全等三角形(老师教案)
- 格式:doc
- 大小:182.20 KB
- 文档页数:5
全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。
(2)理解掌握全等三角形的性质。
(3)能够准确辩认全等三角形的对应元素。
2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。
(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
【教学重难点】1.全等三角形的性质。
2.找全等三角形的对应边、对应角。
【教学过程】引入新课:师:同学们好。
十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。
这节课我们开始学习全等三角形。
出示学习目标。
新知介绍。
一、提出问题,创设情境。
师:下列的图形有什么特点。
(1)(2)(3)生:这几个图形是两两完全重合的。
师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。
移动或折叠后可以得到完全重合的图形。
板书:形状与大小都完全相同的两个图形就是全等形。
师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。
(1)形状相同,但大小不同。
(2)大小相同,但形状不同。
生:全等图形的特征:全等图形的形状和大小都相同。
师:全等形包括规则图形和不规则图形全等。
二、获取概念。
学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
能够完全重合的两个三角形,叫全等三角形。
(1)“全等”用符号“≌”来表示,读作“全等于”。
(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。
(3)互相重合的顶点叫做对应顶点。
A D;B E;C F。
(4)互相重合的边叫做对应边。
AB与DE;BC与EF;AC与DF。
(5)互相重合的角叫做对应角。
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形(省优质课的教案)篇一:2010年初中数学全国优质课教学设计精品017第七届全国初中青年数学教师优秀课观摩评选参赛教案(三角形全等的断定定理)贵州省石阡县文博中学:梁超二O一O年十月十一日第三章全等三角形3.4三角形全等的断定定理(一)教学内容:湘教版八年级上册第3章第4节《三角形全等的断定定理》(SAS)第一课时课型:新授课课时:2课时教学目的:1、知识与技能目的:通过动手操作,合作交流、分析、归纳,让学生经历探究三角形全等的条件——“边角边”定理的过程,并掌握这种识别方法,并会用此定理进展简单的推理。
2、过程与方法目的通过作图、交流和演示,使学生讨论探究出“边角边”定理,从而培养学生自主探求知识的认识以及团结协作处理征询题的才能。
3、情感态度与价值观目的:通过学生的动手实际操作、猜想和论证的过程,深化对知识的理解和方法的掌握,体验觉察的欢乐,体会成功探究的喜悦,激发学生学习数学的兴趣,培养学生热爱生活的思想感情,使学生从实际操作中获得数学知识,明白得数学知识来源于生活,又效劳于生活的道理。
重点:探究“边角边定理”并用此定理进展简单的推理。
难点:探究“边角边定理”,定理中“边角边”条件的理解。
教学器具:卡纸、剪刀、三角板、直尺、多媒体辅助教学。
教学方法:本节课主要采纳引探式教学方法,在活动中教师着眼于“引”,尽力激发学生求知的欲望,引导他们处理征询题,并掌握处理征询题的方法,学生着眼于“探”,通过探究活动觉察规律,开展学生的探究才能和制造才能。
篇二:全等三角形断定公开课教案13.2.2三角形全等的断定—边角边(S.A.S)公开课教案授课教师:乐山市市中区关庙中学雷万建一、背景介绍与教学材料本教材强调直观和操作,在观察中学会分析,在操作中体验变换。
教材的编排淡化概念的识记,强调图形性质的探究。
全等三角形的断定是今后证明线段相等和角相等的重要工具,是学习后续课程的必要根底。
在教学呈现方式上,改变了“结论——例题——练习”的陈述方式,而采纳“征询题——探究——觉察”等多种研究方式。
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
《全等三角形》教学设计教学设计:全等三角形一、教学目标1. 知识目标:学生能够了解全等三角形的定义、性质以及判定全等三角形的方法;2. 能力目标:培养学生的逻辑思维能力和问题解决能力;3. 情感目标:激发学生对几何知识的兴趣,培养学生的数学学习兴趣和学习动力。
二、教学重点难点1. 教学重点:全等三角形的定义、性质以及判定方法;2. 教学难点:全等三角形的判定方法及其应用。
四、教学过程1. 导入:通过一个具体的生活例子引入全等三角形的概念,引发学生对全等三角形的兴趣。
2. 提出问题:通过提出问题的方式,引导学生思考全等三角形的性质和判定方法。
3. 学习新知识:介绍全等三角形的定义和性质,让学生理解全等三角形的概念。
4. 深化理解:通过实例演示,让学生了解全等三角形的判定方法。
5. 拓展应用:通过实际问题,引导学生应用全等三角形的知识解决问题。
6. 练习巩固:布置一些练习题,巩固学生对全等三角形的理解和运用能力。
7. 总结提高:总结全等三角形的知识点,强调全等三角形在实际生活中的应用,并提出下节课的预习内容。
五、教学手段1. 教师讲解2. 多媒体教学3. 实例演示4. 学生讨论5. 课堂练习六、教学评价1. 课堂表现评价:观察学生在课堂上的积极参与情况和答题情况。
2. 作业评价:批改学生的作业,了解学生对全等三角形知识的掌握情况。
3. 能力评价:通过课堂练习和课后练习,评估学生运用全等三角形知识解决问题的能力。
七、教学反思通过本次教学设计,希望能够让学生对全等三角形的概念和性质有所了解,并能够掌握全等三角形的判定方法和应用。
在教学过程中,需要注重引导学生思考和讨论,培养学生的逻辑思维能力和问题解决能力。
也要关注学生的学习情况,及时调整教学策略,确保教学效果。
第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。
全等三角形第一课时优秀教案全等三角形第一课时教案一、课题全等三角形二、教学目标1. 理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
2. 掌握全等三角形的性质,能运用全等三角形的性质解决简单的几何问题。
3. 通过观察、操作、想象、交流等活动,发展空间观念和几何直观。
三、教学重点1. 教学重点全等三角形的概念和性质。
识别全等三角形中的对应边、对应角。
2. 教学难点理解全等三角形的对应边、对应角的关系。
四、教学方法讲授法、演示法、讨论法、探究法五、教学过程(一)导入新课同学们,大家好!今天咱们要一起来探索一个新的几何世界——全等三角形。
咱们先来看看这两张图片(展示两张完全相同的三角形图片),大家能发现它们有啥特点不?是不是长得一模一样呀?这就是咱们今天要研究的主角——全等三角形。
(二)讲授新课1. 全等三角形的概念老师展示两个完全重合的三角形模型,提问:“同学们,看看这两个三角形,它们有什么特点?”引导学生观察并回答:两个三角形的形状和大小完全相同。
老师总结:能够完全重合的两个三角形叫做全等三角形。
2. 全等三角形的表示方法老师在黑板上画出两个全等三角形△ABC 和△DEF,边演示边讲解:“我们用‘≌’这个符号来表示全等,记作△ABC≌△DEF。
”强调对应顶点的字母要写在对应的位置上。
3. 全等三角形的性质老师再次展示重合的两个三角形模型,提问:“那既然这两个三角形全等,它们的对应边和对应角有什么关系呢?”让学生分组讨论,然后请小组代表发言。
老师总结:全等三角形的对应边相等,对应角相等。
4. 找全等三角形的对应边和对应角老师在黑板上画出几个全等三角形,让学生找出对应边和对应角。
引导学生总结找对应边和对应角的方法,比如:长边对长边,短边对短边;大角对大角,小角对小角;公共边是对应边,公共角是对应角等。
(三)课堂练习1. 给出几组三角形,让学生判断是否全等,如果全等,指出对应边和对应角。
2. 已知△ABC ≌△DEF,AB = 5,BC = 7,∠A = 60°,求 DE、EF 的长度和∠D 的度数。
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
全等三角形的判定(一)教学目标知识与技能:1.经历探索三角形全等条件的过程。
2.掌握探究问题的一般方法。
3.初步掌握运用“SSS”判定两个三角形全等,能够用文字语言、图形语言和符号语言分别表述三角形全等的判定方法。
过程与方法:使学生经历探索三角形全等条件的过程,体验用操作法、归纳法得出数学结论的过程。
情感态度与价值观:通过小组合作交流的学习模式,增强学生的团队意识,使学生获得正确的学习方式和良好的情感体验。
教学重点:掌握三角形全等的“边边边”条件。
突出重点:通过感受、思考、操作、归纳、应用五个步骤来突出重点。
教学难点:三角形全等条件的探索过程。
突破难点:主要采用学生体验、推测、绘图、归纳、应用五个步骤,同时充分运用多媒体课件和自制学具的直观、形象和动态来突破难点。
教学步骤教学过程一、创设情境、导入新课教师活动学生活动设计意图出示国庆61周年欢庆图片:学校准备进行国庆庆祝活动,请同学们帮忙做一些三角形的小彩旗,怎样才能使全校同学做的三角形彩旗形状、大小完全相同呢?学生尝试把实际问题转化成数学问题:怎样画一个三角形与已知三角形全等。
对学生进行爱国主义教育的同时,从学生熟知的生活经验和知识经验入手,符合学生学习数学的心理规律。
二、主动参与、逐层探究目标1:探索三角形全等的条件。
教师活动学生活动设计意图1、出示两个全等的三角形,学生明确满足六个条件确实能保证两个三角形全等,并且意识到满足六个条件中的一部分也可能保证两个三角形全等。
这样设计让学生明确探究方向,激发学生的探究欲望。
2、活动1:只满足一个条件对应相等,能否保证所画三角形全等?学生动手画图,举出反例,探索出只给一个条件不能保证两个三角形全等。
教师引导全班同学共同完成满足一个条件情况的探究,让学生初步感知探究的方法。
3、活动2:满足两个条件对应相等,能否保证所画两个三角形全等?学生分组操作,对满足两个条件的情况进行探究,并在组内进行交流、讨论,进而得出只给两个条件时,所画的三角形也不一定全等。
全等三角形(复习导学案)
证明全等的方法:
1:证已知角的另一边对应相等,再用SAS证全等。
2:证已知边的另一邻角对应相等,再用ASA证全等。
3:证已知边的对角对应相等,再用AAS证全等。
4:证第三边对应相等,再用SSS证全等。
5:证直角三角形中的直角边,与斜边,再用HL证全等
全等三角形的运用:
1:角相等2:边相等3:截长补短4:大小关系
证明技巧:
怎样证明两个角相等?
[解答]
(1)利用两个三角形全等是证明两角相等的最基本的方法;
(2)利用两个角都与第三个角相等;
(3)利用等腰三角形两个底角相等;
(4)利用平行四边形对角相等;
(5)利用角平分线的性质;
(6)利用圆上同弦所对的优角相等,劣角相等.
怎样证明两条线段相等?
[解答]证明两条线段相等的常用方法有:
(1)利用两个三角形全等来证两条线段相等;
(2)利用等腰三角形两腰相等;
(3)利用第三条线段使两线段分别与之相等;
(4)利用平行四边形对边相等的性质.
A F
H D C
G B E
A D C
B E A F
D
C
B
E 全等三角形作辅助线的技巧:
全等三角形中常见辅助线的添加方法举例
一.
有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。
(2)①过角平分线上一点作两边的垂线段
练习:如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分
别平分∠ABC 、∠BCD .求证:AE=ED .
②以角的平分线为对称轴构造对称图形
例6: 如图23,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .
分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC ,连接DE ,
我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了. ③延长角平分线的垂线段,使角平分线成为垂直平分线
例7: 如图24,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .
例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:
BE +CF >EF 。
二、有以线段中点为端点的线段时,常延长加倍此线
段,构造全等三角形。
例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求
证:BE +CF >EF
三、有三角形中线时,常延长加倍中线,构造全等三
角形。
A
B
C
D E
F
N
1
图1234
2
图A B
C
D
E
F
M
123
4A
B
C
D
E
例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。
图3练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为
直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。
四、截长补短法作辅助线。
例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P
为AD 上任一点。
求证:AB -AC >PB -PC 。
五、延长已知边构造三角形:
例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC
六、连接四边形的对角线,把四边形的问题转化
成为三角形来解决。
例如:如图7:AB ∥CD ,AD ∥BC 求证:AB=CD 。
七有和角平分线垂直的线段时,通常把这条线段延长。
A
B C D E F 4图A B C
D
N M
P 5
图12A
B
C
D
E
6
图O
A
B
C
D
7
图1
2
3
4
例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。
求证:BD =2CE 八、连接已知点,构造全等三角形。
例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。
九、取线段中点构造全等三有形。
例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。
十、平行线法(或平移法)
若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ .
证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC
=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,
∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO ,
∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP ,
∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB ,
∴BD=OD ,∴AB+BP=AD+DB+BP
=AQ+OQ+BO=AQ+BQ .
说明:⑴本题也可以在AB 截取AD=AQ ,连OD , 构造全等三角形,即“截长补短法”.
⑵本题利用“平行法”解法也较多,举例如下:
① 如图(2),过O 作OD ∥BC 交AC 于D ,
D C
B
A
1
10 图O 10
图D
C
B
A
M N
A B C
P Q D O O A
B
C
P Q D 图(2)
A B
C P
Q
D E 图(3)
O
则△ADO ≌△ABO 来解决.
② 如图(3),过O 作DE ∥BC 交AB 于D ,
交AC 于E ,则△ADO ≌△AQO ,△ABO ≌△AEO 来解决. ③ 如图(4),过P 作PD ∥BQ 交AB 的延长线于D ,
则△APD ≌△APC 来解决. ④ 如图(5),过P 作PD ∥BQ 交AC 于D , 则△ABP ≌△ADP 来解决. (本题作平行线的方法还很多,感兴趣
的同学自己研究).
人人都说几何难,难就难在辅助线。
辅助线,如何添?构造全等很关键。
图中有角平分线,可向两边作垂线。
三角形中有中线,延长中线造全等。
角平分线加平行,构造等腰三角形。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
还要刻苦加钻研,找出规律凭经验。
A B C P
Q
图(4) D O
A B C P Q 图(5) D O。