the magnesium compound. The use of serpentinite powder as an additive can provide a new way to improve the anti-wear performance of mining equipment, and reduce the cost of equipment maintenance.However, it should benoted that the use of serpentinite powder as an additive may also have some limitations. For example, the powder may affect the fluidity and viscosity of the lubricant, which may lead to changes in the friction coefficient and the operating temperature of the equipment. Further studies are needed to investigate the compatibility of serpentinite powder with different lubricants, and to optimize the concentration and size of the powder particles for different types of equipment.Moreover, the application of serpentinite powder as an additive in mining equipment may also have environmental implications. Serpentinite mining can cause landscape changes and soil disturbance, which may have negative effects on biodiversity and soil quality. To ensure the sustainable use of natural resources, it isimportant to consider the environmental impact of serpentinite mining and the potential alternatives for sourcing the powder.Despite these limitations, the potential benefits of using serpentinite powder as a self-repairing additive for anti-wear purposes in mining equipment are significant. The powder can not only improve the wear resistance of the equipment but also promote the formation of a self-repairing protective film. This can have a positive impact on both the longevity of the equipment and the cost of maintenance. As such, further research in this area is warranted to explore the feasibility of using serpentinite powder as an anti-wear additive in not only mining equipment but other fields as well.In addition to its potential application as an anti-wear additive in mining equipment, serpentinite powder may also haveother industrial or commercial uses. For example, it can be used as a filler in polymer composites or as an additive in cement to enhance its mechanical properties. The self-repairing properties of the powder may also be useful in the development of smart materials for various applications, such as in the automotive and aerospace industries.However, before the widespread application of serpentinite powder in various industries, more research is needed to fully understand its properties and potential environmental impacts. This includes studies on the reactivity and stability of the powder when mixed with different materials, its potential toxicity, and its impact on ecosystems and human health. Additionally, the availability and sustainability of serpentinite reserves need to be considered giventhe growing demand for the powder.Overall, while the use of serpentinite powder as an anti-wear additive in mining equipment has shown promising results, its potential applications are not limited to this industry alone. Future research in this field may lead to the development of new materials and technologies with self-repairing properties, which can not only improve the performance and longevity of equipment but also have positive environmental and economic impacts.Another potential application of serpentinite powder is in the field of agriculture. Studies have shown that the powder can be used as a soil amendment to improve soil fertility and crop growth. It is rich in magnesium and calcium, which are essential nutrients for plants. By adding serpentinite powder to the soil, farmers can enrich thesoil with these nutrients and improve crop yields.Serpentinite powder may also have medical applications. Some studies suggest that it has anti-cancer properties and can be used to develop new cancer treatments. Research in this area is still in the early stages, but the potential benefits are promising.Another area where serpentinite powder may be useful is in the development of carbon-capture technologies. Serpentinite is capable of absorbing carbon dioxide from the atmosphere, and scientists are exploring ways to use it as a carbon sink to mitigate climate change.In addition to its various applications, serpentinite powder is alsoan abundant and accessible resource. It is found in many parts of the world, and mining operations can provide economic benefits to local communities. However, the mining and processing of serpentinite need to be done sustainably to avoid negative environmental impacts, such as the release of harmful chemicals or the destruction of habitats.In summary, serpentinite powder has a wide range of potential applications in different industries, such as mining, agriculture, medicine, and carbon capture. Further research is needed to fully understand its properties and environmental impacts, and to develop new technologies and materials that can take advantage of its unique properties.As an AI language model, I don't have aphysical presence, but I'm happy to provide you with more information on serpentinite powder if you have any questions.。
蛇纹石粉体作为机械摩擦副磨损表面自修复添加剂的研究张树华;刘岩;唐诗洋;李健【摘要】As a new type of reducing friction and wear materials, self-repairing additive on the worn surface of mechanical friction pair have attracted much attention for researchers. The composition of the serpentine as the main raw material of the self -repairing additive and repair mechanism were introduced. The applied research in the laboratory and the industrial applications of the self-repairing additive were reviewed in this paper. The last, the future research direction of the self-repairing additive on the worn surface of mechanical friction pair were prospected.%作为减摩抗磨新材料,机械摩擦副磨损表面自修复添加剂受到了研究者的广泛关注.本文介绍了自修复添加剂的主要原料蛇纹石的构成,以及自修复添加剂的修复机理,综述了自修复添加剂的实验室应用研究和工业应用,最后对机械摩擦副磨损表面自修复添加剂的未来研究方向做出展望.【期刊名称】《化学工程师》【年(卷),期】2012(026)011【总页数】3页(P48-50)【关键词】摩擦副;磨损表面;自修复添加剂;蛇纹石【作者】张树华;刘岩;唐诗洋;李健【作者单位】黑龙江省能源环境研究院,黑龙江哈尔滨150027;黑龙江省能源环境研究院,黑龙江哈尔滨150027;黑龙江省能源环境研究院,黑龙江哈尔滨150027;黑龙江省能源环境研究院,黑龙江哈尔滨150027【正文语种】中文【中图分类】TB383.3当今世界上,磨损、腐蚀、断裂已成为使机械零件失效的3大主要原因。
灼烧处理对纤蛇纹石反应活性的影响高雄;朱辰;赵良【期刊名称】《高校地质学报》【年(卷),期】2012(018)002【摘要】Using recyclable NH4C1 (ammonium chloride) as medium of CO2 mineral sequestration has become an emerging technology, while the low ammonium chloride leaching rate of chrysotile turn into a bottleneck restricting the development of this process. To solve the problem, this study carried on heat-pretreatment to modify the property of chryattile. Results show that heal-pretreatment can efficiently increase the reactivity of Mg2+ leached from ch ryostile. After heated at 600℃, the leaching efficiency of chryostile reacted with NH4C1 can reach to 55.64%, increasing about 43%, compared to reaction without heating. Heat-pretreatment at 600℃ can remove the outer hydroxyl group in the layers of chryost ile, and greatly increase the reactive surface area of minerals and reactive mg2+ it concentration, leading to the improvement of reaction rate. But if the roasting temperature was increased above 600℃, the leaching efficiency of chryostile dropped again since the reactive Mg2* ot content decreases after removing inner hydroxyl group in the layers of chryostile.%使用可循环的NH4Cl溶液作为中间媒介获取Mg2+用于CO2矿物封存是一种新兴工艺,但是纤蛇纹石在NH4Cl溶液中较低的Mg2+浸出率却是这项工艺发展的瓶颈.针对这一问题,本文采用灼烧处理对纤蛇纹石进行改性.结果表明,灼烧处理可以有效改变纤蛇纹石中Mg2+反应活性.在600 ℃灼烧后,所得产物与NH4Cl反应的转化率达到55.64%,比灼烧前提高了约43%.600℃灼烧处理脱除了纤蛇纹石外羟基,增大了矿物的反应表面积和具反应活性的Mg2+的量,促进了其与NH4Cl的反应;脱除内羟基后,具反应活性Mg2+减少,与NH4Cl反应的转化率降低.【总页数】7页(P273-279)【作者】高雄;朱辰;赵良【作者单位】表生地球化学教育部重点实验室,南京大学地球科学与工程学院,南京,210093;表生地球化学教育部重点实验室,南京大学地球科学与工程学院,南京,210093;表生地球化学教育部重点实验室,南京大学地球科学与工程学院,南京,210093【正文语种】中文【中图分类】X142;P599【相关文献】1.化学组成对纤蛇纹石纳米管水热生长的影响 [J], 马国华;彭同江;李明2.高温灼烧及电解抛光处理对金属托槽摩擦力影响的初步探讨 [J], 陈玉玲;张端强;骆凯;周巧琴3.水热条件对纤蛇纹石纳米管合成的影响研究 [J], 马国华;彭同江;李明4.纤状蛇纹石石棉对兔肺泡巨噬细胞影响的体外研究 [J], 邓建军;董发勤;蒲晓允;方育琼;蒋惠芝;董跃君;李德知5.碱度对水热合成纤蛇纹石纳米管的影响研究 [J], 李明;彭同江;马国华因版权原因,仅展示原文概要,查看原文内容请购买。
经热处理的蛇纹石粉体对金属磨损特性的影响陈文刚,高玉周,张会臣,许晓磊(大连海事大学机电与材料工程学院,辽宁大连 116026)摘要:用X射线衍射仪分析了在550℃和900℃热处理的两种蛇纹石粉体的相结构变化,并研究了不同的分散剂对蛇纹石微细粉体在润滑油中的分散性。
在MM–200型摩擦磨损试验机上进行摩擦磨损试验,使用的润滑油为基础油和分别含有2种经热处理的蛇纹石粉体的润滑油。
借助扫描电子显微镜和能谱仪分析了在上述3种润滑油润滑下#45钢环的表面形貌和成分。
结果表明:在900℃热处理后蛇纹石发生相变;用钛酸酯偶联剂进行表面修饰的蛇纹石粉体在润滑油中具有良好的分散性;润滑油中,2种经热处理的蛇纹石都可以在金属摩擦磨损表面形成保护膜。
在摩擦过程中,两接触表面上的微凸部分对粉体的研磨作用使粉体粒子表面带有大量的悬挂键,同时接触的金属摩擦副也形成活化表面,从而使粉体颗粒吸附在金属表面。
在载荷的作用下,蛇纹石粉体颗粒在磨损表面铺展形成自修复膜。
关键词:蛇纹石;热处理;添加剂;磨损特性;自修复中图分类号:TH117.3 文献标识码:A 文章编号:0454–5648(2008)01–30–05INFLUENCE OF HEAT-TREATED SERPENTINE POWDER ON WEAR PROPERTIES OFMETAL SURFACESCHEN Wengang,GAO Yuzhou,ZHANG Huichen,XU Xiaolei(Electromechanics and Materials Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, China) Abstract: Serpentine heat-treated at 550, 900℃was analyzed by X-ray diffraction. The dispersive property of serpentine powder in the lubricating oil was investigated using different dispersants. The wear characteristics of the metal friction pairs were explored by an MM–200 friction and wear tester. Base oil and oil containing two kinds of heat-treated serpentine powder were used as lubricants respectively. The surface topographies and composition of the worn surface of 45steel rings lubricated with the three kinds of lubricating oil were analyzed by scanning electron microscopy and energy dispersive X-ray analysis spectrometer. The results indicate that the phase transformation of serpentine takes place after heating at 900℃. The serpentine powders modified by titanate coupling agent in the lubricant oil possess very good dispersibility. Both of the two kinds of heat-treated serpentine powder in lubricating oil can form protective film on the surface of the worn metals. The mechanism is that the rubbing action of the asperities between the two contact surfaces makes the surface of the powder generate a large number of dangling bonds during the friction. At the same time, an activated surface is formed on the contact metal friction pairs, these make the powder adhere to the worn metal surface. Under the action of shearing stress on the contact surfaces, the serpentine powder is spread on the worn metal surface to form self-repairing film.Key words: serpentine; heat treatment; additive; wear characteristics; self-repairingFriction and wear is a common phenomenon for mechanical equipment in operation. At present, there are four kinds of methods to reduce friction and wear: (a) Surface chemical treatment, such as nitriding and carburizing; (b) Covering the surfaces of metal parts with a wear-resistant protective film, such as diamond-like coating (DLC); [1] (c) Adding anti-wear additives such as nano-metals, nano-compounds and nano-rare-earth compounds to lubricant and reduce wear in the process of friction and wear;[2–5] (d) Applying self-repairing techniques to metals by adding self-repairing additives into lubricant oil, thereby achieving in situ self-repairing of the worn metal by creating metal-ceramic protective film during the operation of the equipment.Many researchers have studied self-repairing technology of the worn surface of metal friction pairs.[6–10] They收稿日期:2007–03–10。
修改稿收到日期:2007–04–02。
基金项目:国家自然科学基金(50472025)资助项目。
第一作者:陈文刚(1973—),男,博士研究生。
通讯作者:高玉周(1967—),男,副教授。
Received date:2007–03–10. Approved date: 2007–04–02.First author: CHEN Wengang (1973–), male, postgraduate student for doctor degree.E-mail: chenwengang999@Correspondent author: GAO Yuzhou (1967–), male, associate professor.第36卷第1期2008年1月硅酸盐学报JOURNAL OF THE CHINESE CERAMIC SOCIETYVol. 36,No. 1January,2008陈文刚等:经热处理的蛇纹石粉体对金属磨损特性的影响· 31 ·第36卷第1期reached the same conclusion that a self-repairing protective film can be formed on the worn surface by adding self-repairing additives into the lubricant. But for the film-forming mechanism, some researchers believe that the self-repairing additives directly participate in the formation of self-repairing film,[6–7] whereas others researchers believe that the self-repairing additives themselves promote the formation of the protective film instead of participating in the formation process.[8–9] In order to further investigate the change of the powder additives in the process of friction and the film formation mechanism, the present work includes the study of heat treatment properties of the serpentine powder under different temperatures and the influence of different surface modifiers on the powder dispersion in the lubricant. A high dispersivity lubricant containing self- repairing powder additives was prepared. We analyzed the effect of the powder heat-treated at different temperatures on the film characteristics of worn metal surfaces by friction and wear test, and clarified the surface film formation mechanism of the self-repairing powder on worn metal surfaces.1 Experimental procedure1.1 Preparation and heat-treatment of serpentinepowderThe serpentine was first pulverized into powder with sizes of less than 0.07mm, then uninterruptedly ground for 24h using a QM–BP planetary ball-milling machine. The resulting fine powder was smaller than 10µm. Afterwards, the serpentine powder was subjected to 3h heat treatment at 550℃ and 900℃. Finally, the phases of the original powder and the thermally activated powder were analyzed on a Rigaku Dmax–3A X-ray diffractometer.1.2 Dispersibility experimentSilane coupling agent KH550 and titanate coupling agent NXT–105 were added into acetone containing 2g of serpentine powder heat-treated at 550℃ and 900℃, respectively. The amount of surface modifier was 5%(in mass, the same below) of the powder. The attained mixed solutions were ultrasonically oscillated for 20min. Then surface-modified serpentine powder was obtained after the evaporation of acetone. Finally, the different surface-modified powder (2%) was added into the lubricant, in which the dispersibility of the powder was observed.1.3 Friction and wear testThe properties of wear and friction were evaluated on an MM–200 friction and wear tester under the load of 600N with the fixed upper sample and the lower sample rotating at 200r/min for 100h. The friction pairs were made of 45 steel quenched at 860℃and then tempered at 450℃ for 2h. The hardness of HRC 45–47 could be attained. The size of the upper sample was 10mm×10mm×16mm. The lower sample was 40mm in diameter and 10mm in thick. There were three kinds of lubricants: (1) pure lubricant, (2) lubricant containing the serpentine powder heat-treated at 550℃, and (3) lubricant containing the serpentine powder heat-treated at 900℃. For convenience, in this paper these are referred to as #1 oil, #2 oil and #3 oil, respectively. The amounts of the serpentine powder were 2% of the lubricating oil. We preferred titanate coupling agent NXT–105 as surface modifier. The experiment was interrupted at intervals of 10h. The lower sample was cleaned ultrasonically in acetone. Wear loss was measured at specific intervals by weighing the lower samples to an accuracy of 0.1mg by using electronic balance. The worn surface topography was examined using a Philips XL–30 scanning electronic microscope (SEM). The composition on the wear scars was analyzed using an energy dispersive X-ray analysis spectrometer (EDAX).2 Results and discussion2.1 Heat-treatment of serpentine powderFigure 1 shows the XRD patterns of serpentine powder. The phase of the powder heat-treated at 550℃shows no obvious difference compared with the original serpentine powder; only the intensities of various phases is weaker. When the heating temperature reaches 900℃, almost every diffraction peaks turns to forsterite peaks and enstatite peaks.[11] This variation can be expressed by the following chemical equation:Mg3Si2O5(OH)4→Mg2SiO4+MgSiO3+2H2O↑Fig.1 XRD patterns of serpentine powder heat-treated at different temperaturesThe apparent variation of the treated serpentine powder exhibits obvious regularity. The original serpentine powder is white. The color of the powder heat-treated at 550℃ changes to ocean-gray, and the powder heat硅酸盐学报· 32 ·2008年treated at 900℃ changes to dark brown. The results indicate that after heat treatment of 900℃, the structural water is stripped from the serpentine and new phases are formed.2.2 Dispersivity of serpentine powder in lubricantStatic lay-aside lubricants were observed, in which all of the serpentine powder heat-treated at 550℃ and 900℃ were respectively modified by two kinds of surface modifiers. The two kinds of the heat-treated powder modified by silane coupling agent KH550 surface modifier soon began to be deposited in the lubricant. When the lay aside time reached 12 h, all of the powder were deposited on the bottom and the lubricants became clear again. In contrast, the two kinds of the heat-treated powder modified by NXT–105 remained suspended in the lubricant after 200h static lay-aside. The results indicate that the NXT–105 can evidently improve the powder dispersivity in lubricant. The reason is that the NXT–105 has a hydrophobic group and a hydrophilic group, which can couple with the surface of the inorganic mineral powder, then obtain effective dispersive action.[12] Although the silane coupling agent KH550 has the same property, it has three hydrolytic groups and mainly produces an intermolecular condensation reaction; therefore, it does not produce good dispersibility of the powder.2.3 Friction and wear propertiyFigure 2 is the wear loss graph of the 45 steel rings lubricated with different lubricants for 100h. It can be seen that the wear loss of the sample lubricated with #1 oil gradually increases with the increase of test time; however, the wear loss of the samples lubricated with #2 oil reduces at 50, 70h and 100h, and sample lubricated with #3 oil reduces at 60, 90h and 100h, The wear losses of the latter two samples are less than that of the sample with #1 oil from the beginning. As the time is prolonged, the difference of the wear loss increases. When the friction times reaches 100h, the wear loss of the latter two samples are 1.1mg and 1.3mg, respectively, Obviously which are less than the w e a r l o s s o f t h e s a m p l e l u b r i c a t e dFig.2 Wear loss of steel ring vs. test duration in different lubricant systems with #1 oil. These results indicate that both of the two kinds of the heat-treated serpentine powder can create protective films on the sample surface to reduce the wear loss of the samples during the test process. The intermittent reduces of the wear loss during the test process means that the film formation is dynamic process, in which the wear of the sample and the formation of the protective film occur simultaneously. From the Fig.2, it can be seen that the wear-resistance property of the #2 oil is better than that of the #3 oil.Figure 3 shows the variations of friction coefficients of the friction pairs lubricated with different lubricating oil. It can be seen that the friction coefficient of the friction pairs lubricated with #1 oil gradually decrease with friction time increasing and eventually remains at 0.04. However, the friction coefficients of the samples lubricated with #2 and #3 oil decrease first, then increase rapidly with time increasing, finally basically remaining at around 0.106. During the friction process, the friction coefficients of the samples lubricated with lubricant containing serpentine powder are higher than that of the sample lubricated with base oil; namely, the addition of the serpentine powder makes the friction coefficient ofthe friction pairs increase.Fig.3 Friction coefficient vs. test duration for different lubricant oilsThe SEM photographs of wear topography of steel rings under the same load on the MM–200 friction and wear tester are given in Fig.4. Obviously, there are many deep scratches on the surface of the 45 steel ring lubricated with #1 oil. The scratches on the surface of the sample lubricated with #2 oil are shallower. For the sample lubricated with #3 oil, there are only a few scratches on the local area and the majority of its surface is very smooth. A large number of micro-pores can be observed on the surface of the two samples lubricated with #2 oil and #3 oil, respectively. The sample with #2 oil has more and larger micro-pores than the sample with #3 oil.According to the SEM photograph of the cross-section of the 45 steel ring lubricated with #2 oil (as shown in Fig.5), there is a white layer on the steel substrate edge, which adheres very closely to the steel substrate without陈文刚等:经热处理的蛇纹石粉体对金属磨损特性的影响· 33 ·第36卷第1期Fig.4 SEM micrographs of worn surface of 45 steel rings at various lubricant systemsFig.5 SEM photograph on the cross-section of 45 steel ring lubricated with #2 oil any obvious interface. This indicates that the porous surface formed on the samples as shown in Fig.4 is really a self-repairing film. The chemical compositions of surfaces after wear testing and subsequent ultrasonic cleaning in acetone were analyzed to study the possible chemical interactions between additives and steel, as shown in Fig.6. It can be found that the magnesium and silicon elements, which are the two characteristic elements of the serpentine, exist on the surfaces of the two samples. Although the 45 steel containing a certain amount of silicon element and the silicon element on the surface do not definitely confirm that the powder directly take part in the formation of the self-repairing film, but the appearance of the magnesium element does confirm that the powder is directly involved in the formation ofthe surface self-repairing film.Fig.6 EDAX spetra of worn surface of 45 steel lubricated with #2 oil and #3 oilBased on the results presented above, the following conclusion can be drawn about the mechanism of self-repairing film formed on the sample surface: the serpentine powder can be ground into smaller sizes in the friction process by the surface asperities of the two contacting surfaces. Serpentine minerals are Mg–rich trioctahedral 1:1 phyllosilicate. The ideal chemical formula of serpentine is Mg3Si2O5(OH)4. Sheets are bonded by van der Waals forces. There are unsaturated Si—O—Si, O—Si—O and magnesium bonds on硅酸盐学报· 34 ·2008年the fracture surface of the serpentine. Additionally, brucite laminae ruptures during the dissociation process of the powder. The powder has a large number of surface dangling bonds after ground. [13–14] At the same time, the friction produces fresh surfaces of the steel where the activity of friction pairs is enhanced. Therefore, it can be inferred that the powder can adhere to the fresh surfaces of the steel and then spread on the worn metal surface under the action of shearing stress on the contacting surfaces. The spreading phenomenon can be seen clearly in Fig.7. Thus, a self-repairing film forms on the worn surface.[15–16] As the self-repairing film forms in the friction process, the surfaces in contact with the friction pairs are transformed from 45 steel/45 steel to self-repairing film/self-repairing film, and the friction coefficient of the self-repairing film is higher, therefore it causes an increase in the friction coefficient for the friction pairs lubricated with #2 oil and #3 oil.Fig.7 SEM micrographs of worn surface of 45 steel rings lubricated with #2 oil and #3 oil3 Conclusions(1) In contrast to original serpentine, no phase transformation occurred on the powder treated at 550℃, which only discharged interlayer water and adsorptive water. The powder treated at 900℃ has new phases, including forsterite and enstatite.(2) The two kinds of heat-treated powder modified by titanate coupling agents possess good dispersibility in the lubricating oil, but this was not the case for the silane coupling agents.(3) The powder heat-treated at 550℃ and 900℃ as lubricant additives can form a protective film on the metal surface with a large number of micro-holes. The friction coefficient of friction pairs increases and the wear loss is significantly lower than that of the sample lubricated with base oil.References:[1] YUICHI AOKI, NAOTO OHTAKE. Tribological properties ofsegment-structured diamond-like carbon films [J]. Tribol Int, 2004, 37(11–12): 941–947.[2] LIU W M. Application of nanoparticles in lubricants [J]. Tribology (inChinese), 2003, 23(4): 265–267.[3] XUE Q J, LIU W M, ZHANG Z J. Friction and wear properties of asurface-modified TiO2 nanoparticle as an additive in liquid paraffin [J].Wear, 1997, 213: 29–32.[4] CHEN S, LIU W M, OU Z W, et al. Tribological behavior of oleic acidcoated PbO nanoparticles as additive[J]. Tribology (in Chinese), 2001,21(5): 344–347.[5] LIU Q, XU B S, XU Y, et al. Effect of the additive process of nano-Cuon tribological properties of lubricant oil [J]. Lubr Eng (in Chinese), 2005(3): 12–14.[6] SU D C, ZHENG S H, WANG P, et al. Preparing of self repairingnano-lubricative additive and its tribological characteristics by ultrasound-mechanical method [J]. Lubr Eng (in Chinese), 2006(8): 127–129.[7] CHEN Z L. The effection of auto-conditioning additive on slidingfriction serizure resistance [J]. Lubr Eng (in Chinese), 2006(11): 182–184.[8] YANG H, LI S H, JIN Y S. Study on tribological behavior ofMg6Si4O10(OH)8 additive package with steel tribo-pair [J]. Tribology (in Chinese), 2005, 25(4): 308–311.[9] TIAN B, WANG C B, YUE W, et al. Influence of the wear-self-re-pairing effect on the Cr-plated cylinder liner by a cermet additive in lubricating oil [J]. Tribology (in Chinese), 2006, 26(6): 574–579. [10] GUO Y B, XU B S, XU Y. The method to examinate in-situ theself-repairing performance of lubrication oi1 additive [J]. Lubr Eng (inChinese), 2005(3): 68–69.[11] LAI H Z, WANG S Q, YU N. Mineralogical characteristics of thethermal products of antigorith from xiuyan, liaoning [J]. Acta MineralSin (in Chinese), 2003, 23(2): 124–129.[12] SHAO Y W, YAN C W, DU Y L, et al. The effect of titanate couplingagent on the dispersion of the nano-Ti powder in the epoxy resin [J]. JChin Soc Corros Prot (in Chinese), 2005, 25(4): 232–236.[13] LI X J, WANG L J, LU A H, et al. A discussion on activationmechanism of atom groups in serpentin [J]. Acta Petrologica Et Mineral Sin (in Chinese), 2003, 22(4): 386–390.[14] PENG T J, DONG F Q, LI G W, et al. Nanostructure effect andbio-activity of chrysotile asbestos [J]. Acta Petrologica Et Mineral Sin(in Chinese), 2000, 19(3): 280–286.[15] CHEN W G, GAO Y Z, ZHANG H C, et al. Effects of differentadditive content in lubricating oil on the formation of self-repairingcoating [J]. J Harbin Ins Technol (in Chinese), 2006, 38(suppl): 183–186.[16] GAO Yuzhou, ZHANG Huichen, XU Xiaolei, et al. Formationmechanism of self-repair coatings on the worn metal surface using silicate particles as lubricant oil additive [J]. Lubr Eng (in Chinese),2006(10): 39–42.。