基于石英晶体的正弦波振荡器multisimnewtost
- 格式:docx
- 大小:39.64 KB
- 文档页数:3
正弦波振荡器电路的设计一.设计要求1.要求振荡器的工作频率在30MHZ附近。
2.频率的稳定度为1%—5%。
二.设计原理正弦波振荡器可分为两大类,一类是利用正反馈原理构成的反馈振荡器,它是目前应用最广的一类振荡器。
另一类是负阻振荡器,它是将负阻器件直接连接到谐振回路中,领用负阻器件的负电阻效应去抵消回路中的损耗,从而产生出等幅的自由振荡。
本次实验采用负反馈振荡器产生正弦波。
原理框图如下:1、平衡条件与起振条件(1)振荡的过程当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。
随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。
(2)起振条件——为了振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压Uf 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求Uf >Ui ,即:起振条件:2T K F n ψψψπ=+=|()|1T jw KF => (3)平衡条件——为维持等幅振荡所需满足的条件振幅平衡条件:|()|1T jw KF == 相位平衡条件 :2T K F n ψψψπ=+=其中n=0,1,2,3…2、稳定条件振荡器工作时要处于稳定平衡状态,既要振幅稳定,而且相位要稳定。
振幅稳定条件:AF 与Ui 的变化方向相反。
相位稳定条件:相位与频率的变化方向相反三. 设计步骤 1.选定电路形式。
选择电容反馈式的改进型振荡器——克拉泼振荡器。
下图是克拉泼振荡器的交流等效电路。
它是用电感L 和电容C3的串联电路构成,且C3<<C1,C2。
C1C2L1C3.此回路的总电容C 只要由C3决定,因为C1,C2和并联对电路总电容的影响很小。
所以电路的振荡角频率为10311LC LC ωω≈== 反馈系数12C F C = 振荡器频率取32MHZ ,则C3电容取50PF ,电感L1取500nH 。
项目名称:正弦波振荡器的仿真设计小组成员及分工:张曌(电路仿真图设计及PPT设计及论文撰写A)、翟小宝(查阅资料及论文撰写B)、陈春(查阅资料及论文撰写B)指导教师:田野日期:2016年目录摘要 (3)前言 (4)正文 (4)一、正弦振荡器的原理及设计 (4)1.1振荡条件 (4)二、互感耦合振荡器仿真设计 (5)2.1互感耦合振荡器的原理 (5)2.2振荡条件 (6)2.3仿真电路图的设计 (6)2.4互感系数对振荡频率的影响 (8)三、电容三端式振荡器仿真设计 (9)3.1电路原理图 (9)3.2振荡条件分析 (9)3.3仿真设计 (10)3.4起振过程分析 (13)3.5探究偏置电路工作点设置对振荡频率的影响 (13)四、电感三端式振荡器 (14)4.1电路原理图 (14)五、改进型电容三端式振荡器 (15)5.1克拉泼振荡器 (16)5.2西勒振荡器 (19)六、并联型石英晶体振荡器 (21)6.1电路原理图 (22)6.2振荡分析 (22)6.3仿真设计 (23)6.4石英晶体的串联和并联谐振频率 (25)七、串联型石英晶体振荡器 (26)7.1基本原理图 (26)7.2仿真设计 (27)八、总结 (29)8.1电路振荡频率稳定度的对比 (29)8.2提高频率稳定度的措施 (29)8.4各振荡电路的应用情况 (29)九、优缺点及问题 (30)十、参考文献 (30)本文利用Mulitisim仿真软件对互感耦合调集正弦振荡器、电容三端反馈式正弦振荡器、克拉泼振荡电路、西勒振荡电路、电感三端反馈式振荡器、并联石英晶体振荡器、串联石英晶体振荡器依次进行了电路设计及仿真,仿真结果表明各正弦振荡器均可实现其功能,产生高频正弦信号。
第一部分对互感耦合振荡器的三种类型进行了介绍,选取最为常见的互感耦合调集电路进行设计,通过选取合适的偏置电路以及利用电位器对晶体管工作点的调整,选取合适的互感系数,从而得到了互感耦合振荡器的波形。
石英晶体振荡器的应用石英晶体振荡器(quartz crystal oscillator)是一种可靠的电子元件,用于生成精确的频率信号。
它在现代电子设备中广泛应用,例如手机、计算机、通信设备、控制系统和科学仪器等领域。
本文将阐述该元件的应用。
一、电子时钟电子时钟是石英晶体振荡器最常见的应用之一。
振荡器可以精确地控制时间,因此可用于制作电子腕表、台式时钟、壁挂钟等。
它比机械时钟更加精确和可靠,且无需定期校准。
二、计算机计算机使用石英晶体振荡器作为主频率源,以精确控制指令执行速度和计算周期。
对于现代CPU,振荡器的频率通常在1GHz以上。
此外,振荡器还用于计算机主板的时钟输出,用于控制各个组件的时序和同步。
三、通信设备石英晶体振荡器在通信设备中也有广泛应用。
例如,手机里的时钟电路就是由振荡器提供的,用于同步话音信号的采样和数字化。
无线电台、卫星通信系统和雷达等设备中也有应用。
四、科学仪器石英晶体振荡器在科学仪器中也是必不可少的元件,用于测量和控制各种物理量。
例如,在天文望远镜中,振荡器用于精确控制反射镜的位置,实现目标的精确定位。
在光谱仪中,振荡器用于产生精确的时间基准,控制光源的发射谱线等。
五、控制系统石英晶体振荡器还用于各种控制系统中,如自动化控制、电力系统控制等。
振荡器提供精确的时间基准,用于实现各种监控、调节和控制。
总之,石英晶体振荡器是现代电子设备中不可或缺的元件,它的应用范围广泛、功能强大、稳定可靠。
在未来,随着科技的不断进步和发展,它的应用也将越来越广泛,带来更多便利和创新。
成绩学生姓名:朱世旺学生学号: 1214040147 系别:电子工程学院专业:电子信息科学与技术年级: 2012级指导教师:王宜结电子工程学院制2015年3月基于multisim的正弦波发生器学生:朱世旺指导教师:王宜结电子工程学院电子信息科学与技术1、设计任务与要求1.1.设计任务以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。
软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。
在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。
采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交互式SPICE 仿真和电路分析的软件。
前期发展经历了EWB5.0、EWB6. 0、Multisim2001、Mult-isim7、Multisim8、Multisim9 等版本。
Multisim10 的特点有:1) 器件丰富。
Multisim10比老版本新增了1200 多个器件、500多个SPICE 模块和100 多个开关模式电源模块。
2) 虚拟仪器种类齐全。
通用仪器有数字万用表、信号源,双通道示波器、波特图示仪、字信号发生器、逻辑分析仪、失真度测试仪、频谱分析仪和网络分析仪等。
3) 软件分析功能更强大。
分析功能包括静态工作点分析、交流小信号分析、瞬态分析、灵敏度分析、参数扫描分析、温度扫描分析、传输函数分析、最坏情况分析、特卡洛分析、批处理分析、噪声指数分析、射频分析等。
1.2.设计要求基本文氏电桥正弦波发生器[1-3]常用的正弦波振荡电路有RC 和LC 两种电路,通常低频段选用RC 振荡器,其电路输出功率小,频率较低;高频段选用LC 振荡电路, 其输出的功率、频率都要高一些;频率稳定度要求高时,一般采用电容三点式振荡电路。
目录第一章振荡器的基本常识 (1)第一节振荡器的分类 (1)第二节振荡产生的原理 (1)一自激振荡的产生 (1)二产生振荡的条件 (2)第三节起振和稳幅 (3)一起振过程 (3)二振幅的稳定 (3)第四节正弦波振荡器 (4)第五节频率稳定度 (5)第二章石英晶体 (6)第一节石英晶体的基本特性 (6)一石英晶体的基本结构 (6)二压电效应 (6)第二节石英晶体等效电路和振荡电路 (7)第三章12MHz石英晶体正弦波振荡器 (10)第一节电路的选择 (10)第二节石英晶体振荡器设计 (10)一主要技术指标 (10)二设计说明........................................... (10)(一)选择电路............................................ .10 (二)选择晶体管和石英晶体. (11)(三)确定直流工作点并计算偏置电路元件参数 (11)(四)求C1\C2\Ct的电容值 (12)心得体会 (13)参考文献 (13)第一章振荡器的基本常识第一节振荡器的分类震荡器(Oscillator)是一种能量转换装置。
它的能量来源一般是直流形式(振荡器电路的直流供电电源)。
经过振荡器转换后,此直流能量转换为一定频率、一定幅度和一定波形的交流能量输出。
这种电能的“转换”过程被称作“振荡”(Oscillation)。
振荡器的作用是产生特定的输出信号,因此也常常被称为信号发生器(signal creator)。
振荡器的类型繁多,按照振荡过程是否依赖于外部激励信号的参与,可以分为他激振荡器和自激振荡器;按照波形分类有正弦波振荡器和非正弦波振荡器;按照振荡器振荡频率的高低,可以分为低频振荡器、高频振荡器、超高频振荡器等;按照振荡器的选频元件分类,则有RC振荡器、LC振荡器、石英晶体振荡器等。
第二节振荡产生的原理一自激振荡的产生无需外加激励就能产生特定波形的交流输出信号,这种振荡电路称为自激振荡器。
石英振荡器原理
石英振荡器是一种基于石英晶体的电子元件,用于产生稳定的高精度时钟信号。
它的工作原理基于石英的压电效应和谐振现象。
石英晶体是一种二向性晶体,具有压电性质。
当施加电场或机械应力到石英晶体上时,它会产生相应的电荷分布和变形。
这种压电效应是石英振荡器工作的关键。
石英振荡器通常由一个石英晶体片和驱动电路组成。
石英片是一个薄片,具有特殊的晶体结构和面向。
该片被固定在一个金属座上,并与电路连接。
在工作时,驱动电路会施加一个交变电压到石英晶体上。
由于石英片的压电效应,它会引起晶体的微小压缩和膨胀,产生机械振动。
这种振动通过石英晶体的声波传播。
石英晶体具有特定的谐振频率,也称为共振频率。
当驱动电压的频率与石英晶体的谐振频率相等时,石英晶体会发生共振现象,振动幅度增大。
驱动电路会不断调整驱动电压的频率,使其逐渐接近石英晶体的共振频率。
一旦频率匹配,石英晶体会产生稳定的机械振动,并将其转换为电信号输出。
由于石英晶体的物理性质非常稳定,因此它产生的振荡频率非常准确和稳定。
这使石英振荡器成为许多电子设备中的重要组
件,如电子钟、计算机和通信系统。
总之,石英振荡器利用石英晶体的压电效应和谐振现象,在外加电场或应力的作用下产生稳定的机械振动,并将其转化为准确的时钟信号输出。
这种精准度和稳定性使得石英振荡器广泛应用于各种计时和通信系统中。
正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
摘要自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。
正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。
基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。
根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。
关键词:电容三点式;振荡器;multisim;目录1、绪论 (1)2、方案的确定 (2)3、工作原理、硬件电路的设计和参数的计算 (3)3.1 反馈振荡器的原理和分析 (3)3.2. 电容三点式振荡单元 (4)3.3 电路连接及其参数计算 (5)4、总体电路设计和仿真分析 (6)4.1组建仿真电路 (6)4.2仿真的振荡频率和幅度 (7)4.3误差分析 (8)5、心得体会 (9)参考文献 (10)附录 (10)附录Ⅰ元器件清单 (10)附录Ⅱ电路总图 (11)1、绪论振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。
凡是可以完成这一目的的装置都可以作为振荡器。
一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。
正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。
选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。
振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压U和输入电压i U要相等,这是振幅平衡条件。
二是f U和i U必须相位相同,这是相位f平衡条件,也就是说必须保证是正反馈。
一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。
本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。
Multisim仿真晶体振荡器,修改晶振频率(修正版)原文发表于2012-05-23,百度空间,电波飞扬,作者BG3ILA顺便对qzbysh将本文粘贴上传百度文库,删去作者信息的行为表示谴责。
- - ->> Multisim中晶振在哪里?<<- - -晶振位于Multisim 自带元件库中,目录路径为MasterDataBase -> Misc -> CRYSTAL但是参数只有少数几种:HC-49/U系列:1.5 / 3 / 5 / 7 / 11 / 15 / 25 / 40 / 80 MHzHC-49/US系列:5 / 7 / 11 / 15 / 25 / 40 MHz32.768 kHz 石英钟晶体:R145 / R26 / R3832.768 kHz 的时钟信号经过15次二分频后,就得的1 Hz的秒脉冲。
实时时钟常用这个频率。
- - ->> Multisim修改晶振频率<<- - -如果需要其他频率的晶振,需要自己创建元件,或者,修改已有的晶振。
修改之前,首先要了解晶振的电路模型。
下面是《模拟电路基础》课程时间:晶体具有串联谐振的特性。
在完整等效电路中,电容Cq1、电感Lq1、电阻Rq1串联,表示其基音特性。
其他的为其各次谐波泛音。
C0 是晶振的静态电容,是以石英为介质,两个基板为电极构成的电容,其引脚、支架产生的电容也一并计入。
C0 远大于Cqn。
晶体具有很大的Lq,约为几十毫亨;具有很小的Cq,小于0.01pF;以及很高的Q值,常大于10的五次方。
在Multisim中,采用基频等效电路来模拟晶振,LS,CS,RS和CO四个参数分别就是基频等效电路中的Lq,Cq、Rq 和C0。
于是,您应该已经了解该如何修改了,根据串联谐振频率公式,修改LS和CS两个参数,就可以改变其频率。
具体步骤如下:1)插入一个标称频率和所需频率相近的晶振打开它的属性,选择Value (数值) 选项卡2)点击“Edit Model (编辑模型)”在“编辑模型”窗口中,通常选择保持电感参数不变,修改电容参数。
晶体振荡器的基本知识
下图是石英晶体谐振器的等效电路。
图中C0是晶体作为电介质的静电容,其数值一般为几个皮法到几十皮法。
Lq、Cq、rq是对应于机械共振经压电转换而呈现的电参数。
rq是机械摩擦和空气阻尼引起的损耗。
由图3-1可以看出,晶体振荡器是一串并联的振荡回路,其串联谐振频率fq和并联谐振频率f0分别为
f q=1/2πLqCq,f0= f q Co
1
Cq/
图1 晶体振荡器的等效电路
当W<Wq或W> Wo时,晶体谐振器显容性;当W在Wq和Wo之间,晶体谐振器等效为一电感,而且为一数值巨大的非线性电感。
由于Lq很大,即使在Wq处其电抗变化率也很大。
其电抗特性曲线如图所示。
实际应用中晶体工作于Wq~Wo之间的频率,因而呈现感性。
图2 晶体的电抗特性曲线
设计内容及要求
一设计目的及主要任务
1设计目的
掌握高频电子电路的基本设计能力及基本调试能力,并在此基础上设计并联变换的晶体正弦波振荡器。
2 并联型晶体振荡器
图 3 c-b型并联晶体振荡器电路
图 4 皮尔斯原理电路图 5 交流等效电路
C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上,C1、C2、C3串联组成石英晶体谐振器的负载电容C L上,其值为
C L=C1C2C3/(C1C2+C2C3+C1C3)
C q/ (C0+C L)<<1
二详细设计步骤
1、电路的选择
晶体振荡电路中,与一般LC振荡器的振荡原理相同,只是把晶体置于反馈网络的振荡电路之中,作为一感性元件,与其他回路元件一起按照三端电路的基本准则组成三端振荡器。
根据实际常用的两种类型,电感三点式和电容三点式。
由于石英晶体存在感性和容性之分,且在感性容性之间有一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。
该电抗曲线对频率有极大的变化速度,亦即石英晶体在这频率范围内具有极陡峭的相频特性曲线。
所以它具有很高的稳频能力,或者说具有很高的电感补偿能力。
因此选用c-b型皮尔斯电路进行制作。
图 6 工作电路
2、选择晶体管和石英晶体
根据设计要求,
选择高频管2N3904型晶体管作为振荡管。
查手册其参数如下: ?
T
=300MHz;?≥40,
取? =60;NPN型通用;额压:20V;Icm=20mA;Po= 0.1W;?
?≈?
T
/ ?=5 MHz。
石英谐振器可选用HC-49S系列,其性能参数为:
标称频率?。
=6 MHz;工作温度:-40℃~+70℃;25℃时频率偏差:士3×10-6士30×10-6;串联谐振电阻:60 ;负载电容:C L=10PF,激励功率:0.01~0.1mW。
3、元器件参数的计算
a)、确定三极管静态工作点
正确的静态工作点是振荡器能够正常工作的关键因素,静态工作点主要影响晶体管的工作状态,若静态工作点的设置不当则晶体管无法进行正常的放大,振荡器在没有对反馈信号进行放大时是无法工作的。
振荡器主电路的静态工作点主要由R b1、R b2、R e、R决定,将电感短路,电容断路,得到直流通路如图所示。
图7 直流通路等效电路
高频振荡器的工作点要合适,若偏低、偏高都会使振荡波形产生严重失真,甚至停振。
取I CQ CC≈10V,则有
(.1)
I BQ CQ b2I b2为10 I BQ,则I b2=10 I BQ=0.40mA,
(.2)
b1b2
6.5 kΩ,以便工作点的调整。
b)、交流参数的确定
对于振荡器,当电路接为并联型振荡器时,晶体起到等效电感的作用,输出频率应为6MHZ,则由晶振参数知负载电容C L=10pF,即C2,C3,C1串联后的总电容为10 pF
根据负载电容的定义,C L=1/[(1/C1,2)+1/C3]
由反馈系数F=C1/C2和C1,2=C1C2/C1-C2两式联立解,并取F=1/2
则C1=51pF,C2=100pF,C3=30pF
为了提高振荡器的工作性能和稳定度,在电路中还应有高频扼流圈。
三设计结果及分析
仿真电路
调R1 可以调静态工作点;C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上。