串联谐振耐压试验装置运用原理
- 格式:docx
- 大小:46.12 KB
- 文档页数:4
一、变频串联谐振耐压试验装置的原理发生串联谐振的基本原理是:在R-L-C电路中(如图1所示)变频串联谐振耐压试验装置的原理由电工知识得到:Uc=I/ωC,UL=I*ωL,UR=I*R,U=Uc+UL+UR,当LRC串联回路中的感抗与试品容抗相等时,电感中的磁场能量与试品电容中的电场能量相互补偿,试品所需的无功功率全部由电抗器供给,电源只提供回路的有功损耗。
电源电压与谐振回路电流同相位,电感上的电压降与电容上的压降大小相等,相位相反。
由图1可知,当ωL=1/ωc,回路的谐振频率f=1/2π√LC,也就是说,电路发生串联谐振,电源提供很小的励磁电压,试品上就能得到很高的电压,电源频率为谐振频率。
二、变频串联谐振耐压试验装置的特点利用串联谐振原理在回路中产生高电压,一般频率为30~300Hz。
串联谐振高压发生器原理如下图2表示:当电源频率(f)、电感(L)及被试设备电容(C)满足下式时回路处于串联谐振状态此时:f=1/2π√LC,回路中电流为I=Ulx/R,被试设备电压为Ucx=I/ωCx输出电压与励磁电压之比为试验回路的品质因数:Q=Ucx/Ulx=(ωL)/R,由于试验回路中电阻R很小,故试验回路品质因数很大。
一般正常时可达50以上,既输出电压是励磁电压50倍,因此用较低容量的试验变压器就能得到较高的试验电压。
这样就解决了在一般的交流耐压试验中试验变压器容量不能满足试验要求的问题。
而此时电容量与电感的关系为ωL=1/ωc,因为对某个试品而言,电容量是固有的,试验用可调电感的价格也非常昂贵,因此解决问题的途径就引到了改变电源频率回路的谐振频率,在初始电压下调节回路的频率,观察Uc的变化达最大值时,增加或减小频率时谐振电压都要下降,这时的频率为谐振频率,这时的电压为谐振点电压,增加励磁电压就能升高谐振电压,从而达到试验电压目的。
另外,由于试验回路是处于谐振状态,回路本身具有良好的滤波作用,电源波形中的谐波分量在设备两端大为减小,从而输出良好的正弦波形。
串联谐振试验的原理华天电力专业生产串联谐振(又称串联谐振耐压测试仪),接下来为大家分享串联谐振试验的原理。
变频串联谐振结构试验进行设备可以运用串并联谐振的原理,通过市场调节控制变频控制器的输出信号频率,使得工作回路中的电抗器的电感L和试品电容C发生改变谐振,谐振电压即为试品上所加电压。
通过频率调制控制器提供电源,在初始升压后由励磁变压器测试电压,使电抗器l 和试品cx 上的高电压,通过改变频率调制控制器的输出频率,电路的谐振频率取决于电抗器的电容器c x 和电感器l,并且变频控制器的输出电压被调整,使样品上的高电压达到所需的电压。
HTXZ系列进行变频技术串联一个谐振由变频控制电源、激磁变压器、电抗器、电容分压器和补偿标准电容器(选配)组成。
测试对象与电抗器的电容形成串联谐振连接方式;分压器与测试对象并联,用于测量测试对象上的谐振电压,并发出过压保护信号;调频功率输出通过激励变压器耦合到串联谐振电路,以提供串联谐振的激励功率。
变频串联谐振结构试验检测装置是运用知识串联谐振工作原理,利用励磁变压器可以激发学生串联谐振控制回路,调节变频控制器的输出信号频率,使回路电感L和试品C串联谐振,谐振电压即为加到试品上电压。
该变频谐振试验装置广泛应用于电力、冶金、石油、化工等行业。
变频串联谐振试验成套装置设计主要研究针对不同交联电缆、水力发电机、主变、母线、GIS等的交流耐压试验,具有相对较宽的适用法律范围,是地、市、县级高压试验管理部门及电力企业安装、修试工程建设单位没有理想的耐压设备。
变频系列振振测试设备适用于10kV、35kV、110kV、220kV、500kV聚乙烯电源电缆交流压力电阻测试。
适用于60kV、220kV,500kVGIS交流进行耐压性能试验。
适用于大型变压器、发电机耐压试验; 电力变压器感应耐压试验; 接地电阻测量。
串联谐振耐压试验工作原理串联谐振耐压试验是对电力系统中电容器组进行的一种重要的高压测试方法。
该测试方法通过在特定频率下产生谐振,使电容器组能够承受额定电压,并检测其工作正常性和绝缘性能。
以下将详细介绍串联谐振耐压试验的工作原理。
首先,串联谐振耐压试验的目的是检测电容器组的耐压能力和绝缘性能,以确保其在高压环境下工作的可靠性。
该测试方法采用谐振的原理,通过谐振产生的电流和电压使电容器组的电压逐渐升高,直至达到额定电压。
具体的测试原理如下:1.谐振原理:谐振是指在特定频率下,电感和电容组成的串联电路阻抗变为纯阻抗,即无感抗和无容抗。
通过匹配谐振频率,可以使串联电路的整体阻抗降至最小,有效提高电流传输效果。
2.谐振触发:在测试中,通过改变测试频率,使电感和电容组成的串联电路的阻抗逐渐变小。
当串联电路的阻抗达到最小值时,谐振触发装置会自动检测并触发测试电压。
3.电容器组测试:在谐振状态下,电压逐渐升高,直至达到额定电压。
此时,测试人员可以通过检测电容器组的电流和电压来评估其耐压能力和绝缘性能。
4.故障检测:在测试中,如果电容器组存在故障,例如击穿或绝缘性能不良,会导致电压异常变化或电流增大。
通过检测这些异常情况,可以判断电容器组是否工作正常。
需要注意的是,为了确保测试的安全性和可靠性,在进行串联谐振耐压试验时1.测试电源:测试电源需要能够提供足够的电流和电压,以满足谐振触发和测试要求。
同时,测试电源应具有稳定的输出,以保证测试结果的准确性。
2.频率调节:测试频率需要能够精确地调节到所需的谐振频率。
频率误差可能导致测试结果不准确或无法完成谐振触发。
3.保护装置:在测试中,需要配置相应的保护装置,以确保测试电压和电流在安全范围内。
常见的保护装置包括过电流保护、过压保护和过温保护等。
总结起来,串联谐振耐压试验是一种利用谐振原理的高压测试方法,通过将电容器组与测试电源串联成谐振电路,通过调节测试频率和触发测试电压,评估电容器组的耐压能力和绝缘性能。
串联谐振耐压试验工作原理串联谐振耐压试验装置又叫串联谐振,分为调频式和调感式。
一般是由变频电源、励磁变压器、电抗器和电容分压器组成。
被试品的电容与电抗器构成串联谐振连接方式;分压器并联在被试品上,用于测量被试品上的谐振电压,并作过压保护信号。
串联谐振耐压试验装置的应用串联谐振广泛用于电力、冶金、石油、化工等行业,适用于大容量,高电压的电容性试品的交接和预防性试验。
串联谐振耐压试验装置主要用于以下方面:1.6kV-500kV高压交联电缆的交流耐压试验2.发电机的交流耐压试验3.GIS和SF6开关的交流耐压试验4.6kV-500kV变压器的工频耐压试验5.其它电力高压设备如母线,套管,互感器的交流耐压试验。
串联谐振耐压试验装置的工作原理串联谐振变在电子设备的LC电路,也称为谐振电路、谐振电路,或调谐电路由两个电子部件连接在一起,一个电感,由字母L表示,和一个电容器,由字母C的电路可以作为表示作为电谐振器,一个的电模拟音叉,将能量存储在振荡电路的谐振频率。
串联谐振变电路被使用,也可以用于在特定频率产生的信号,或从一个更复杂的信号拾取出来的信号在特定频率。
它们在许多电子设备中,特别是无线电设备,电路,例如用于关键元件的振荡器、过滤器、调谐器和混频器。
串联谐振变电路是一个理想化的模型,因为它假定不存在由于耗散能量的电阻。
LC 电路的任何实际实施将始终包括的组件和连接导线内的小,但非零电阻造成的损失。
虽然没有实际的电路是没有损耗,但却是有益的研究这个理想的电路形式,以取得理解和物理直觉。
对于一个电路模型结合性。
如果一个充电电容器两端的电感器相连,电荷将开始流过电感器,一个磁场建立它周围和减少电容器上的电压。
最终在所有电容器的电荷将消失,其两端的电压将达到零。
然而,电流将继续下去,因为电感器抗蚀剂中的电流变化。
以保持其流动的能量被从磁场,这将开始下降萃取。
该电流开始对电容器具有相反极性的电压充电到其原始充电。
变频串联谐振耐压试验装置原理
变频串联谐振耐压试验装置是一种用于高压电器耐压试验的装置,利用变频器来调节用于试验的频率,使高压电器更好地适应不同的环境,从而提高其耐压性能。
变频串联谐振耐压试验装置的原理是,变频器将电压调节至频率F,然后将其输入到谐振电路中,谐振电路由一个可变电容和一个可变电感共同组成,电容和电感的调节可以调节谐振电路的频率,而谐振电路的输出则会产生一个脉冲信号,该脉冲信号会被输入到耐压装置中,从而调节其耐压性能。
变频串联谐振耐压试验装置的主要优点是可以调节高压电器的耐压性能,从而使其能够更好地适应不同的环境,进而提高其耐压性能。
此外,该装置还具有节能、环保、易于操作、结构简洁等优点,使得其在耐压试验中具有更多的应用前景。
变频串联谐振耐压试验装置具有调节高压电器耐压性能的优点,且具有节能、环保、易于操作、结构简洁等优点,因而被广泛应用于耐压试验领域。
变频串联谐振耐压试验装置分析总结及注意事项变频串联谐振耐压试验装置的工作原理:交流220V工频电源,经变频控制单元输出30~200HZ频率可调的电压,送入励磁变压器,升压至0~1000V,经谐振电抗器L和被试品CX,构成高压主谐电路,电容分压器是纯电容式的,用来测量试验电压。
先由变频控制单元经励磁变压器向主谐振电路送入一个较低的电压Ue,调节变频控制单元的输出频率,当频率满足条件ΩL=1/ΩC,电路即达到谐振状态。
此时能在较小的励磁电压Ue下,使被试品CX上产生几十倍于Ue的电压UCX。
变频试验系统以串联谐振电路原理工作。
谐振点是由把频率变换器的频率调整到串联谐振电路的固有频率而达到的。
回路谐振后,输出的电压波形为纯正弦波,系统的频率取决于回路的L-C参数。
其中电抗器的电抗值是可调的,系统的频率取决于负载电容的大小,如上式。
可以根据CX的大小,适当调整电抗器的电感L值,使得谐振频率固定在一个要求的范围内,从而满足必须在工频条件下进行交流耐压试验的试品的实验。
从上述工作原理可以看出:1、品质因素愈高,所需电源容量愈小。
2、谐振电抗器L与被试电CX处于谐振状态,此电路形成一个良好的滤波电路,故输出电压UCX为良好的正弦波形。
3、被试电缆击穿时,失去谐振条件,高压电路和低压电源回路的电流反而减小,故绝缘击穿处的电弧不会将故障点扩大,使于检修。
变频串联谐振耐压试验装置注意事项:1、本试验设备应由高压试验专业人员使用,使用前应仔细阅读使用说明书,并经反复操作训练。
2、操作人员应不少于2人。
使用时应严格遵守本单位有关高压试验的安全作业规程。
3、为了保证试验的安全正确,除必须熟悉本产品说明书外,还必须严格按国家有关标准和规程进行试验操作。
4、各联接线不能接错,特别是接地线不能接错。
否则可导致试验装置损坏5、本装置使用时,输出的是高电压或超高电压,必须可靠接地,注意操作安全。
6、当开机且回零后仍然不能升压时,请长时间按下复位键(10秒钟左右),并使控制箱面板的指示灯正常,即除"高压"以外没有其它红灯亮,然后开始正常操作.7、当电压电压大于10V,而还没有进行调谐时,系统会自动失谐,以防止一谐振就产生高压伤害试品甚至对人体带来伤害华意电力是国内专业的电力承装(修、试)资质及电力承试设备研发生产企,专业针对不同电压等级的试验需求,定制不同配置的电气试验产品。
电力高压试验中串联谐振装置的作用随着电力系统的不断发展和进步,电力设备的高压试验成为了重要的环节之一。
为了保障设备的安全运行和质量,进行高压试验是必不可少的环节。
而在高压试验过程中,串联谐振装置的作用尤为重要。
本文将就串联谐振装置在电力高压试验中的作用进行探讨。
一、串联谐振装置的概念和原理1.1 串联谐振装置的概念串联谐振装置是用来为电力高压试验提供谐振电压的装置。
它主要由电抗器、电容器和其它辅助设备组成。
串联谐振装置能够通过合理地串联电感和电容,使得装置在一定频率下能够达到谐振状态,从而提供谐振电压。
二、串联谐振装置在电力高压试验中的作用2.1 提供稳定的高压电源在电力高压试验中,被测设备需要得到稳定的高压电源以进行测试。
串联谐振装置能够提供稳定的高频高压电源,确保被测设备能够在正常工作状态下进行高压试验。
串联谐振装置能够根据被测设备的电压需求进行调节和控制,确保被测设备能够得到合适的电源。
2.3 谐振频率的选择在电力高压试验中,选择适合的谐振频率对于整个测试过程至关重要。
串联谐振装置能够通过调节电容和电感来调整谐振频率,确保谐振频率与被测设备所需的频率匹配。
谐振频率的选择也可以影响高压试验的效果和安全性,因此串联谐振装置在这一点上能够发挥重要作用。
2.4 提高高压试验效率通过合理地选择谐振频率和控制串联谐振装置的工作状态,能够提高高压试验的效率。
串联谐振装置能够有效地提供稳定的高压电源,使得被测设备能够在较短的时间内完成测试,并且能够得到准确的测试结果。
这对于提高测试效率和降低测试成本有着重要的意义。
三、串联谐振装置的发展和应用近年来,随着电力系统的不断发展和进步,串联谐振装置在高压试验中的应用越来越广泛。
目前,已经出现了多种类型的串联谐振装置,能够满足不同电力设备的高压试验需求。
串联谐振基本原理(电容为试验品)
串联谐振耐压试验是利用电抗器的电感与被试品电容组成LC串联回路,调节变频电源输出的电压频率,实现串联谐振,在被试品上获得高电压,是当前高电压试验的一种新方法,深受专家好评,在国内外已经得到广泛的使用。
根据谐振原理,我们知道当前电抗器L的感抗值X L与回路中的容抗值Xc相等时,回路达到谐振状态,此时回路中仅回路电阻R消耗有功功率,而无功功率则在电抗器与试品电容之间来回振荡,从而在试品上产生高压。
谐振频率:。
变频串联谐振耐压试验原理及应用分析高很多,对变压器的绝缘水平要求较高,且带负载能力受到二次绕组的容量和现场试验电源的很大限制;因此,只有较低电压等级和较小电容值的被试设备才使用试验变压器产生高压进行耐压试验。
对于较高电压等级和较大电容值的被试设备,现场常用串联谐振方法产生高电压进行耐压试验;对于较低电压等级和大电容值的被试设备,现场常用并联谐振方法产生高电压进行耐压试验。
并联谐振方法主要用于电力电缆的交流耐压,它较好地满足了被试设备较大电力的要求,但产生的电压并不高,本文对这种方法不进行讨论。
串联谐振产生高电压方法的应用较为广泛,但现场使用这种方法进行耐压试验时也遇到不少问题。
本文主要就变频串联谐振耐压试验的原理及应用进行分析与研究。
一、对高压电气设备进行交流耐压试验的必要性(1)直流耐压试验不能反映设备实际工况下的电场分布,难以正确发现高压电气设备的内部缺陷。
直流电压下,电气元件上的电压按电阻分布,交流电压下电气设备上的电压则是按介电常数分布,它反映实际运行的情况。
例如: 对于交联电缆、全膜或纸膜电容器,其固体介质的电阻率可高达1-100EΩ*m ,当其电容元件绝缘薄膜绝缘不良时,其电阻率可大幅下降,只有原电阻率的几分之一。
做直流耐压时。
电阻率高、绝缘良好的电容元件可承受的电压较不良电容元件反而高出几倍,使绝缘不良的电容元件反而更容易通过试验,但在运行电压下,其绝缘缺陷便会暴露出来,诱发故障。
(2)直流电压可使高压电气设备内部的局部放电大为减弱,不利于绝缘缺陷的检出。
高压电气设备内部的某些绝缘弱点或极板边缘电场集中的部位均可能产生局部放电,持续的局部放电对绝缘是有害的。
因高压电气绝缘的多样性,在导体和绝缘介质之间往往存在多种绝缘介质,而各种介质的场强分布不同,加压时,场强较高的介质会先发生局部放电,但是同样的复合材料,在直流电压作用下,局部放电会大大减弱。
气隙发生局部放电后产生的正、负离子形成反向电场强度E',使气隙中的合成场强下降,使局部放电削弱甚至熄灭。
串联谐振耐压试验装置运用原理|华意电力
串联谐振耐压试验装置运用原理是运用串联谐振的原理,通过调节变频控制器的输出频率,使得回路
中的电抗器电感L和试品电容C发生串联谐振,谐振电压即为试品上所加电压。
变频谐振试验装置广泛应
用于电力、冶金、石油、化工等行业,适用于大容量、高电压的电容性试品,如发电机、电力变压器、
GIS和高交联动力电缆、互感器、套管等的交接试验和预防性试验。
我公司在变频串联谐振高压试验方面,自行开发的调频、调压软件技术,领先于国内高压试验行业,
利用这一技术设计,制造的变频串联谐振高压试验装置,完全符合国家有关高压试验的规程和要求。
通过变频控制器提供供电电源,试验电压由励磁变压器经过初步升压后,使高电压加在电抗器L和被试品Cx上,通过改变变频控制器的输出频率,使回路处于串联谐振状态,调节变频控制器的输出电压,
使试品上高压达到所需要的电压值。
回路的谐振频率取决于被试品电容Cx和电抗器的电感L,谐振频率f=1/(2π√LC)。
1. 从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆
变器的主要技术特点及其比较:
串联谐振耐压试验装置和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。
(1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。
因此,经整流和滤波的直流电
源末端,必须并接大的滤波电容器。
当逆变失败时,浪涌电流大,保护困难。
并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。
但
在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。
(2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电
流过零以后进行,因而电流总是超前电压一φ角。
并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。
这就是说,两者都是工作在容性负载状态。
(3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。
即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。
此时的杂散电感,即从直流端到器件的引线电感上产生的感生电势,可能使器件损坏,因而需要选择合适
的器件的浪涌电压吸收电路。
此外,在晶闸管关断期间,为确保负载电流连续,使晶闸管免受换流电容器
上高电压的影响,必须在晶闸管两端反并联快速二极管。
并联逆变器是恒流源供电,为避免滤波电抗Ld
上产生大的感生电势,电流必须连续。
也就是说,必须保证逆变器上、下桥臂晶闸管在换流时,是先开通
后关断,
也即在换流期间(tγ)内所有晶闸管都处于导通状态。
这时,虽然逆变桥臂直通,由于Ld足够大,也不会造成直流电源短路,但换流时间长,会使系统效率降低,因而需缩短tγ,即减小Lk值。
串联谐振和并联谐振区别3
(4)串联逆变器的工作频率必须低于负载电路的固有振荡频率,即应确保有合适的t 时间,否则会
因逆变器上、下桥臂直通而导致换流的失败。
并联逆变器的工作频率必须略高于负载电路的固有振荡频率,以确保有合适的反压时间t ,否则会
导致晶闸管间换流失败;但若高得太多,则在换流时晶闸管承受的反向电压会太高,这是不允许的。
(5)串联逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。
并联逆变器的功率调节方式,一般只能是改变直流电源电压Ud。
改变cosφ虽然也能使逆变输出电压升高和功率增大,但所允许调节范围小。
(6)串联逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。
在换流时,关断的晶闸管受反压的时间(t +tγ)较长。
串联谐振和并联谐振区别4
并联逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压
时间,因而关断时间较长。
相比之下,串联逆变器更适宜于在工作频率较高的感应加热装置中使用。
(7)串联逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行,但负载电路的全部电流,包括有功和无功分量,都需流过晶闸管。
逆变晶闸管丢失脉冲,只会使振荡停止,
不会造成逆变颠覆。
并联逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。
但负载本身构成振荡电流回路,只有有功电流流过逆变晶闸管,而且逆变晶闸管偶而丢失触发脉冲时,仍可维持振荡,工作
比较稳定。
(8)串联逆变器可以自激工作,也可以他激工作。
他激工作时,只需改变逆变触发脉冲频率,即可
调节输出功率;而并联逆变器一般只能工作在自激状态。
(9)在串联逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并
联逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。
(10)串联逆变器起动容易,适用于频繁起动工作的场合;而并联逆变器需附加起动电路,起动较为
困难。
(11)串联逆变器中的晶闸管由于承受矩形波电压,故du /dt值较大,吸收电路起着关键作用,而
对其di/dt要求则较低。
在并联逆变器中,流过逆变晶闸管的电流是矩形波,因而要求大的di/dt,而对du/dt的要求则低一些。
(12)串联逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。
如果采用同轴电缆或将来回线尽量靠近(扭绞在一起更好)敷设,则几乎没有影响。
而对并联逆变器来说,
感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。
(13)串联逆变器感应线圈上的电压和槽路电容器上的电压,都为逆变器输出电压的Q倍,流过感应
线圈上的电流,等于逆变器的输出电流。
并联逆变器的感应线圈和槽路电容器上的电压,都等于逆变器的输出电压,而流过它们的电流,则都
是逆变器输出电流的Q倍。
综上所述,并联逆变器和串联逆变器(通称并联或串联变频电源)各有其自己的技术特点和应用领域。
从工业加热应用的角度,并联逆变器广泛应用于熔炼、保温、透热、感应加热热处理等各种领域,其功率
可以从几千瓦到上万千瓦。
串联逆变器广泛应用于熔炼——保温的一拖二炉组以及高Q值高频率的感应加
热场合,其功率可以从几千瓦到几千千瓦。
目前我国工业上采用的变频电源90%以上属并联变频电源。
变频串联谐振成套装置采用16位精细调频、调压软件技术、10KHz载波频率、SPWM和进口原装
IPM整体模块设计制造,配合适当的电抗器,就可以满足国家和地方规定的试验范围,整机领先于国内同
类产品。
变频串联谐振成套装置具有下列特点:
1、大屏幕显示试验数据、试验状态,并有实时操作步骤提示功能。
2、能灵活整定试验电压、调频范围、加压时间。
3、试验结果能计算出被试品电容。
4、体积小、重量轻、操作方便。
5、分辨率高,频率分辨率为0.001Hz,电压分辨率:粗调为1%,细调为0.01%。
6、安全可靠性高,系统具有过电压、过电流及放电保护功能,可保护人身设备安全。
7、试验结果可打印。
8、可升级操作软件。