用坐标表示轴对称3
- 格式:ppt
- 大小:592.00 KB
- 文档页数:19
用坐标表示轴对称(说课稿)天成镇九年制学校张宝平一·教材分析:1.教材的地位与作用:《用坐标表示轴对称》是人教版八年级上册第十四章第二节第二课时的内容。
本节课是在学生学习了轴对称及轴对称变换的概念和特征后进行的。
用坐标表示轴对称体现了轴对称在平面直角坐标系中的应用,从数量关系的角度来刻画轴对称。
通过这节课的学习,让学生感受图形轴对称变换之后的坐标的变化,从而体验数和形的紧密结合把坐标思想和图形变换的思想联系起来。
2.教学重点和难点:根据教材编写的特点及教学任务的要求,我确定这节课的重点和难点如下:①掌握在平面直角坐标系中关系x轴,y轴对称的点坐标之间的对应关系。
重点:②发展学生的形象思维能力和数形结合的意识。
难点:根据成轴对称的点的坐标的变换规律,在平面直角坐标系中作出已知图形的轴对称图形。
二.教学目标分析:根据《新课程标准》的要求,教材的编写意图和学生的实际情况,我确定这节课的教学目标如下:1.知识目标:在平面直角坐标系中,探索点关于轴,轴对称的点的坐标的规律并运用这一规律作出一个图形关于x轴,y轴对称的图形。
2.能力目标:在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识,并在这一过程中,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的数学学习研究的习惯。
3.情感目标:在探索规律的过程中,提高学生的求知欲望和强烈的学习好奇心,同时,在用坐标表示轴对称的过程中,形成学生了解数学,应用数学的态度。
三.教法和学法分析1.教学方法:这节课我主要采用了创设情景,直观演示,自主探究,探索发现法,谈论式教学方法。
2.学法:根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四.教学过程分析:㈠创设情境,提出问题1.谈话:人开心的时候会笑,每个人都喜欢看到笑脸,那么这节课我们就从两张笑脸开始. (多媒体展示图片)2.问题:观察这两张笑脸有什么联系?我们来找一找它们相应的点的坐标,然后看一看这些坐标间有何联系?(设计意图:通过有趣的笑脸图,激发学生探究新知的好奇心。
湘教版数学八年级下册《3.3用坐标表示轴对称》说课稿3一. 教材分析湘教版数学八年级下册《3.3用坐标表示轴对称》这一节主要让学生理解坐标系中轴对称的概念,学会用坐标表示轴对称。
通过这一节的学习,学生能进一步巩固坐标系的相关知识,提高解决实际问题的能力。
二. 学情分析学生在之前的学习中已经掌握了坐标系的基本知识,如坐标系的定义、坐标的表示方法等。
但是对于部分学生来说,对于轴对称的概念和其在坐标系中的应用还有一定的困惑。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过实例讲解和练习,帮助学生理解和掌握轴对称在坐标系中的应用。
三. 说教学目标1.知识与技能:让学生理解坐标系中轴对称的概念,学会用坐标表示轴对称。
2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:让学生理解坐标系中轴对称的概念,学会用坐标表示轴对称。
2.教学难点:轴对称在坐标系中的应用,如何解决实际问题。
五. 说教学方法与手段1.教学方法:采用实例讲解、练习、小组讨论等方式进行教学。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考坐标系中的轴对称问题。
2.讲解新课:讲解坐标系中轴对称的概念,让学生通过实例理解轴对称。
3.课堂练习:布置一些有关的练习题,让学生巩固所学知识。
4.小组讨论:让学生分组讨论,共同解决实际问题。
5.总结:对本节课的主要内容进行总结,强调轴对称在坐标系中的应用。
七. 说板书设计板书设计如下:3.3 用坐标表示轴对称1.轴对称的定义2.坐标表示方法3.轴对称在坐标系中的应用八. 说教学评价教学评价主要从学生的学习效果、课堂表现、作业完成情况等方面进行。
教师要关注学生的学习过程,及时发现和解决问题,提高学生的学习兴趣和自信心。
九. 说教学反思在教学过程中,教师要时刻关注学生的学习情况,根据学生的反馈及时调整教学方法和节奏。
《用坐标表示轴对称》教学设计《13.2.2用坐标表示轴对称》教学设计教材分析:《用坐标表示轴对称》是新人教2011版八年级《数学》上册第13章第2节《作轴对称图形》第2小节的内容,隶属“图形与几何领域。
本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
而第一节主要介绍轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容。
通过本节的教学,学生通过丰富的实例认识轴对称,体会轴对称在现实生活中的广泛应用。
学情分析:学生在七年级下册已经系统学过平面直角坐标系的相关知识,并在研究了用坐标表示平移。
学生已经拥有了一定的在平面直角坐标系中研究图形的能力和方法。
加上学生已经在本章第1节的学习中非常熟练地掌握了轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容,因此,本节课的教学中,给学生留足空间和时间,以指导学生自主学习为主,附之于教师的适当帮助、指导和适时的点拨、点评,先通过学生在平面直角坐标中画出一些关于x轴或y轴对称的点,写出这些点的坐标,归纳出规律。
教学目标:1.能用坐标表示轴对称,探究点或图形的轴对称变换引起的点的坐标的变化规律,学会如何利用这种坐标变化规律在平面直角坐标系中作出一个图形的轴对称图形。
2.经历探究用坐标表示轴对称的过程,感受其应用规律。
培养学生的语言表达能力,观察能力、归纳能力。
3.通过主动探究,合作交流,培养学生的合作意识,体验成功的喜悦,获得数形结合的审美享受。
教学重难点重点:用坐标表示点关于坐标轴对称的点的坐标。
难点:找对称点的坐标之间的关系、规律。
教学准备:多媒体课件、三角尺等。
教学方法:自主探究及讲练相结合。
教学过程:一.复习回顾,引入新课提问:已知点A和一条直线MN,如何作出点A关于直线MN的对称点?设计意图:通过学生动手操作,让学生回忆轴对称的相关知识点,同时为后面在平面直角坐标系中研究点的坐标变化做好铺垫。
13.2.2 用坐标表示轴对称数学策略及教法设计本节课通过北京城内天安门、地安门、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本堂课共分创设情境;探索新知;巩固新知;拓展延伸;巩固练习;总结归纳六个环节.采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.并通过一定的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标本节教学设计的特点是以探索活动贯穿整个课堂教学。
包括的有:(1)探索关于坐标轴对称的点的坐标的规律;(2)探索关于平行于坐标轴的直线对称的点的坐标的规律;(3)探究在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形。
另外坚持做到教师的讲解恰当、到位、有效。
紧紧抓住教材的重点在教学设计上始终突出点的位置与点的坐标之间的一一对应的关系。
教学流程安排教学过程设计对称的点的坐标有什么规律吗? 4、尝试再找几个点,分别画出它们的对称点。
5、小组合作,总结规律 在平面直角坐标系中: 关于x 轴对称的点横坐标相等,纵坐 标互为相反数;关于y 轴对称的点横坐标互为相反数,纵坐标相等. 即:点(x, y )关于x 轴对称的点的坐标为(x, - y);点(x, y )关于y 轴对称的点的坐标为(- x, y)。
学生认真观察,动手实践。
[活动3] 巩固新知1、说出下列各点关于x 轴、y 轴对称的点的坐标: (2,-3);(-1,2);(-6,-5);(0,-1.6); (4,0)。
2、如下图,△ABC 关于x 轴对称,点A 的坐标为(1,-2),说出点B 的坐标。
3、四边形ABCD 的四个顶点的坐标分别为A (-5,1)、B (-2,1)、 C (-2,5) 、D (-5,4),分别作出四边形关于x 轴与y 轴对称的图形。
用坐标表示轴对称教案一、教学目标:1. 让学生理解轴对称的概念,并能识别平面上的轴对称图形。
2. 引导学生掌握用坐标表示轴对称的方法,并能应用于实际问题中。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点:1. 教学重点:轴对称的概念及坐标表示方法。
2. 教学难点:如何运用坐标表示轴对称图形。
三、教学准备:1. 教具准备:多媒体课件、坐标轴、对称图形示例。
2. 学生准备:掌握坐标的基本概念,了解平面直角坐标系。
四、教学过程:1. 导入新课:通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生发现对称的美,激发学生的学习兴趣。
2. 自主学习:让学生回顾一下坐标的基本概念,并在小组内讨论如何用坐标表示对称图形。
3. 课堂讲解:a. 讲解轴对称的概念,引导学生理解轴对称图形的特征。
b. 讲解如何用坐标表示轴对称图形,举例说明。
c. 引导学生通过坐标轴找出对称图形的关键点,并连线得出对称轴。
4. 课堂练习:让学生在坐标轴上找出给定对称图形的关键点,并连线得出对称轴。
5. 拓展提高:引导学生运用坐标表示轴对称的方法解决实际问题,如计算对称图形的面积等。
五、课后作业:1. 绘制一个任意的轴对称图形,并用坐标表示出来。
2. 找一找生活中的轴对称现象,并用坐标表示出来。
3. 思考题:如果一个图形沿某条直线对折,对折后的两部分完全重合,这个图形是什么类型的对称图形?请用坐标表示出来。
六、教学评估:1. 课堂讲解环节:观察学生对轴对称概念的理解程度,以及他们能否熟练运用坐标表示轴对称图形。
2. 课堂练习环节:检查学生是否能独立在坐标轴上找出给定对称图形的关键点,并正确连线得出对称轴。
3. 课后作业:审阅学生的作业,评估他们是否能正确绘制轴对称图形,并用坐标表示出来。
七、教学反思:1. 针对学生的掌握情况,调整教学节奏和难度,确保学生能够充分理解轴对称的概念和坐标表示方法。
2. 对于学生在课堂上提出的问题,要及时回应并给予解答,加强师生互动。
《用坐标表示轴对称》教学设计【学习内容】《用坐标表示轴对称》是人教版义务教育课程标准实验教科书八年级数学上册第13章第二节第二课时的内容。
【设计背景】初中学生正处于形象思维想抽象思维过渡的阶段,如何引导学生从感性的图形理解提升到理性理解的数学思维是本节课的一个关键所在。
《用坐标表示轴对称》体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。
教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形,让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,体验数形结合思想。
学生在此之前已经学习了轴对称及轴对称变换的概念和特征,也掌握了平面直角坐标系的相关概念及基本知识点。
所以,本节课通过学生在自主探究中,相互合作,相互交流,掌握坐标平面上一个点关于x轴或y轴对称的点的坐标特征。
在经历知识的生成过程中培养学生的语言表达水平、观察水平、分析和归纳水平,养成良好的学习习惯。
【教学目标】一.知识与技能1.能在平面直角坐标系中画点关于坐标轴的对称点。
2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标。
二.过程与方法在寻找关于坐标轴对称的点的坐标特征的过程中,培养学生的语言表达水平、观察水平、归纳水平,养成良好的自觉探索习惯。
三.情感态度与价值观在找点、描点的过程中,让学生体验数形结合的思想。
【教学重点和难点】1.教学重点:用坐标表示关于坐标轴对称的点的坐标。
2.教学难点:利用对称点的坐标之间的关系,画一个图形关于x轴或y轴的对称图形。
【教学过程】一.创设情境,引入新课课本69页图13.2-3是一张老北京城的示意图,其中东直门和西直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?设计意图:通过创设问题情境,激发学生的学习兴趣,开门见山的导入新课。
课题:§13.2.3 用坐标表示轴对称教学目标(一)〔知识与技能〕1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x 轴、y•轴对称的图形.(二)〔过程与方法〕1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识.2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)〔情感、态度与价值观〕在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点:用坐标表示轴对称.教学方法:探索发现法.教具准备:坐标纸.学具准备:坐标纸.教学过程一、提出问题,创设情境[活动1]1.如图:(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?设计意图:通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,•使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.师生行为:[生]1.(1)观察可发现图中的两个圆脸关于y轴对称.(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),•嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A•到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1). 2.师生共同完成[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.[师]A(2,2)与A1(-2,2)关于y轴对称,B(4,2)与B1(-4,2)关于y轴对称,C(4,4)与C1(-4,4)关于y轴对称,D(2,4)与D1(-2,4)关于y轴对称.那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,B(4,2)与B2(4,-2)关于x轴对称,C(4,4)与C2(4,-4)关于x轴对称,D(2,4)与D2(2,-4)关于x轴对称.那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.二、导入新课[活动2]在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0).关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).设计意图:通过学生动手操作,分别作A,B,C,D,E关于x轴、y轴的对称点A′,B′,C′,D′,E′;A″,B″,C″,D″,E″,并且求出它们的坐标,观察,归纳它们坐标之间的关系.师生行为:教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律.[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0)点.我们先在坐标系中作出A点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,•M点的坐标为(2,0).在AM的延长线上截A′M=AM,则A′就是A点关于x轴的对称点,所以A′在第一象限,因为A′M=AM,所以A′的纵坐标为3,因为AA′⊥x 轴,即AA′∥y轴,•所以A′的横坐标为2,即A′的坐标为(2,3).同理可求得B,C,D,E关于x轴的对称点B′,C′,D′,E′的坐标分别为B′(-1,•-2),C′(-6,5),D′(,-1),E′(4,0).列表如下:续表D (,1)ED′(,-1)E[师]观察上表每对对称点坐标之间的关系,你发现什么规律? [生]每对对称点的横坐标相同,纵坐标互为相反数.[师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.[生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,•且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(-,1),E″(-4,0).列表如下:续表D(,1)ED″(,1)E[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.例2(教材P70)三、随堂练习(教科书P70练习)四、课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.五、课后作业教科书习题13.2─2、3、4题,第6题、第7题(学有余力的同学做).六、教学反思:本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本节课采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,“请你想办法检验你所发现的规律的正确性,说说你是如何检验的”,目的在于培养学生形成良好的科学研究方法,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.然后通过把对称轴是坐标轴变成了直线x=3和y=-4的变式探究,使学生再次体验数形结合的思想,并拓展到直线x=m和y=n,使学生学会通过寻找线段之间的关系来求点的坐标,形成方法.最后一个练习中的图案匠心独具设计成一只美丽的蝴蝶,能较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用.。