新人教版八年级数学下《17.2 勾股定理的逆定理 勾股定理及其逆定理的综合应用》优质课教学设计_11
- 格式:docx
- 大小:64.00 KB
- 文档页数:4
第2课时勾股定理及其逆定理的综合应用姓名:基础题知识点1 勾股定理逆定理的应用1.在一根长为30个单位长度的绳子上,分别标出A,B,C,D四个点,将绳子分成长为5个单位长度,12个单位长度和13个单位长度的三条线段.自己握住绳子的两个端点(A点和D点交于一处),两个同伴分别握住B点和C点,将绳子拉成一个几何图形,会得到( )A.直角三角形B.锐角三角形C.钝角三角形D.不能组成三角形2.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B.若A,B两点的直线距离为1 000 m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( )A.南偏东60°B.南偏西60°C.北偏西30°D.南偏西30°3.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列选项中正确的是( )A B C D4.某小区的一所健身中心的平面图如图所示,活动区是面积为200 m2的长方形,其长为20 m,餐饮区是一个半圆形,面积为 4.5π m2,休息区是一个三角形,边AE=8 m,求休息区的面积.知识点2 勾股定理及其逆定理的综合应用5.如图,正方形网格中的△ABC.若小方格边长为1,则△ABC的形状为( )A.直角三角形B.B.锐角三角形C.钝角三角形D.以上答案都不对6.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.7.如图,已知点C是线段BD上的一点,∠B=∠D=90°.若AB=3,BC=2,CD=6,DE=4,AE=65.(1)求AC,CE的长.(2)求证:∠ACE=90°.中档题8.已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是( )A.6013B.5 C.3013D.129.如图,A,B两个村庄分别在两条公路MN和EF 的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160 km,BC=120 km,则A,C两村之间的距离为( )A.250 km B.240 kmC.200 km D.180 km10.如图所示的网格是正方形网格,则∠ACB-∠DCE= (点A,B,C,D,E是网格线交点).11.如图,某小区的两个喷泉A,B位于小路AC的同侧,两个喷泉的距离AB的长为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M 到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长.(2)直接写出喷泉B到小路AC的最短距离.12.(教材P34习题T5变式)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°.(1)求∠BAD的度数.(2)求四边形ABCD的面积(结果保留根号).(3)将△ABC沿AC翻折至△AB′C,如图所示,连接B′D,求四边形ACB′D的面积.综合题13.通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形——两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗? (填“是”或“不是”).(2)若某三角形的三边长分别为1,7,2,则该三角形是不是奇异三角形?请做出判断并写出判断依据.(3)在Rt△ABC中,三边长分别为a,b,c,且a2=50,c2=100,则这个三角形是不是奇异三角形?请做出判断并写出判断依据.探究:在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a.若Rt△ABC是奇异三角形,求a2∶b2∶c2.1.A 2.A 3.C4.解:根据题意,得12π×(ED 2)2=4.5π,∴ED =6.∵AD ·AB =200,AB =20, ∴AD =10. ∵AE =8,∴AE 2+ED 2=AD 2,即∠AED =90°.∴S △AED =8×62=24(m 2),即休息区的面积为24 m 2.5.A6.解:在△ABC 中,∵AB =4,BC =3,∠ABC =90°, ∴根据勾股定理,得AC 2=AB 2+BC 2=42+32=52. ∴AC =5.∵AC 2+CD 2=52+122=25+144=169, AD 2=132=169, ∴AC 2+CD 2=AD 2.∴△ACD 是直角三角形,且AD 为斜边, 即∠ACD =90°.7.解:(1)∵在Rt △ABC 中,∠B =90°,AB =3,BC =2,∴AC =AB 2+BC 2=32+22=13.∵在Rt △EDC 中,∠D =90°,CD =6,DE =4, ∴CE =CD 2+DE 2=62+42=52=213. (2)证明:∵AC =13,CE =52,AE =65, ∴AE 2=AC 2+CE 2.∴∠ACE =90°. 8. A 9. C 10.45°11.解:(1)在Rt △MNB 中,BN =BM 2-MN 2=1502-1202=90(m),∴AN =AB -BN =250-90=160(m).在Rt △AMN 中,AM =AN 2+MN 2=1602+1202=200(m).∴供水点M 到喷泉A ,B 需要铺设的管道总长为AM +BM =200+150=350(m).(2)喷泉B 到小路AC 的最短距离是BM =150 m. 12.解:(1)∵AB =BC =1,∠B =90°,∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2. 又∵CD =3,DA =1, ∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB ·BC =12,S △ADC =12AD ·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.(3)过点D 作DE ⊥AB ′,垂足为E , 由(1)知∠DAC =90°.根据折叠可知∠B ′AC =∠BAC =45°,AB =AB ′=1,S △AB ′C =S △ABC =12.∴∠DAE =∠DAC -∠B ′AC =45°. ∴AE =DE.设DE =AE =x ,在Rt △ADE 中,AE 2+DE 2=AD 2. ∴x 2+x 2=1.∴x =22. ∴S △ADB ′=12×1×22=24.∴S 四边形ACB ′D =S △AB ′C +S △ADB ′=12+24=2+24.13.解:(2)∵12+(7)2=2×22,∴该三角形是奇异三角形.(3)当c 为斜边时,b 2=c 2-a 2=50,Rt △ABC 不是奇异三角形;当b 为斜边时,b 2=c 2+a 2=150,∵50+150=2×100,∴a 2+b 2=2c 2.∴Rt △ABC 是奇异三角形.探究:Rt △ABC 中,∠C =90°,∴a 2+b 2=c 2. ∵c >b >a ,∴2c 2>b 2+a 2,2a 2<b 2+c 2. ∵Rt △ABC 是奇异三角形, ∴2b 2=a 2+c 2.∴2b 2=a 2+a 2+b 2. ∴b 2=2a 2.∴c 2=3a 2. ∴a 2∶b 2∶c 2=1∶2∶3.。
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。
这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。
这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。
但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。
因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。
通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。
同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。
2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。
3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。
17.2 勾股定理的逆定理(第二课时)一、教学目标1.核心素养:通过运用勾股定理的逆定理,提高运算能力、逻辑推理能力和应用意识.2.学习目标(1)理解勾股数的含义.(2)能运用勾股定理的逆定理解决实际问题.3.学习重点勾股定理的逆定理的应用.4.学习难点二、教学设计(一)课前设计1.预习任务请写出几组能作为直角三角形边长的正整数.2.预习自测1.由7、24、25组成的三角形是直角三角形吗?2.我们知道以3、4、5为边长能构成直角三角形,那6、8、10呢?9、12、15呢?你发现了什么?(二)课堂设计1.知识回顾勾股定理的逆定理是什么?2.问题探究问题探究一勾股数●活动一理解定义像3、4、5这样,能够成为直角三角形三边长的三个正整数成为勾股数. 即满足的三个正整数就称为勾股数.再如:…●活动二推理论证我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗? 因为,,所以且3k 、4k 、5k 均为正整数,所以3k 、4k 、5k 也是一组勾股数.●活动三 推广提升一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗? 因为,,而,∴∴,则ak 、bk 、ck (k 是正整数)也是一组勾股数.请你再写几组勾股数.问题探究二 利用勾股定理的逆定理解决生活中的问题 重点知识★ ●活动一 初步应用 例1 如图,某港口P 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile ,“海天”号每小时航行12nmile, 它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?E NRP Q【知识点:勾股定理的逆定理;】详解:根据题意PQ=16×1.5=24,PR=12×1.5=18, QR=30,因为,即,所以QPR=90o .由“远航”号沿东北方向航行可知,“海天”号沿西北方向航行. 点拨:由已知条件易想到求出两轮船航行的路程,即为三角形的边长,从而已知C A 三角形的三边长,再利用勾股定理的逆定理判断该三角形为直角三角形而解决问题 .●活动二 拓展提升例2 如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?【知识点:勾股定理的逆定理;】详解:设MN 交AC 于E ,则∠BEC=90°.又AB 2+BC 2=52+122=169=132∴△ABC 是直角三角形,∠ABC=90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE=288,∴CE=13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.点拨:由题意可得△ABC 的三边长分别为5、12、13,根据勾股定理的逆定理判断∠ABC=90°,由题可知走私艇C 进入我领海的最近距离是CE ,再利用勾股定理建方程求出CE 的长,从而解决问题.问题探究三 勾股定理及逆定理的综合运用例3. 某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【知识点:勾股定理,勾股定理的逆定理;】详解:连接BD. 在Rt△ADB中∠BAD=90o,BD==5,在△DBC中,则∴∠DBC=90o,∴S四边ADBC=S△ADB+ S△DBC=5×12=36∴36×200=7200(元).答:学校需投入7200元买草皮.点拨:根据条件易想到链接BD,将四边形的面积转化为两个三角形的面积之和,由AB=3,AD==4,易求BD=5,而△CBD中已知三边的长,可根据勾股定理的逆定理判断该三角形为直角三角形,再根据面积计算公式求出答案.3.课堂总结【知识梳理】1. 一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数.2.利用勾股定理的逆定理解决生活中的问题.【重难点突破】1.三个数是勾股数,则必须满足两个条件:(1)较小的两个数的平方和等于较大数的平方.(2)三个数必须是正整数.2.已知一个三角形的三边长时,首先应想到利用勾股定理的逆定理来判断这个三角形是否为直角三角形.3.在勾股定理及其逆定理的综合运用时需注意正确区分:勾股定理是在直角三角形中运用,而其逆定理是判断一个三角形是否为直角三角形.4.随堂检测1. 在△ABC中,三边长a、b、c满足 = 0,则此三角形为()A . 钝角三角形 B. 等腰三角形C. 等腰直角三角形D. 直角三角形【知识点:勾股定理的逆定理】【答案】D2. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出两组基本勾股数:, .【知识点:勾股数】【答案】5,12,13;9,40,41.3.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?东【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】∵AC=16×3=48,AB=12×3=36,∴222222+=-==,BC AC AB604836∴△ABC为直角三角形且∠CAB=90°,∴乙船出发后的航向是南偏东40o.4. 一个零件的形状如图,按规定这个零件中∠A与∠DBC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=13 , BC=12,这个零件符合要求吗?【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】这个零件符合要求.在△ADB中,,则,∴∠DAB=90o,同理,在△DBC中,则∴∠DBC=90o,∴这个零件符合要求.。
人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
17.2.2勾股定理逆定理的应用核心素养目标:1.应用勾股定理的逆定理判断一个三角形是否是直角三角形;2.灵活应用勾股定理及逆定理解综合题;3.进一步加深性质定理与判定定理之间关系的认识。
教学重难点:重点:进一步理解勾股定理的逆定理;难点:勾股定理逆定理的灵活应用;教学过程:一、复习导入1.我们已经学习了勾股定理及其逆定理,你能叙述吗?2.你能用勾股定理及其逆定理解决哪些问题?二、互助探究探究点一:利用勾股定理的逆定理解答角度问题例题讲解:例1如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?探究点二:利用勾股定理的逆定理解答面积问题例2已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.跟踪练习:如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.探究点三:利用勾股定理的逆定理解答检测问题例3 如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?跟踪练习:一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?三、课堂小结1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题四、课堂检测1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6C.16D.552. 如图,△ABC的顶点A,B,C,在边长为1的正方形方格的格点上,BD⊥AC于点D,则BD的长为()A. 23√5 B. 34√5 C. 45√5 D.56√53. 医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东的方向.4.如图,等边三角形的边长为6,则高AD的长是;这个三角形的面积是 .5. 如图,矩形ABCD中,AB=8,BC=6,将矩形沿AC折叠,点D落在E处,则重叠部分△AFC的面积是多少?五、课后作业必做题:教材习题17.2第4题.选做题:教材习题17.2第12、13、14题.。
.17.2勾股定理的逆定理1.会理解并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形.1.通过对勾股定理的逆定理的探索,经历知识发生、发展和形成的过程.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.1.通过用三边之间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系.2.在对勾股定理的逆定理的探索中,培养了学生的交流、合作的意识和严谨的学习态度,同时感悟勾股定理和逆定理的应用价值.【重点】勾股定理的逆定理的应用.【难点】勾股定理的逆定理的证明.【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、绳子.学生利用准备好的绳子,以小组为单位动手操作,观察,做出合理的推断.[设计意图]介绍前人经验,启发思考,使学生意识到数学来源于生活,同时明确了本节课研究的问题,既实行了数学史的教育,又锻炼了学生动手实践、观察探究的水平.导入二:你能说出勾股定理吗?并指出定理的题设和结论.学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.追问:你能把勾股定理的题设与结论交换得到一个新的命题吗?师生共同得出新的命题,教师指出其为勾股定理的逆命题.追问:“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.[设计意图]通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.1.勾股定理的逆定理思路一①如果改变一下三条边的结数,是否还能摆放出同样形状的三角形吗?②画图看一看,三角形的三边长分别为2.5 cm,6 cm,6.5 cm,观察三角形的形状.再换成4 cm,7.5 cm,8.5 cm试试看.③三角形的三边具有怎样的关系,才得到上面同样的结论?教师根据学生的思考结果,对第③个问题总结归纳,提出猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]由特殊到一般,归纳猜想出“如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形就为直角三角形”的结论,培养学生动手操作水平和寻求解决数学问题的一般方法.思路二下面的三组数分别是一个三角形的三边长a,b,c.5,12,13;7,24,25;8,15,17.①这三组数都满足a2+b2=c2吗?②分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?学生以小组为单位,按给出的三组数作出三角形,得出结论:①这三组数都满足a2+b2=c2;②以每组数为边长作出的三角形都是直角三角形.师生进一步通过实际操作,猜想结论:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的相关边的条件,猜想得出结论.学生独立思考回答问题,命题1的题设是直角三角形的两直角边长分别为a,b,斜边长为c,结论是a2+b2=c2;命题2的题设是三角形的三边长a,b,c满足a2+b2=c2,结论是这个三角形是直角三角形.教师引导学生分析得出这两个命题的题设和结论正好是相反的.归纳出互逆命题概念:两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.提问:请同学们举出一些互逆命题,并思考:原命题准确,它的逆命题是否也准确呢?举例说明.学生分组讨论合作交流,然后举手发言,教师适时记下一些互逆命题,其中既包含有原命题、逆命题都成立的互逆命题,也包括原命题成立逆命题不成立的互逆命题.如:①对顶角相等和相等的角是对顶角;②两直线平行,内错角相等和内错角相等,两直线平行;③全等三角形的对应角相等和对应角相等的三角形是全等三角形.追问:在大家举出的互逆命题中原命题和逆命题都成立吗?学生举手发言回答,另一学生纠错.同时教师引导学生明确:①任何一个命题都有逆命题.②原命题准确,逆命题不一定准确;原命题不准确,逆命题可能准确.③原命题与逆命题的关系就是命题中题设与结论“互换”的关系.[设计意图]让学生在合作交流的基础上明确互逆命题的概念,在互动的过程中掌握互逆命题的真假性是各自独立的.这个三角形是直角三角形”吗?教师引导学生分析命题的题设及结论,让学生独立画出图形,写出已知和求证.已知:如图所示,△ABC中,AB=c,AC=b,BC=a,且a2+b2=c2.求证:∠C=90°.追问:要证明△ABC是直角三角形,只要证明∠C=90°,由已知能直接证吗?教师引导,如果能证明△ABC与一个以a,b为直角边长的Rt△A'B'C'全等.那么就证明了△ABC是直角三角形,为此,能够先构造Rt△A'B'C',使A'C'=b,B'C'=a,∠C'=90°,再让学生小组讨论得出证明思路,证明了猜想的准确性.教师适时板书出规范的证明过程.证明:如图所示,作直角三角形A'B'C',使∠C'=90°,B'C'=a,A'C'=b,由勾股定理得A'B'===c,∴A'B'=AB,B'C'=BC,A'C'=AC,∴△ABC≌△A'B'C',∴∠C=∠C'=90°,∴△ABC是直角三角形.教师在此基础上进一步指出,如果一个定理的逆命题经过证明是准确的,那么它也是一个定理,我们把上面所形成的这个定理叫做勾股定理的逆定理,称这两个定理为互逆定理.[设计意图]引导学生用图形和数学符号语言表示文字命题,构造直角三角形,让学生体会这种证明思路的合理性,协助学生突破难点.2.例题讲解(教材例1)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.学生独立完成,教师适时指导,并规范地书写解题过程.在此活动中,教师协助学生分析得到:要判断一个三角形是不是直角三角形,可根据勾股定理及其逆定理,关键是对两条较小边长的平方和与最大边长的平方实行比较,只有相等时才是直角三角形.解:(1)因为a2+b2=152+82=289,c2=172=289,所以152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形.(2)因为a2+b2=132+142=365,c2=152=225,所以132+142≠152,(1)3,4,;(2)6,8,;(3)7,24,;(4)5,12,;(5)9,12, .[设计意图]通过练习,学会使用勾股定理逆定理判断一个三角形是否为直角三角形.[知识拓展]勾股定理的逆定理是直角三角形的判定方法之一,利用它判定是否为直角三角形的一般步骤:①确定最大边长c;②计算a2+b2和c2的值,若a2+b2=c2,则此三角形是直角三角形;若a2+b2<c2,则此三角形是钝角三角形;若a2+b2>c2,则此三角形是锐角三角形.(教材例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于点Q,R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?引导学生认真审题,弄清已知是什么,解决的问题是什么.学生通过思考举手回答,教师在黑板上列出:已知两艘轮船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向.引导学生尝试画图,教师在黑板上或多媒体中画出示意图.引导学生分析:图中的E,N分别表示东、北两个方向.要求出“海天”号的航行方向,只要求出∠RPQ的度数,而∠1=45°,利用角的和差得出∠2的度数.解:根据题意,由已知得PQ=16×1.5=24,PR=12×1.5=18,QR=30.因为242+182=302,即PQ2+PR2=QR2,所以∠QPR=90°,由“远航”号沿东北方向航行可知∠1=45°,所以∠2=∠QPR-∠1=45°,即“海天”号沿西北方向航行.[设计意图]学生在规范化的解答过程及练习中,提升对勾股定理逆定理的理解以及实际应用的水平.师生共同回顾本节课所学主要内容:(1)已知一个三角形的三边长,利用勾股定理的逆定理来判定这个三角形是不是直角三角形.(2)一个命题一定有逆命题,一个定理不一定有逆定理.(3)三个数满足勾股数的两个条件:①三个数必须满足较小的两个数的平方和等于最大的一个数的平方;②三个数必须都是正整数.(4)解题时,注意勾股定理与其逆定理的区别.勾股定理是在直角三角形中使用的,而勾股定理的逆定理是判断一个三角形是不是直角三角形的.1.(2019·毕节中考)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是 ()A.,,B.1,,C.6,7,8D.2,3,4解析:A中,()2+()2≠()2,不能构成直角三角形,故错误;B中,12+()2=()2,能构成直角三角形,故准确;C中,62+72≠82,不能构成直角三角形,故错误;D中,22+32≠42,不能构成直角三角形,故错误.故选B.2.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是 ()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析:根据题意可得a=b或a2+b2-c2=0,所以△ABC可能为等腰三角形,也可能为直角三角形.故选C.3.下列说法中准确的有 ()(1)在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角;(2)命题“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半”的逆命题是真命题;(3)勾股定理的逆定理是:如果两条直角边长的平方和等于斜边长的平方,那么这个三角形是直角三角形;(4)△ABC的三边之比是1∶1∶,则△ABC是直角三角形.A.1个B.2个C.3个D.4个解析:(1)准确,(2)错误,(3)错误,(4)准确,故有两个说法是准确的.故选B.4.如图(1)所示的是一块地,已知AD=4 m,CD=3 m,AD⊥DC,AB=13 m,BC=12 m,求这块地的面积.解:如图(2)所示,连接AC.∵AD⊥DC,∴在Rt△ACD中,AD2+CD2=AC2,∴AC===5(m).∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,∴这块地的面积为S=S△ABC-S△ACD=AC·CB-AD·DC=×5×12-×3×4=24(m2).17.2勾股定理的逆定理1.勾股定理的逆定理(1)归纳猜想(2)原命题、逆命题(3)勾股定理的逆定理的证明2.例题讲解例1例2一、教材作业【必做题】教材练习第33页第1,2,3题;教材第34页习题17.2第1,2,3,4题.【选做题】教材第34页习题17.2第7题.本节课以“提出问题——解决问题”为主线,以学生的自主探索学习为中心,从解决问题的完成情况看,知识目标完全达到,水平目标基本实现,情感目标基本实现.在本节课教学中,充分发挥学生在教学中的主体作用,教师不能一味地“讲知识”,而是应用启发式的原则,给学生指明学习目标和方向,让学生去自主探究,注重了知识上的即时巩固,也侧重了学生各方面的素质的培养.在重难点的突破上,还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上.同时,缺少了板书示范,不利于学生养成良好的书写习惯.。
第17章勾股定理全章复习教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:(一)知识结构图:见PPT(二)基础知识:1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2 + b2 = c2几何语言:在Rt △ABC 中, ∠C=90°∴a2+b2=c2练习:1.求出下列直角三角形中未知的边.2.已知:直角三角形的三边长分别是 3,4,X,则X=3. 三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC8A 15B 30° 2C B A 2 45° A CB2 .勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a2 +b2=c2 ,那么这个三角形是直角三角形 几何语言: 在△ABC 中,∵a2+b2=c2∴ △ABC 是直角三角形,∠C=90°互逆定理 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.基础练习二:1.在已知下列三组长度的线段中,不能构成直角三角形的是 ( )A 5,12,13B 2,3,3C 4,7,5D 1, 2 , 52.若△ABC 中 ,AB=5 ,BC=12 ,AC=13 ,求AC 边上的高.三、典例分析:例1、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD 的面积变式 有一块田地的形状和尺寸如图所示,试求它的面积。
121334归纳: 转化思想例2、下图是学校的旗杆,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他D BA C归纳: 方程思想 例3、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
《勾股定理及逆定理的综合使用》教学设计
一、教学目标
【知识与技能】
了解勾股定理的不同证明方法,理解勾股定理内容并能够应用公式解决实际问题。
【过程与方法】
通过小组合作学习探究数学定理的使用,在使用过程中了解数学中的数形结合思想。
【情感态度与价值观】
提升数学素养水平,并在学习中感受数学的乐趣和魅力。
二、教学重难点
【重点】
勾股定理的内容及应用。
【难点】
勾股定理和逆定理的使用。
三、教学过程
(一)导入新课
1.在一般三角形当中,三条边存有什么样的关系呢?
学生自由回答,两边之和大于第三边,两边之差小于第三边。
2.那么在特殊的三角形即直角三角形当中三边还会存有什么特殊的数量关系呢?(板书一个直角三角形,两直角边分别为a、b,斜边为c。
)
引入课题,勾股定理。
(二)提出原理
(1)大屏幕展示毕达哥拉斯发现勾股定理时的地砖图案,给出不同的类型,请学生观察,小组合作(采用拼补或者数方格的方式)填写如下表格:
(2)大胆猜想
根据表格数据结果小组内交流探究,大胆猜想在直角三角形当中三边存有什么样的数量关系?
引导回答,在直角三角形中,两直角边的平方和等于斜边的平方。
(3)严谨证明
大屏幕出示“赵爽弦图”,简单讲解,早在我国汉代就有人证明了这个猜想,及这就是今天所要学习的勾股定理。
同学观察,互动方式说出图形的特点,有四个全等的直角三角形及一个正方形,请学生随意裁出四个全等的直角三角形,按照课本图例拼成一个大正方形,计算此正方形的面积,并尝试实行证明勾股定理。
(设置巡视即教师指导环节)
请学生代表上台板演计算过程:大正方形面积=
师生共同总结:对任意一个直角三角形都有两直角边的平方和等于斜边的平方。
(三)讲解原理
按照板书上的直角三角形,指出直角边和斜边,向学生讲解核心内容:
1.强调a,b,c的含义
2.勾股定理的应用前提——在直角三角形中
3.其他应用,在直角三角形中指导任意两边即可求出余下一边的长度。
(能够实行简单提问,引出核心内容,增强学生地理解和记忆)
(四)应用原理
1.基础练习
在直角三角形ABC中,角C为90°,AC=6,AB=10,求出BC的大小。
2.综合练习
在直角三角形ABC中,角C为90°,BC=3,AB=5,求三角形ABC的周长及面积。
(五)小结作业
教师引导学生回顾本节课所学的主要内容,通过相互交流分享观点:
1.什么是勾股定理?
2.勾股定理的应用前提以及公式
3.能够解决哪类的实际问题?
作业:课后作业题,找一找有哪些勾股数,下节课分享。
四、板书设计
五、教学反思。