2008年上海本科高校《高等数学》统一测试卷(经管卷)
- 格式:pdf
- 大小:56.91 KB
- 文档页数:2
2008年普通高等学校招生全国统一考试(上海卷)数 学(文科)一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式11x -<的解集是 . 解:由11102x x -<-<⇒<<.2.若集合{}|2A x x =≤,{}|B x x a =≥满足{2}A B = ,则实数a = . 解:由{2}, 22A B A B a =⇒⇒= 只有一个公共元素. 3.若复数z 满足(2)z i z =- (i 是虚数单位),则z = . 解:由22(1)(2)11(1)(1)i i i z i z z i i i i -=-⇒===+++-. 4.若函数()f x 的反函数为12()log fx x -=,则()f x = .解:令2log (0),y x x => 则y R ∈且2,yx =()()2.xf x x R ∴=∈5.若向量a ,b 满足12a b == ,且a 与b 的夹角为3π,则a b += .解:2||()()2a b a b a b a a b b a b +=++=++22||||2||||cos 73a b a b π=++= ||a b ⇒+= 6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 解:直线10ax y -+=经过抛物线24y x =的焦点(1,0),F 则10 1.a a +=∴=-7.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = .解:设z a bi =+,则方程的另一个根为z a bi '=-,且22z =⇒=,由韦达定理直线22,1,z z a a '+==-∴=-23,b b ∴==所以(1)(1) 4.p z z '=⋅=-+-=8.在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,这三点能构成三角形的概率是 (结果用分数表示).解: 由已知得 A C E B C D 、、三点共线,、、三点共线,所以五点中任选三点能构成三角形的概率为333524.5C C -= 9.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = . 解: 2()2 4.f x x ⇒=-+10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20, 且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 . 解:中位数为10.521,a b ⇒+=根据均值不等式知,只需10.5a b ==时,总体方差最小. 11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标是 . 解:作图知xy ω=取到最大值时,点P 在线段BC 上,:210,[2,4],BC y x x =-+∈(210),xy x x ω∴==-+故当5,52x y ==时, ω取到最大值.二、选择题(本大题满分16分)12.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4B .5C .8D .10解: 由椭圆的第一定义知12210.PF PF a +==13.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件解:“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”.14.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( ) A.1 B.2 C.12 D.54解:由11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或. 15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A. ABB . BCC . CD D . DA 解:由题意知,若P 优于P ',则P 在P '的左上方,∴当Q 在 DA上时, 左上的点不在圆上, ∴不存在其它优于Q 的点, ∴Q 组成的集合是劣弧 DA. 三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示). 解:过E 作EF ⊥BC ,交BC 于F ,连接DF .∵ EF ⊥平面ABCD ,∴ ∠ED F 是直线DE 与平面ABCD 所成的角. ……………4分由题意,得EF =111.2CC =∵11,2CF CB DF ==∴=..8分∵ EF ⊥DF , ∴tan 5EF EDF DF ∠==……………..10分 故直线DE 与平面ABCD所成角的大小是arctan 5….12分17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120 .已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米). 解:【解法一】设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060……………………4分 在CDO ∆中,2222cos60,CD OD CD OD OC +-⋅⋅⋅=……6分即()()22215003002500300,2r r r +--⨯⨯-⨯=…………….9分解得490044511r =≈(米). ………………………………….13分【解法二】连接AC ,作OH ⊥AC ,交A C 于H ………………..2分 由题意,得CD =500(米),AD =300(米),0120CDA ∠=….4分2220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中 ∴ AC =700(米) …………………………..6分22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅………….…….9分在直角11,350,cos 0,14HAO AH HA ∆=∠=中(米) ∴ 4900445cos 11AH OA HAO ==≈∠(米). …………………13分18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数()sin 2f x x =, π()cos 26g x x ⎛⎫=+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图象分别 交于,M N 两点.(1)当π4t =时,求MN 的值;(2)求MN 在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值. 解:(1)sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭231cos .32π=-=(2)sin 2cos 26MN t t π⎛⎫=-+⎪⎝⎭3sin 222t t =-26t π⎛⎫=- ⎪⎝⎭∵ 0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦∴ |MN .19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0tf t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.解:(1)()()100;0,22x x x f x x f x <=≥=-当时,当时. …………….2分由条件可知,2122,22210,2x x xx-=-⋅-=即解得 21x =±…………6分∵ (220,log 1x x >∴=+ …………..8分(2)当2211[1,2],2220,22t t t ttt m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时 ……………10分即 ()()242121.t t m -≥--()22210,21.t t m ->∴≥+ ………………13分 ()2[1,2],12[17,5],t t ∈∴-+∈--故m 的取值范围是[5,)-+∞ …………….16分已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM △截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.解:(1)所求渐近线方程为0,0y y =+= ……………...3分 (2)设P 的坐标为()00,x y ,则Q 的坐标为()00,x y --, …………….4分 ()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+ ……………7分0xλ∴的取值范围是(,1].-∞- ……………9分(3)若P 为双曲线C 上第一象限内的点,则直线l的斜率.k ⎛∈ ⎝⎭……………11分由计算可得,当()1(0,],2k s k ∈=时当()1,2k s k ⎛∈= ⎝⎭时……………15分∴ s 表示为直线l 的斜率k 的函数是()1(0,],21.2k s k k ∈=⎛∈ ⎝⎭….16分已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列 {}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数). 记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m , 使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100. 解:(1) 12312...a a a a ++++()()()12342564786r r r r =++++++++++++++484.r =+ .2分 48464, 4.r r +=∴= 4分(2)用数学归纳法证明:当12,4.n n Z T n +∈=-时① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立….6分 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-………8分()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+等式也成立.根据①和②可以断定:当12,4.n n Z T n +∈=-时…………………...10分()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r n n m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时………..13分∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数,∴ 这些项均不可能取到100. .15分 此时,293294297298,,,T T T T 为100. 18分。
2008年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上 1.=-+∞→4312x x iml x【答案】:C【解析】:属于极限基本题,分子,分母同除x ,即得32,选C 【点评】:曾在安通系统班及强化班高数课上,极限部分有过大量相关题型练习。
A .41-B. 0C. 32D. 12. 已知)(x f 在1=x 处可导,且3)1(='f ,则0(1)(1)lim h f h f h→+-=A. 0B. 1C. 3D. 6 【答案】:C【解析】:考核导数定义,或用洛必达法则。
选C【点评】:在安通课上导数部分,有详细讲解导数定义及洛必达法则的应用,在串讲篇有重点强调。
3. 设函数='=y nx y 则,1 A.x 1 B. x1- C. x ln D. xe 【答案】:A【解析】: 容易题。
据辅导教材51页导数公式(4)得 【点评】:在安通课上导数部分,有过详细讲解。
4. 已知)(x f 在区间(∞+∞-,)内为单调减函数,且)(x f >)1(f ,则x 的取值范围是A. (1,-∞-)B. (1,∞-)C. (∞+,1)D. (∞+∞-,) 【答案】:D【解析】: 属概念题,选 D 与)(x f >)1(f 无关【点评】:在函数部分,有过详细讲解,在串讲篇有重点强调。
5. 设函数=+=dy e y x则,2 A. ()dx e x2+ B. ()dx x e x2+B. ()dx e x1+ D. dx e x【答案】:D【解析】:属于较容易题. 据辅导教材70页微分公式 (1),(4)。
6.⎰=+dx x )1(cosA. C x x ++sinB. C x x ++-sinC. C x x ++cosD. C x x ++-cos 【答案】:A【解析】:属于容易题. 据辅导教材135页微分公式 7.=⎰-dx x 511A. -2B. -1C. 0D. 1 【答案】: C【解析】:容易题. 据”连续奇函数在对称区间上的定积分为0”. 8. 设函数y x z 32+=,则xz∂∂= A. y x 32+ B. x 2 C. 32+x D.23233y x + 【答案】: B【解析】:属于较容易题. 对2x 求导,3y 看作常数即可得B 选项。
2008年普通高等学校招生全国统一考试(上海卷)数学(文)一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式|1|1x -<的解集是 .2.若集合{|2}A x x =≤、{|}a B x x =≥满足2A B = ,则实数a = . 3.若复数z 满足(2)z i z =-(i 是虚数单位),则z = . 4.若函数()f x 的反函数12()log f x x -=,则()f x = . 5.若向量a 、b 满足| a |=1,| b |=2,且a 与b 的夹角为3π,则| a | + | b | = . 6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 7.若z 是实系数方程220x x p ++=的一个虚根,且||2z =,则p = .8.在平面直角坐标系中,从五个点:(0,0)A 、(2,0)B 、(1,1)C 、(0,2)D 、(2,2)E 中任取三个,这三点能构成三角形的概率是 (结果用分数表示).9.若函数()()(2)f x x a bx a =++(常数R ,a b ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析()f x = .10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .11.在平面直角坐标系中,点A 、B 、C 的坐标分别为(0,1)、(4,2)、(2,6).如果(,)P x y 是ABC ∆围成的区域(含边界)上的点,那么当w xy =取得最大值时,点P 的坐标是 .二、选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设P 椭圆2212516x y +=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于( ) A .4 B .5 C .8 D .10第15题图第16题图第17题图13.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件14.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( ) A .1 B .2 C .12 D .5415.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点(,)P x y 、点(,)P x y '''满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A . AB B . BCC . CD D . DA三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A BC D -中,E 是1BC 的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处.小区里有两条笔直的小路AD 、DC ,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).18.(本题满分15分)本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数()sin 2f x x =,()cos(2)6g x x π=+,直线x t =()t R ∈与函数()f x 、()g x 的图象分别交于M 、N 两点.(1)当4t π=时,求||MN 的值; (2)求||MN 在[0,2t π∈时的最大值.19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线22:12x C y -=. (1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记MP MQ λ=⋅.求λ的取值范围;(3)已知点D 、E 、M 的坐标分别为(2,1)--、(2,1)-、(0,1),P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM ∆截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a ⋅⋅⋅+=+++. (1)若1312264a a a a ⋅⋅⋅++=++,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,…,1212m T +中有4项为100.求r 的值,并指出哪第16题图4项为100.参考答案一、填空题(第1题至第11题) 1.(0,2)2. 23.1i + 4. 2x(R x ∈) 56.-1 7. 48.459.224x -+10.10.5a =,10.5b =11. 5(,5)2二、选择题(第12题至第15题) 12.D 13.C 14.B 15.D三、解答题(第16题至第21题)16.解:过E 作EF BC ⊥,交BC 于F ,连接DF . ∵ EF ⊥平面ABCD∴ EDF ∠是直线DE 与平面ABCD 所成的角. 由题意,得1112EF CC ==. ∵ 112CF CB ==,∴DF =. ∵ EF DF ⊥,∴tan 5EF EDF DF ∠==. 故直线DE 与平面ABCD所成角的大小是arctan .17.解法1:设该扇形的半径为r 米.由题意,得500CD =(米),300DA =(米),60CDO ∠=. 在CDO ∆中,2222cos60CD OD CD OD OC +-⋅⋅⋅=,第17题图即2221500(300)500(3020)2r r r ⨯⨯-⨯-=+-, 解得490044511r =≈(米). 答:该扇形的半径OA 的长约为445米.解法2:连接AC ,作OH AC ⊥,交AC 于H .由题意,得500CD =(米),300AD =(米),120CDA ∠=. 在ACD ∆中,2222cos120AC CD AD AD CD =+-⋅⋅⋅222150030500300207002=⨯⨯=+⨯+, ∴700AC =(米),22211214cos AC AD CD CAD AC CD +-∠==⋅⋅.在直角HAO ∆中,350AH =(米),1os 114c HAO ∠=, ∴ 4900445cos 11HAO AH OA =∠=≈(米).答:该扇形的半径OA 的长约为445米.18.解:(1))cos(24||sin(246MN πππ⨯-⨯+=.231cos32π=-=. (2)||si 2s 2n co (6t MN t π-+=3sin 22t t =)6t π=-.∵ [0,]2t π∈,26[,]66t ππππ∈---, ∴ ||MN19.解:(1)当0x <时,()0f x =;当0x ≥时,1()22xx f x =-. 由条件可知1222xx -=,即222210x x -⋅-=,解得21x=∵ 20x>,∴ 2log (1x =. (2)当[1,2]t ∈时,22112(2(2202tttt tm -+≥-, 即42(21())21t t m ≥---, ∵ 220t>,∴2(21)t m ≥-+. ∵ [1,2]t ∈,∴2(12)[17,5]t -+∈--, 故m 的取值范围是[)5,-+∞.20.解:(1)所求渐近线方程为02y x -=,02y x +=. (2)设P 的坐标为00(,)x y ,则Q 的坐标为00(,)x y --.0000(,1)(,)MP MQ x y x y λ=⋅=-⋅--22001x y =--+20322x =-+。
2008年高考文科数学试题及参考答案(上海卷)一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式|1|1x -<的解集是 .2.若集合{|2}A x x =≤、{|}a B x x =≥满足2A B = ,则实数a = .3.若复数z 满足(2)z i z =-(i 是虚数单位),则z = .4.若函数()f x 的反函数12()log f x x -=,则()f x = .5.若向量a 、b 满足||1a =,||2b = ,且a 与b 的夹角为3π,则||a b +=.6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = .7.若z 是实系数方程220x x p ++=的一个虚根,且||2z =,则p = .8.在平面直角坐标系中,从五个点:(0,0)A 、(2,0)B 、(1,1)C 、(0,2)D 、(2,2)E 中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 9.若函数()()(2)f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析()f x = .10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 . 11.在平面直角坐标系中,点A 、B 、C 的坐标分别为(0,1)、(4,2)、(2,6).如果(,)P x y 是ABC∆围成的区域(含边界)上的点,那么当wxy =取得最大值时,点P 的坐标是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设P 椭圆2212516x y +=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于( )A .4B .5C .8D .1013.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件14.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A .1B .2C .12D .5415.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点(,)P x y 、点(,)P x y '''满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A . AB B . BCC . CD D . DA 三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分) 如图,在棱长为2的正方体1111ABCD A BC D -中,E 是1BC 的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处.小区里有两条笔直的小路AD 、DC ,且拐弯处的转角为120 .已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).18.(本题满分15分)本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数()sin 2f x x =,()cos(2)6g x x π=-,直线x t =(t R ∈)与函数()f x 、()g x 的图象分别交于M 、N 两点.(1)当4tπ=时,求||MN 的值; (2)求||MN 在[0,]2t π∈时的最大值.19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数||1()22x x f x =-.(1)若()2f x =,求x 的值;(2)若2(2)()0tf t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线C :2212x y -=. (1)求双曲线C 的渐近线方程; (2)已知点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P关于原点的对称点.记MP MQ λ=⋅.求λ的取值范围;(3)已知点D 、E 、M 的坐标分别为(2,1)--、(2,1)-、(0,1),P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM ∆截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记 112233n n n T b a b a b a b a =++++ .(1)若1213264a a a a ++++= ,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r>,且存在正整数m ,使得在121m T +,122m T +,…,1212m T +中有4项为100.求r 的值,并指出哪4项为100.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)答案要点一、填空题(第1题至第11题) 1.(0,2) 2. 2 3.1i +4.2x (x R ∈)56.-17. 48.459.224x -+10.10.5a =,10.5b =11. 5(,5)2二、选择题(第12题至第15题)三、解答题(第16题至第21题)16.解:过E 作EFBC ⊥,交BC 于F ,连接DF .∵EF ⊥平面ABCD∴EDF ∠是直线DE 与平面ABCD 所成的角. …… 4分由题意,得1112EF CC ==.∵112CF CB ==,∴DF =. …… 8分∵EFDF ⊥,∴tan EF EDF DF ∠== ……10分故直线DE 与平面ABCD 所成角的大小是. …… 12分17.解法一:设该扇形的半径为r 米.由题意,得500CD =(米),300DA =(米),60CDO ∠=.…… 4分在CDO ∆中,2222cos60CD OD CD OD OC +-⋅⋅= ,…… 6分即2221500(300)500(3020)2r r r ⨯⨯-⨯-=+-, …… 9分解得490044511r=≈(米). 答:该扇形的半径OA 的长约为445米.…… 13分解法二:连接AC ,作OH AC ⊥,交AC 于H. …… 2分由题意,得500CD =(米),300AD =(米),120CDA ∠=.…… 4分在ACD ∆中,2222cos120AC CD AD AD CD =+-⋅⋅ 222150030500300207002=⨯⨯=+⨯+ ∴700AC =(米),…… 6分222c 12s 114o AC AD CD CAD AC CD +-∠==⋅.…… 9分在直角HAO ∆中,350AH =(米),1os 114c HAO ∠=, ∴4900445cos 11HAO AH OA =∠=≈(米).答:该扇形的半径OA 的长约为445米.…… 13分18.解:(1))cos(2)|4|||si 26n(4MN πππ⨯-⨯+=. …… 2分23|1cos |32π=-=. ……5分(2)32cos(2)||sin 22|62|||sin t t t MNt π=-+=.……8分|s i n (2)|6t π=-. ……11分∵[0,]2t π∈,26[,]66t ππππ∈---, ……13分∴||MN……15分19.解: (1)当0x <时,()0f x =;当0x ≥时,1()22x xf x =-. ……2分由条件可知1222xx -=,即222210x x -⋅-=,解得21x= ……6分∵20x>,∴2log (1x =.……8分(2)当[1,2]t ∈时,22112(2)(2)202tt tt tm -+≥-, ……10分即42(21())21t tm ≥---,∵220t>,∴2(21)t m ≥-+.……13分∵[1,2]t ∈,∴2(12)[17,5]t-+∈--,故m 的取值范围是[)5,-+∞. ……16分20.解:(1)所求渐近线方程为0y x =,0y x =. ……3分(2)设P 的坐标为00(,)x y ,则Q 的坐标为00(,)x y --. ……4分22200000003(,1)(,)122MP MQ x y x y x y x λ=⋅=-⋅--=--+=-+ .……7分∵0||x ,∴λ的取值范围是(,1]-∞-. ……9分(3)若P 为双曲线C 上第一象限内的点,则直线l的斜率(0,2k ∈. ……11分由计算可得,当1(0,]2k ∈时,()s k =当1(,)22k ∈时,()s k = ……15分∴s 表示为直线l 的斜率k的函数是1,2122()k s k k ≤<<<=.……16分21.解:(1)12312a a a a ++++1234(2)56(4)78r r r r r =+++++++++++++++484r =+.……2分∵48464r +=,∴4r =.……4分(2)用数学归纳法证明:当n Z +∈时,124n T n =-.①当1n=时,1213579114T a a a a a a =-+-+-=-,等式成立. ……6分②假设nk =时等式成立,即124k T k =-,那么当1n k =+时,12(1)121211231251271291211k k k k k k k k T T a a a a a a +++++++=+-+-+-……8分4(81)(8)(84)(85)(84)(88)k k k r k k k r k =-++-+++-++++-+ 444(1)k k =--=-+,等式也成立.根据①和②可以断定:当当n Z +∈时,124n T n =-.……10分(3)124mT m =-(1m ≥). 当121n m =+,122m +时,41n T m =+;当123n m =+,124m +时,41n T m r =-+-; 当125n m =+,126m +时,45n T m r =+-;当127n m =+,128m +时,4n T m r =--; 当129n m =+,1210m +时,44n T m =+; 当1211nm =+,1212m +时,44n T m =--.∵41m +是奇数,41m r -+-,4m r --,44m --均为负数, ∴这些项均不可能取得100. ……15分 ∴4544100m rm +-=+=,解得24m =,1r =,此时293294297298,,,T T T T 为100. ……18分。
2008年全国统一考试数学卷(全国新课标.理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>在区间[]0,2π的图像如下:A .1B .2C .12D .132.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .2i -3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A .518B .34C .2D .784.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1725.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >6.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a7.23sin 702cos 10--=A .12B .2C .2D 28.平面向量,a b共线的充要条件是A .,a b方向相同B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有A .20种B .30种C .40种D .60种10.由直线12x =,2x =,曲线1y x=及x 轴所围成图形的面积是A .154B .174C .1ln 22D .2ln 211.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .1(,1)4-B .1(,1)4C .(1,2)D .(1,2)-12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为A .B .C .4D .第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知向量(0,1,1)a =- ,(4,1,0)b = ,||a b λ+=且0λ>,则λ= .14.双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△A F B 的面积为 .15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲 品种 271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙 品种284 292 295 304 306 307 312 313 315 315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-. (1)求{}n a 的通项n a ;(2)求{}n a 的前n 项和n S 的最大值.18.(本小题满分12分)如图,已知点P 在正方体1111A B C D A B C D -的对角线1BD 上,60PDA ∠=. (1)求D P 与1C C 所成角的大小; (2)求D P 与平面11AA D D 所成角的大小.27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙D 1PA 1B 1C 1ABCD19.(本小题满分12分)A 、B 两个投资项目的利润率分别为随机变量1X 和2X .根据市场分析,1X 和2X 的分布列分别为(1)在A 、B 两个项目上各投资100万元,1Y 和2Y 分别表示投资项目A 和B 所获得的利润,求方差1D Y 、2D Y ;(2)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)20.(本小题满分12分)在直角坐标系xOy 中,椭圆22122:1(0)x y C a b ab+=>>的左、右焦点分别为1F 、2F .2F 也是抛物线22:4C y x =的焦点,点M 为1C 与2C 在第一象限的交点,且25||3M F =.(1)求1C 的方程;(2)平面上的点N 满足12M N M F M F =+,直线l ∥M N ,且与1C 交于A 、B 两点,若0O A O B ⋅=,求直线l 的方程.21.(本小题满分12分)设函数1()(,)f x ax a b Z x b=+∈+,曲线()y f x =在点(2,(2))f 处的切线方程为3y =.(1)求()y f x =的解析式;(2)证明:曲线()y f x =的图像是一个中心对称图形,并求其对称中心;(3)证明:曲线()y f x =上任一点处的切线与直线1x =和直线y x =所围三角形的面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠= 23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.理)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13. 14.15.16.三、解答题 17.2008年普通高等学校统一考试(海南、宁夏卷)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1 B .2 C .21 D .31解:由图象知函数的周期T π=,所以22Tπω=2.已知复数1z i =-,则122--z z z =( ) A .2iB .2i -C .2D .2-解:1z i =-∵,222(1)2(1)22111z z i i i z i i-----===-----∴,故选B3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185 B .43 C .23 D .87解:设顶角为C ,因为5,2l c a b c ===∴,由余弦定理x222222447cos 22228a b cc c c C abc c+-+-===⨯⨯4.设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( )A .2B .4C .215 D .217解:414421(1)1215122a q S q a a q---===-5.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三 个数中最大的数,那么在空白的判断框中,应该填入下面四个选 项中的( )A .c x >B .x c >C .c b >D .b c >解:变量x 的作用是保留3个数中的最大值,所以第二个条件结构的判断框内语句为“c x >”, 满足“是”则交换两个变量的数值后输出x 的值结束程序,满足“否”直接输出x 的值结束程序.6.已知1230a a a >>>,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( ) A .110a ⎛⎫ ⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫ ⎪⎝⎭,解:22222(1)120()0i i i i ia x a x a x a x x a -<⇒-<⇒-<,所以解集为2(0,)ia ,又123222a a a <<,因此选B .7.23sin 702cos 10-=-( ) A .12B.2C .2 D2解:22223sin 703cos 203(2cos 201)22cos 102cos 102cos 10----===---,选C .8.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∈R ∃,λ=b aD .存在不全为零的实数1λ,2λ,12λλ+=0a b 解:注意零向量和任意向量共线.9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种 解:分类计数:甲在星期一有2412A =种安排方法,甲在星期二有236A =种安排方法,甲在星期三有222A =种安排方法,总共有126220++=种 10.由直线12x =,x =2,曲线1y x=及x 轴所围图形的面积为( )A .154B .174C .1ln 22D .2ln 2解:如图,面积22112211ln |ln 2ln2ln 22S x x===-=⎰11.已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-,解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图PF PQ PS PQ +=+,故最小值在,,S P Q 三点共线时取得,此时,P Q 的纵坐标都是1-,所以选A .(点P 坐标为1(,1)4-)12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A.B.C .4D.解:结合长方体的对角线在三个面的投影来理解计算.如图设长方体的高宽高分别为,,m n k ,由题意得==1n ⇒=a =b =,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴ 4a b ⇒+≤当且仅当2a b ==时取等号.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知向量(011)=-,,a ,(410)=,,b,λ+=a b 0λ>,则λ= .解:由题意(4,1,)λ+-λλa b =2216(1)29(0)λλλ⇒+-+=>3λ⇒=14.设双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .解:双曲线的右顶点坐标(3,0)A ,右焦点坐标(5,0)F ,设一条渐近线方程为43y x =,建立方程组224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得交点纵坐标3215y =-,从而132********A F B S =⨯⨯= 15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解:令球的半径为R ,六棱柱的底面边长为a ,高为h ,显然有R =,且219624863a V h h a ⎧⎧==⨯⨯=⎪⎪⇒⎨⎨⎪⎪==⎩⎩1R ⇒=34433V R ππ⇒== 16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;② .解:1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). 3.甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知{}n a 是一个等差数列,且21a =,55a =-.(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和S n 的最大值.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--.所以2n =时,n S 取到最大值4. 18.(本小题满分12分)如图,已知点P 在正方体A B C D A B C D ''''-的对角线BD '上,60P D A ∠=︒. (Ⅰ)求DP 与C C '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.3 1 277 5 5 0 28 45 4 2 29 2 58 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 88 5 5 3 32 0 2 2 4 7 97 4 1 33 1 3 6 734 32 35 6甲乙A 'C 'D '解:如图,以D 为原点,D A 为单位长建立空间直角坐标系D xyz -. 则(100)D A =,,,(001)C C '=,,.连结B D ,B D ''. 在平面BB D D ''中,延长D P 交B D ''于H .设(1)(0)D H m m m => ,,,由已知60DH DA <>=,, 由cos D A D H D A D H D A D H =<> ,可得2m =2m =所以122D H ⎛⎫= ⎪ ⎪⎝⎭,.(Ⅰ)因为0011cos 2DH CC ⨯++⨯'<>==,,所以45DH CC '<>=,.即D P 与C C '所成的角为45.(Ⅱ)平面AA D D ''的一个法向量是(010)D C =,,.因为01101cos 2D H D C ⨯++⨯<>==,, 所以60DH DC <>=,. 可得D P 与平面AA D D ''所成的角为30 .19.(本小题满分12分)A B ,两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(Ⅰ)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为150.8100.26EY =⨯+⨯=,221(56)0.8(106)0.24D Y =-⨯+-⨯=,220.280.5120.38EY =⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312D Y =-⨯+-⨯+-⨯=.(Ⅱ)12100()100100xx f x D Y D Y -⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x x D Y D Y -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22243(100)100x x ⎡⎤=+-⎣⎦ 2224(46003100)100x x =-+⨯, 当6007524x ==⨯时,()3f x =为最小值.20.(本小题满分12分) 在直角坐标系xOy 中,椭圆C 1:2222by ax +=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=35.(Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足21MF MF MN +=,直线l ∥MN ,且与C 1交于A ,B 两点,若0OA OB = ,求直线l 的方程.20.解:(Ⅰ)由2C :24y x =知2(10)F ,.设11()M x y ,,M 在2C 上,因为253M F =,所以1513x +=,得123x =,13y =.M 在1C 上,且椭圆1C 的半焦距1c =,于是222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩, 消去2b 并整理得 4293740a a -+=, 解得2a =(13a =不合题意,舍去).故椭圆1C 的方程为22143xy+=.(Ⅱ)由12M F M F M N +=知四边形12M F N F 是平行四边形,其中心为坐标原点O ,因为l M N ∥,所以l 与O M 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=. 设11()A x y ,,22()B x y ,,12169m x x +=,212849m x x -=.因为OA OB ⊥,所以12120x x y y +=.121212126()()x x y y x x x m x m +=+--2121276()6x x m x x m =-++22841676699m m m m -=-+ 21(1428)09m =-=.所以m =.此时22(16)49(84)0m m ∆=-⨯->,故所求直线l的方程为y =-,或y =+.21.(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3.(Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.21.解:(Ⅰ)21()()f x a x b '=-+,于是2121210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,,解得11a b =⎧⎨=-⎩,,或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-.(Ⅱ)证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+ ⎪-⎝⎭,.由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,.令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 点作直线A P 垂直直线O M ,垂足为P .(Ⅰ)证明:2OM OP OA = ;(Ⅱ)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM = ∠.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥.又因为A P O M ⊥.在R t O A M △中,由射影定理知,2OA OM OP = .(Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥.同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN ==∠∠.23.(本小题满分10分)选修4-4;坐标系与参数方程已知曲线C 1:cos sin x y θθ=⎧⎨=⎩,(θ为参数),曲线C 2:22x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线12C C '',.写出12C C '',的参数方程.1C '与2C '公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由. 解:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C 的普通方程为0x y -+=.因为圆心1C 到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=, 其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()84f x x x =---. (Ⅰ)作出函数()y f x =的图像; (Ⅱ)解不等式842x x --->. 解:(Ⅰ)44()2124848.xf x x xx⎧⎪=-+<⎨⎪->⎩,≤,,≤,图像如下:(Ⅱ)不等式842x x--->,即()2f x>,由2122x-+=得5x=.由函数()f x图像可知,原不等式的解集为(5)-∞,.。
2008年7月高等教育自学考试全国统一命题考试高等数学(工本) 试卷课程代码 0023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.与向量{-1,1,-1}平行的单位向量是( )A .{,,}B .{,,}C .{0,0,0}D .{,,}2. 设函数f(x,y)=f 1(x)f 2(y)在(x 0,y 0)处偏导数存在,则f y (x 0,y 0)=( )A .f 1(x 0)B .C .f 2(y 0)D .3. 设为球面x 2+y 2+z 2=1,则对面积的曲面积分(x 2+y 2+z 2)dS=( )A .B .2C .3D .44. 微分方程(e x+y -e x )dx -(e y -e x+y )dy =0是( )A .可分离变量的微分方程B .齐次微分方程C .一阶线性非齐次微分方程D .一阶线性齐次微分方程 5. 下列无穷级数中,收敛的无穷级数是( ) A .n sin B .C .D .ln二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数z =xy ,则全微分dz =_____________.7.设函数z=,则=_____________.8. 设积分区域D :0≤x ≤2,-1≤y ≤0,则二重积分2dxdy =_____________.9. 通解为y =C 1sin x+C 2cos x (C 1,C 2为任意常数)的二阶常系数线性齐次微分方程为_____________.10. 无穷级数x n 的和函数为_____________.三、计算题(本大题共12小题,每小题5分,共60分)11.求点P (3,-2,2)在平面2x -3y +z =0上的投影点的坐标. 31-31-31-3131-313131310lim →h h y f h y f )()(0202-+0lim →h h y f h y f )()(0202-+0lim →h h x f h x f )()(0101-+0lim →h h x f h x f )()(0101-+∑⎰∑ππππ∑∞=1n n 3∑∞=1n n n n n )1(3+∑∞=1n 132+n ∑∞=1n 1+n n xy y x e +-x z ∂∂⎰⎰D ∑∞=1n !1n12.设函数z =f (x +2y ,2x -y ),其中f 是可微函数,求和.13.设方程z 5-5xyz =5确定函数z =z (x ,y ),求和.14.已知函数f (x ,y ,z )=3x 2+2y 2+z 2-yz -2x -3z +1,求梯度grad f (1,1,1)15.求曲线x =,y =,z =2t 2在t =1所对应的点处的切线方程.16.计算二重积分I=xdxdy ,其中积分区域D 是由直线y =x ,x +y =2及x 轴所围成. 17.计算三重积分I=(x 2+y 2)dxdydz ,其中积分区域Ω是由锥面z =及平面z =1所围成. 18.计算对弧长的曲线积分[(x 2+y 2)2-1]ds ,其中L 是圆周x 2+y 2=9. 19.计算对坐标的曲线积分xdy -ydx ,其中L 是椭圆x=acost,y=bsint(0≤t ≤2)的逆时针方向。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(上海卷)(理科)测试题 2019.91,设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点⑴若a=1,b=2,p=2,求点Q的坐标⑵若点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上⑶若动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由2,已知以a1为首项的数列{a n}满足:⑴当a1=1,c=1,d=3时,求数列{a n}的通项公式⑵当0<a1<1,c=1,d=3时,试用a1表示数列{a n}的前100项的和S100⑶当0<a1<(m是正整数),c=,d≥3m时,求证:数列a2-,a3m+2-,a6m+2-,a9m+2-成等比数列当且仅当d=3m3,若函数f(x)的反函数为f -1(x)=x2(x>0),则f(4)= .4,若向量(a、(b满足|(a|=1,|(b|=2,且(a与(b的夹角为,则|(a+(b|= .5,函数f(x)=sin x +sin(+x)的最大值是 .6,在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是(结果用分数表示).7,若复数z满足z=i(2-z)(i是虚数单位),则z = .8,设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是 .9,某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是.10,已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是 .测试题答案1, 【解析】(1)当时,解方程组 得 即点的坐标为(2)【证明】由方程组 得 即点的坐标为时椭圆上的点,即 ,因此点落在双曲线上 (3)设所在的抛物线方程为将代入方程,得,即当时,,此时点的轨迹落在抛物线上;当时, ,此时点的轨迹落在圆上;当时,,此时点的轨迹落在椭圆上;1,2,2a b p ===242x y y x ⎧=⎨=⎩816x y =⎧⎨=⎩Q (8,16)21x y ab y bx ⎧=⎪⎨⎪=⎩1x a b y a ⎧=⎪⎪⎨⎪=⎪⎩Q 1(,)b a a P ∵2214a b +=2222144()4()(1)1b b a a a -=-=∴Q 22441x y -=Q 22(),0y q x c q =-≠1(,)bQ a a 2212()b q c a a =-2222b qa qca =-0c =22b qa =P 12qc =22211()24a b c c -+=P 102qc qc >≠且2221()21142a b c q c c -+=P当时,此时点的轨迹落在双曲线上;2, 【解析】(1)由题意得(2) 当时,,,,,,,,,(3)当时,,; , ; ,0qc <2221()211()42a b c qc c --=-P 1,322,31,()3,3n n k a n k k Z n k +=-⎧⎪==-∈⎨⎪=⎩101a <<211a a =+312a a =+413a a =+1513a a =+1623aa =+1733a a =+,131113k k a a --=+13123k k a a -=+131133k k a a +-=+10012345669899100()()()S a a a a a a a a a a =++++++++++∴1111131(36)(6)(6)(6)33a a a a a =+++++++++113111(31)63333a a =++++++⨯13111(11)19823a =-+3d m =211a a m =+311131311333m m m a a a a a m m +-=+=-+<<+=∵13213m a a m m +=+∴11661133333m m a a a a m m m +=-+<<+=∵162219m a a m m +=+∴1199122133399m m a a a a m m m +=-+<<+=∵1923127m a a m m +=+∴,, , 综上所述,当时,数列,,, 是公比为的等比数列当时,,由于,,故数列不是等比数列 所以,数列成等比数列当且仅当3, 【解析】令.4, 【解析】5, 【解析】由211a a m -=∴13213m a a m m +-=162219m a a m m +-=1923127m a a m m +-=∴3d m =21a m -321m a m +-621m a m +-921m a m +-13m 31d m ≥+132310,m a a d m ++⎛⎫=∈ ⎪⎝⎭1623133,3,m a a d m ++⎛⎫=+∈+ ⎪⎝⎭1633310,,m a d a d m +++⎛⎫=∈ ⎪⎝⎭192333113,3,m a m d a d m m +++-⎛⎫=+∈- ⎪⎝⎭3210m a m +-<6210m a m +->9210m a m +->23262921111,,,,m m m a a a a m m m m +++----23262921111,,,,m m m a a a a m m m m +++----3d m =12(4)()44(0)2f t f t t t t -=⇒=⇒=>⇒=222||()()2||||2||||cos7||73a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+=max ()cos 2sin()()26f x x x x f x π=+=+⇒=6, 【解析】已知六个无共线的点生成三角形总数为:;可构成三角形的个数为:,所以所求概率为:7, 【解析】由.8, 【解析】由f(x)为奇函数得:9, 【解析】依题意,10, 【解析】根据总体方差的定义知,只需且必须时,总体方差最小;A C E FBCD 、、、共线;、、共线;36C 33364315C C C --=3336433634C C C C --=2(2)11iz i z z i i =-⇒==++ 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;; 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;12||||2MF MF a +≤1122cot cot 2h h a θθ⇒⋅+⋅≤10.5,10.5a b ==。
上海卷一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式11x -<的解集是.2.若集合A ={x |x ≤2}、B ={x |x ≥a}满足{2}A B = ,则实数a = .3.若复数z 满足z =i (2-z ) (i 是虚数单位),则z = .4.若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)= .5.若向量a b 、满足1,2,a b == 且a 与b 的夹角为3π,则a b+ = .6.函数f (xsin 2x x π⎛⎫++ ⎪⎝⎭的最大值是.7.在平面直角坐标系中,从六个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)、F (3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 8.设函数f (x )是定义在R 上的奇函数.若当(0,)x ∈+∞时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .9.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18. 3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .10.某海域内有一孤岛.岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a 、短轴长为2B r 椭圆.已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投岸恰好落在椭圆的两个焦点上.现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 . 11.方程x 2+2x -1=0的解可视为函数y -x +2的图像与函数y =x1的图像交点的横坐标.若方程x 4+ax -4=0的各个实根x 1, x 2,…,x k (k ≤4)所对应的点⎪⎪⎭⎫ ⎝⎛14,x x i (I=1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 .二、选择(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 12.组合数C r n r n rn 、,1(≥>∈Z )恒等于[答]( )(A ).1111--++r n C n r (B)(n +1)(r +1)C 11--r n (C)nrC 11--r n (D)C rn 11--r n .13.给定空间中的直线l 及平面α.条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的 [答]( )(A )充要条件. (B )充分大必要条件. (C )必要非充分条件. (D )既非充分又非必要条件. 14.若数列{a n }是首项为l ,公比为a 23-的无穷等比数列,且{a n }各项的和为a ,则A r 值是[答]( )(A )1. (B)2. (C).21 (D).45 15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是被圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤ x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点O 满足,不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 [答]( ) (A ) AB(B ) BC(C ) CD(D ) DA 三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在棱长为2的正方体ABC-A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 平平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB .小区的两个出入口设置在点A 及点C 处,且小区里有一条平等于BO 的小路CD .已知某人从C 沿CD 走到D 用B 10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数f (x )=sin2x ,g (x )=cos ⎪⎭⎫⎝⎛+62πx ,直线x =t (t ∈R)与函数f (x )、g (x )的图像分别交于M 、N 两点. (1) 当t=4π时,求|MN |的值;(2) 求|MN |在t ∈⎥⎦⎤⎢⎣⎡2,0π时的最大值.AEB 1D 1 D C 1A 1BCAODBC19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数f (x )=pqx212-.(1) 若f (x )=2,求x 的值;(2) 若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(上海卷)(文科) 测试题 2019.91,设是椭圆上的点.若是椭圆的两个焦点,则等于( )A .4B .5C .8D .102,给定空间中的直线l 及平面.条件“直线l 与平面内两条相交直线都垂直”是“直线l 与平面垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件3,若数列 是首项为1,公比为的无穷等比数列,且各项的和为a ,则的值是( )A.1 B.2 C. D.4,如图,在平面直角坐标系中,是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点、点满足且,则称P 优于.如果中的点满足:不存在中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A.AB B .BC C .CD D .DAp 2212516x y +=12F F ,12PF PF +ααα{}n a 32a ={}n a a 1254Ω()P x y ,()P x y ''',x x '≤y y '≥P 'ΩQ Ω5,如图,在棱长为2的正方体中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).6,如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路,且拐弯处的转角为.已知某人从沿走到用了10分钟,从沿走到用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米).7,已知函数f(x)=sin2x ,g(x)=cos ,直线与函数的图象分别交于M 、N 两点.(1)当时,求|MN |的值;(2)求|MN |在时的最大值.8,已知函数.(1)若,求的值;1111ABCD A B C D-AD DC ,120C CD D D DA AOA π26x ⎛⎫+ ⎪⎝⎭()x t t =∈R ()()f x g x ,π4t =π02t ⎡⎤∈⎢⎥⎣⎦,||1()22x x f x =-()2f x =x(2)若对于恒成立,求实数m 的取值范围.9,已知双曲线.(1)求双曲线的渐近线方程;(2)已知点的坐标为.设是双曲线上的点,是点关于原点的对称点.记.求的取值范围;(3)已知点的坐标分别为,为双曲线上在第一象限内的点.记为经过原点与点的直线,为截直线所得线段的长.试将表示为直线的斜率的函数.10,已知数列:,,,(是正整数),与数列:,,,,(是正整数).记.(1)若,求的值;(2)求证:当是正整数时,;(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.测试题答案2(2)()0t f t mf t +≥[12]t ∈,2212x C y -=:C M (01),P C Q P MP MQ λ=λD E M ,,(21)(21)(01)---,,,,,P C l P s DEM △l s l k {}n a 11a =22a =3a r =32n n a a +=+n {}n b 11b =20b =31b =-40b =4n n b b +=n 112233n n nT b a b a b a b a =++++1231264a a a a ++++=r n 124n T n =-0r >m 121m T +122m T +1212m T +r1, D【解析】 由椭圆的第一定义知 2, C【解析】“直线l 与平面内两条相交直线都垂直”“直线l 与平面垂直”. 3, B【解析】由4,【解析】由题意知,若P 优于,则P 在的左上方, 当Q 在DA 上时, 左上的点不在圆上, 不存在其它优于Q 的点,Q 组成的集合是劣弧DA.5, 【解】过E 作EF ⊥BC ,交BC 于F ,连接DF. ∵ EF ⊥平面ABCD ,∴ ∠EDF 是直线DE 与平面ABCD 所成的角由题意,得EF= ∵12210.PF PF a +==α⇔α11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或D P 'P '∴∴∴111.2CC =11,2CF CB DF ==∴=∵ EF ⊥DF , ∴故直线DE 与平面ABCD 所成角的大小是6, 【解法一】设该扇形的半径为r 米. 由题意,得 CD=500(米),DA=300(米),∠CDO=在中,即解得(米).【解法二】连接AC ,作OH ⊥AC ,交AC 于H由题意,得CD=500(米),AD=300(米),∴ AC=700(米)在直角tan 5EF EDF DF ∠==arctan5060CDO ∆22022cos 60,CD OD CD OD OC +-⋅⋅⋅=()()22215003002500300,2r r r +--⨯⨯-⨯=490044511r =≈0120CDA ∠=2220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅11,350,cos 0,14HAO AH HA ∆=∠=中(米)∴(米).7, 【解】(1)(2)∵ ∴ |MN8, 【解】(1).由条件可知,解得∵(2)当即4900445cos 11AH OA HAO ==≈∠sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭231cos.32π=-=sin 2cos 26MN t t π⎛⎫=-+ ⎪⎝⎭3sin 222t t =26t π⎛⎫=- ⎪⎝⎭0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦()()100;0,22x xx f x x f x <=≥=-当时,当时2122,22210,2x x x x -=-⋅-=即21x =(220,log 1x x >∴=+2211[1,2],2220,22t t t ttt m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时()()242121.t t m -≥--()22210,21.t t m ->∴≥+()2[1,2],12[17,5],t t ∈∴-+∈--故m 的取值范围是9, 【解】(1)所求渐近线方程为(2)设P 的坐标为,则Q 的坐标为,的取值范围是(3)若P 为双曲线C 上第一象限内的点,则直线的斜率由计算可得,当当∴ s 表示为直线的斜率k 的函数是10, 【解】(1)∵[5,)-+∞0,022y x y x -=+=()00,x y ()00,x y --()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+02x ≥λ∴(,1].-∞-l .k ⎛∈ ⎝⎭()1(0,],2k s k ∈时()1,2k s k ⎛∈= ⎝⎭时l ()1(0,],21,.22k s k k ∈=⎛∈ ⎝⎭12312...a a a a ++++()()()12342564786r r r r =++++++++++++++484.r =+48464, 4.r r +=∴=【证明】(2)用数学归纳法证明:当① 当n=1时,等式成立….6分 ② 假设n=k 时等式成立,即 那么当时,等式也成立.根据①和②可以断定:当【解】(3)∵ 4m+1是奇数,均为负数, ∴ 这些项均不可能取到100. 此时,为100.12,4.n n Z T n +∈=-时1213579114,T a a a a a a =-+-+-=-124,k T k =-1n k =+()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+12,4.n n Z T n +∈=-时()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r nn m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时41,4,44m r m r m -+-----293294297298,,,T T T T。
2008年高考文科数学试题及参考答案(上海卷)一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式|1|1x -<的解集是 .2.若集合{|2}A x x =≤、{|}a B x x =≥满足2A B = ,则实数a = . 3.若复数z 满足(2)z i z =-(i 是虚数单位),则z = . 4.若函数()f x 的反函数12()log fx x -=,则()f x = .5.若向量a 、b 满足||1a =,||2b = ,且a 与b 的夹角为3π,则||a b += .6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 7.若z 是实系数方程220x x p ++=的一个虚根,且||2z =,则p = . 8.在平面直角坐标系中,从五个点:(0,0)A 、(2,0)B 、(1,1)C 、(0,2)D 、(2,2)E 中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 9.若函数()()(2)f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析()f x = .10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 . 11.在平面直角坐标系中,点A 、B 、C 的坐标分别为(0,1)、(4,2)、(2,6).如果(,)P x y 是A B C ∆围成的区域(含边界)上的点,那么当w xy =取得最大值时,点P 的坐标是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设P 椭圆2212516xy+=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于( )A .4B .5C .8D .1013.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 14.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A .1B .2C .12D .5415.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点(,)P x y 、点(,)P x y '''满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A . AB B . BCC . CD D . DA三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABC D A B C D -中,E 是1BC 的中点.求直线D E 与平面A B C D 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈扇形A O C .小区的两个出入口设置在点A 及点C 处.小区里有两条笔直的小路A D 、D C ,且拐弯处的转角为120 .已知某人从C 沿C D 走到D 用了10分钟,从D 沿D A 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径O A 的长(精确到1米).18.(本题满分15分)本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数()sin 2f x x =,()cos(2)6g x x π=-,直线x t =(t R ∈)与函数()f x 、()g x 的图象分别交于M 、N 两点. (1)当4t π=时,求||M N 的值;(2)求||M N 在[0,]2t π∈时的最大值.19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数||1()22x x f x =-.(1)若()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线C :2212xy -=.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记M P M Q λ=⋅.求λ的取值范围;(3)已知点D 、E 、M 的坐标分别为(2,1)--、(2,1)-、(0,1),P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为D EM ∆截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记 112233n n n T b a b a b a b a =++++ .(1)若1213264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,…,1212m T +中有4项为100.求r 的值,并指出哪4项为100.2008年高考文科数学试题及参考答案(上海卷)答案要点一、填空题(第1题至第11题) 1.(0,2)2. 23.1i +4. 2x (x R ∈)5. 6.-17. 48.459.224x -+10.10.5a =,10.5b =11. 5(,5)2二、选择题(第12题至第15题)三、解答题(第16题至第21题)16.解:过E 作EF BC ⊥,交B C 于F ,连接D F .∵E F ⊥平面A B C D∴ED F ∠是直线D E 与平面A B C D 所成的角. …… 4分 由题意,得1112E F C C ==.∵112C F C B ==,∴D F = …… 8分∵EF D F ⊥,∴tan 5EF ED F D F∠==. ……10分故直线D E 与平面A B C D 所成角的大小是arctan5. …… 12分17.解法一:设该扇形的半径为r 米.由题意,得500C D =(米),300D A =(米),60CDO ∠=. …… 4分在C D O ∆中,2222cos 60CD OD CD OD OC +-⋅⋅= , …… 6分 即2221500(300)500(3020)2r r r ⨯⨯-⨯-=+-, …… 9分解得490044511r =≈(米). 答:该扇形的半径O A 的长约为445米. …… 13分解法二:连接A C ,作O H A C ⊥,交A C 于H . …… 2分由题意,得500C D =(米),300A D =(米),120CDA ∠= . …… 4分在A C D ∆中,2222cos120AC CD AD AD CD =+-⋅⋅ 222150030500300207002=⨯⨯=+⨯+ ∴700A C =(米), …… 6分 222c 12s 114o AC AD CDCAD AC CD+-∠==⋅. …… 9分在直角H A O ∆中,350AH =(米),1os 114c H A O ∠=,∴4900445cos 11H AO A HO A =∠=≈(米).答:该扇形的半径O A 的长约为445米. …… 13分18.解:(1))cos(2)|4|||si 26n(4M N πππ⨯-⨯+=. …… 2分23|1cos|32π=-=. ……5分(2)32cos(2)||sin 2cos 2|62||2|sin t t t M N t π=-+=-. ……8分|s i n (2)|6t π=-. ……11分∵[0,]2t π∈,26[,]66t ππππ∈---, ……13分∴||M N ……15分19.解: (1)当0x <时,()0f x =;当0x ≥时,1()22xxf x =-. ……2分由条件可知1222xx-=,即222210xx -⋅-=,解得21x=±……6分∵20x>,∴2log (1x =+. ……8分(2)当[1,2]t ∈时,22112(2)(2)202tttttm -+≥-, ……10分即42(21())21t t m ≥---,∵220t >,∴2(21)t m ≥-+. ……13分 ∵[1,2]t ∈,∴2(12)[17,5]t -+∈--,故m 的取值范围是[)5,-+∞. ……16分20.解:(1)所求渐近线方程为02y -=,02y x +=. ……3分(2)设P 的坐标为00(,)x y ,则Q 的坐标为00(,)x y --. ……4分22200000003(,1)(,)122M P M Q x y x y x y x λ=⋅=-⋅--=--+=-+ . ……7分∵0||x ≥,∴λ的取值范围是(,1]-∞-. ……9分(3)若P 为双曲线C 上第一象限内的点,则直线l 的斜率(0,)2k ∈. ……11分由计算可得,当1(0,]2k ∈时,()s k =当1(,)22k ∈时,()s k =. ……15分∴s 表示为直线l 的斜率k的函数是1,21220()k s k k ≤<<<=. ……16分21.解:(1)12312a a a a ++++ 1234(2)56(4)7r r r r r =+++++++++++++++484r =+. ……2分∵48464r +=,∴4r =. ……4分(2)用数学归纳法证明:当n Z +∈时,124n T n =-.①当1n =时,1213579114T a a a a a a =-+-+-=-,等式成立. ……6分 ②假设n k =时等式成立,即124k T k =-,那么当1n k =+时,12(1)121211231251271291211k k k k k k k k T T a a a a a a +++++++=+-+-+- ……8分4(81)(8)(84)(85)(84)(88)k k k r k k k r k =-++-+++-++++-+ 444(1)k k =--=-+,等式也成立.根据①和②可以断定:当当n Z +∈时,124n T n =-. ……10分 (3)124m T m =-(1m ≥).当121n m =+,122m +时,41n T m =+; 当123n m =+,124m +时,41n T m r =-+-; 当125n m =+,126m +时,45n T m r =+-; 当127n m =+,128m +时,4n T m r =--; 当129n m =+,1210m +时,44n T m =+; 当1211n m =+,1212m +时,44n T m =--.∵41m +是奇数,41m r -+-,4m r --,44m --均为负数,∴这些项均不可能取得100. ……15分 ∴4544100m r m +-=+=,解得24m =,1r =,此时293294297298,,,T T T T 为100. ……18分。
2008上海本科高校《高等数学》
统一测试试卷(经管卷)
适用专业: 经管类本科专业 考试形式:闭卷 所需时间: 120 分钟
学校: 姓名: 班级: 学号
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分5小题,每小题2分,共10分)
1.若当时,等价于,则0→x )(x f x =→x
x f x )(lim 0( D ) (A )1 (B ) (C )1−1± (D )不存在
2.若)4)(3)(2)(1()(−−−−==x x x x x x f y ,
则0)(=′′x f 在上实根的个数为(C ) )4,0((A )5 (B ) (C )3 (D )
243.设是奇函数且在处可导,则)(x f 0=x x
x f )(在0=x 处为( B ) (A )跳跃间断点 (B )可去间断点 (C )无穷间断点 (D )连续点
4.下列广义积分发散的是( C )
(A )dx x ∫∞
++12
11 (B ) (C )dx xe x ∫∞+−1∫∞+e x x dx ln (D )∫∞+e x x dx ln 5.已知生产某商品单位,需求函数为Q 316P Q −=,当8=P 时,若价格上涨1%,则收益将( A )
(A )增加0.8% (B )减少0.8% (C )增加0.2% (D )减少0.2%
二、填空题(将正确答案填在横线上)
(本大题分5小题,每小题2分,共10分)
1.的单调增加区间为 3
2)1(−=x y ),0[∞+或 ),0(∞+2.若812lim =⎟⎠
⎞⎜⎝⎛−+∞→x k x x x ,则 =k 2ln 3.设,则的拐点坐标为 dt t x f ∫+
=102arctan 1)()(x f )1,0(4.=∫dx x x
1sin 12 C x +1cos 5.确定定积分=−∫dx x 2
022 2π
三、计算题(必须有解题过程)
(本大题共10小题,每小题6分,总计60分)
1.已知x x x y arcsin 12+−=,求 (dy dx x 2
12−=) 2.求曲线y x y sin 2
1−
=在处的切线方程。
),00(032=−y x 3.设确定了函数求⎩⎨⎧==t e y t e x t t sin cos )(x y y =dx dy 。
(t t t t sin cos cos sin −+=) 4.求极限1
ln lim 1+−−→x x x x x x -2
5.求dx e x ∫−11
C e x +−1arctan 2或C e x +−−2arctan 2
6.())1(2121lim −+++−+++∞→n n n L L 2
2 7.求dx x
x ∫−+102
11 4π ↓ 2=a 8.设⎪⎩
⎪⎨⎧=≠−−=00sin 11)(222x a x x x a x f 当当(0≠a )试确定的值,使在处连续。
a )(x f 0=x 9.试判定曲线x
x y sin 2cos +=在]2,0[π上的凹凸性。
在)2,0[π,]2,23(ππ为凸,在)2
3,2(ππ为凹;拐点坐标为)0,2(π,)0,23(π。
10.设函数,验证在)ln(sin )(x x f =]6
5,6[ππ上满足罗尔定理,并求出对应)(x f ξ值。
2πξ= 四、应用与证明题(必须有解题过程) (本大题共3小题,总计20分) 1.(本小题8分)设曲线(),过此曲线与轴交点及作
曲线的两条法线。
求曲线与这两条法线所围成的平面图形面积的最小值。
)4(2x a y −=0>a x )0,2(−)0,2(368)86(=S
2.(本小题7分)《天地校园行》在各校园间演出,其道具由某运输公司承运,已知车辆运行费用由燃料费和其他费用组成。
燃料费和车辆行驶速度的平方成正比,当车辆行驶速度为每小时60公里时,燃料费为每小时12元;其他费用为每小时27元。
假设道路限速每小时110公里。
问车辆行驶速度为多少时,每公里所需费用总和最小? (90km/h )
3.(本小题5分)不经过计算积分,试证明 dx x dx x x ∫∫+≤+101
0)1ln(1。