核医学知识重点16
- 格式:doc
- 大小:116.00 KB
- 文档页数:16
核医学重点归纳核医学是一门结合核物理学、生物学和医学的学科,利用放射性同位素及其产生的辐射,应用于诊断和治疗疾病。
本文将对核医学的重要概念和应用进行详细阐述。
1. 核医学概述核医学是利用放射性同位素技术进行医学诊断和治疗的一门学科。
它主要包括核医学影像学和核医学治疗两个方面。
核医学影像学主要通过放射性同位素的放射性衰变过程及其特征辐射来获取人体内部器官的形态、功能和代谢信息,为疾病的诊断和治疗提供依据。
核医学治疗则是利用放射性同位素的特殊性质和作用机制,直接作用于人体,治疗某些疾病。
2. 核医学影像学2.1 放射性同位素的选择和制备核医学影像学中,选择合适的放射性同位素是关键。
常用的同位素有技99mTc、201Tl、131I等。
制备这些同位素通常需要一个核反应堆作为能源供应的源泉。
2.2 核医学影像设备核医学影像设备主要包括单光子发射计算机断层摄影(SPECT)和正电子发射计算机断层摄影(PET)。
SPECT技术使用单个探测器在360度旋转的过程中记录放射性同位素的发射。
PET技术则利用正电子发射的特性来观察放射性同位素的分布。
2.3 核医学影像的分类核医学影像可分为核素显像和功能代谢显像。
核素显像是通过观察放射性同位素在人体内部分布情况,来获得器官形态的影像。
功能代谢显像则是通过观察人体器官的代谢情况,来评估其功能状态。
2.4 核医学临床应用核医学影像学在临床上广泛应用于诊断各种疾病,如癌症、心脏病、骨科疾病等。
核医学影像可以提供关于病变的位置、大小、代谢活性以及与周围组织的关系等信息,为医生制定诊断方案提供重要依据。
3. 核医学治疗3.1 放射性同位素治疗核医学治疗主要通过放射性同位素的放射性衰变来实现。
这些同位素可以通过口服、静脉注射等方式进入人体,在体内靶向作用于病变部位,杀死或抑制异常细胞的生长。
3.2 放射性碘治疗放射性碘治疗是一种常见的治疗甲状腺疾病的方法。
通过口服放射性碘同位素,碘同位素会富集在甲状腺组织中,辐射杀死异常细胞,从而治疗甲状腺癌和甲状腺功能亢进等疾病。
核医学27反射性核素的制备三大类:核反应堆制备,医用回旋加速器制备,放射性核素发生器制备28.物理半衰期:在单一的放射性核素衰变过程中,放射性活度减少一半,所需要的时间是放射性核素的一个重要特征参数。
29什么是生物半衰期:指进入生物体内的放射性核素,经各种途径从体内排出一半所需要的时间30.1合成代谢,细胞吞噬,循环通路,选择性摄取,选择性排泄,通透弥散,细胞拦截,离子交换和化学吸附,特异性结合14.放射性核素示踪计数:是以放射性核素或标记化合物作为示踪剂,应用射线探测器检测示踪剂分子的行踪,研究被标记物在生物体系或外界环境中分布状态或变化规律的技术9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学3.炸面圈:骨显像时病灶中心显像剂分布减少,病灶周围显像剂增高呈环形的影像表现。
多见于股骨头缺血坏死。
是通过静脉注射的方式将放射性核素标记的亲骨性显像剂引入体内,该类显像剂可以与骨组织内的无机盐和有机质紧密结合,在体外通过核医学成像仪器显示显像剂在骨骼系统内的分布,获得骨骼系统的影像。
13.超级骨显像:某些累计全身的骨代谢性病变,呈现显像剂在全身骨骼积聚异常增高,被称为超级骨显像或过度显像,1.正常典型肾图的三段的名称及生理意义是什么?名称:a段放射性出现段;b段示踪剂聚集段c段排泄段生理意义:a段静脉注射示踪剂后10s左右肾图急剧上升段。
此段为血管段,时间短,约30s反映肾动态的血流灌注相;b段:a段之后的斜行上升段,3-5min 达到高峰,其上升斜率和高度与肾血流量、肾小球滤过功能和肾小管上皮细胞摄取、分泌功能有关。
反映肾皮质功能与肾小管功能;c段:b段之后的下降率与b段上升斜率相近,下降至峰值一半的时间小于8min。
为示踪剂经肾集合系统排入膀胱的过程,主要反映上尿路的通畅情况和尿流量多少有关1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学科2.核医学特点:①高灵敏度②方法简便、准确③合乎生理条件④定性、定量、定位研究的相结合⑤专业技术性强3.核医学显像:①功能性显像②无创性检查③图像融合④解剖分辨力低4.核素:质子数相同,中子数相同,具有相同能量状态的原子8.半衰期:放射性核素数量因衰变减少一半所需要的时间9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
核医学重点整理核素:原子核的质子数,中子数和原子核所处的能量状态均相同的原子属于同一种核素同位素:质子数相同而中子数不同的核素互称为同位素。
同质异能素:质子数和中子数都相同,所处的核能状态不同的原子称为。
核衰变的原因:当原子核中质子数过多或过少,或者中子数过多或过少时,原子核便不稳定,这时的原子核就会自发地放出射线,转变为另一种核素,同时释放出一种或一种以上的射线。
半衰期:指放射性核素由于衰变减少一半所需的时间,又称物理半衰期。
放射性活度(有效半衰期):表示为单位时间内原子核的衰变数量。
贝克勒尔(Bq)带电粒子的相互作用1电离:带电粒子通过物质时,和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。
2激发:原子从稳定状态变成激发状态,这种作用称为激发。
3散射:带电粒子通过物质时运动方向发生改变的现象。
4韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分或全部动能转化为连续能量的X射线发射出来。
5湮灭辐射:正电子衰变产生的正电子,在介质中运行一定距离,当其能量耗尽时,可与物质中的自由电子结合,而转化为两个方向相反、能量各为0.511MeV 的γ光子而自身消失。
6吸收:射线使物质的原子发生电离和激发的过程中,射线的能量全部耗尽,射线不再存在,称为吸收,其最终结果是使物质的温度升高。
光子与物质的相互作用1光电效应:γ光子和原子中内层壳层电子相互作用,将全部能量交给电子成为自由光子的过程。
2康普顿效应:能量较高的γ光子与原子中的核外电子作用时,只将部分能量传递给核外电子,使之脱离原子核束缚成为高速运行的自由电子,而γ光子本身能量降低,运行方向发生改变,称为康普顿效应。
3电子对生成放射性药物:放射性核素和放射性核素标记化合物。
特点:1具有放射性。
2具有特定的物理半衰期和有效期。
3计量单位和使用量。
4脱标及辐射自分解。
来源:放射性核素发生器,医用回旋加速器和反应堆生产,从裂变产物中提取。
作者 : 李颖名词解释1.核医学:用放射性核素诊断、治疗疾病和进行医学研究的医学科目。
2.同位素:具有相同质子数但具有不同中子数,在化学元素排在同一位置。
3.核素:是原子核的属性,原子核的质子数、中子数和原子核所处的能量状态完全相同的原子集合成为核素。
稳定性核素:原子核中,当核内中子数和质子数保持一定比例时,核力与斥力平衡不致发生核内成分或能态变化,这类核素称为稳定性核素。
放射性核素:原子核内质子或中子过多,都会使原子核失去稳定性,称为不稳定核素,又称放射性核素。
核衰变:不稳定核素通过自发性内部结构或能态调整使其稳定的过程。
与此同时,它将释放一种或一种以上的射线,这种性质称为放射性。
4.α衰变:是核衰变时放出α离子的衰变,主要发生在Z>82的核素。
β衰变:是核衰变时释放出β射线或俘获轨道电子的衰变,包括β+衰变,β-衰变和电子俘获三种形式。
γ衰变:是指核素由高能态向低能态、或激发态向基态跃迁过程中放射出γ射线或称单光子的衰变。
5.衰变定律:衰变过程中初始母核数的减少遵循指数函数的规律,其表达式为N=No*e^-λt。
6.半衰期(物理半衰期):某一放射性核素在衰变过程中,原有的放射性活度减少至一半所需要的时间称为T1/2。
放射性活度:单位时间内发生核衰变的次数,国际单位为贝可,定义为每秒发生一次核衰变。
生物半衰期:指进入生物体内的放射性活度经由各种途径从体内排出原来一半所需要的时间。
Tb有效半衰期:指生物体内的放射性活度由从体内排出和物理衰变双重作用,在体内减少为原来一半所需要的时间。
Teff7.SPECT:单光子发射型计算机断层显像仪。
PET:正电子发射型计算机断层显像仪。
8.放射免疫分析法:是建立在放射性分析的高度灵敏性和免疫反应的高度特异性的基础上,通过测定放射性标记抗原-抗体复合体的量来计算出待测抗原(样品)的量。
9.热结节:结节部位放射性分布高于正常甲状腺组织,有时仅结节显影而正常组织不显影,多见于功能性甲状腺腺瘤和结节性甲状腺肿。
核医学要点总结核医学要点总结1、放射性核衰变:原子核只有在中子和质子的数目之间保持一定的比例时才稳定。
当原子核中质子数过多或过少,或者中子数过少或过多,原子核便不稳定。
这时的原子核就会自发地放出射线,转变成另一种核素,同时释放出一种或一种以上的射线。
这个过程称~或蜕变(简称核衰变)。
2、核衰变的类型:(1)α衰变:不稳定原子核自发地放射出α粒子而变成另一个核素的过程称~(2)β衰变:放射性核素的核内放射出β粒子的衰变。
(3)β+衰变(正电子衰变):β+衰变主要发生在中子相对不足的核素。
可以看做是β衰变相反的过程,即核中一个质子转化为中子,同时释出一个正电子及一个中微子,故核子总数也不变,原子序数减少1而原子质量数不变。
(4)电子俘获衰变:(5)γ衰变:即γ跃迁/同质异能跃迁,原子核从激发态回复到基态,通过发射γ光子释放过剩能量的过程。
3、韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分货全部动能转化为连续能量的某射线发射出来,称~。
韧致辐射释放的能量与所通过介质的原子序数的平方成正比,与带电粒子的质量成反比,并且随带电粒子的能量增大而增大。
4、电离辐射的作用机制:(1)电离辐射的原发作用:①直接作用:指放射线直接作用于具有生物活性的大分子,使其发生电离、激发或化学键的断裂而造成分子结构和性质的改变,从而引起功能和代谢的障碍。
②间接作用:指放射线作用于体液中的水分子,引起水分子的电离和激发,形成化学性质活泼的产物自由基,继而作用于生物大分子引起损伤。
(2)电离辐射的继发作用:5、外照射防护的基本原则:(1)时间防护:缩短受照时间,时间与剂量成正比。
应避免一切不必要的辐射场逗留。
(2)距离防护:增大与辐射源的距离,距离与剂量成反比。
(3)屏蔽保护:人与源之间设置防护屏障。
根据辐射源种类,采用不同的屏蔽材料。
6、γ闪烁探测器的工作原理:注入人体的放射性核素发射出γ射线,经过准直器准直进入NaI晶体,使晶体分子受激发产生荧光光子,后入射到光电倍增管,通过光电效应产生光电子,光电倍增管有多个联极可以倍增光电子,光电子聚集在阳极产生电位差,随之阳极电压又恢复到原来水平,不断重复形成一系列脉冲讯号经前置器放大,再经计算机处理还原成图像或数据。
第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
1.核物理中能量的基本单位是电子伏特。
2.α衰变:穿透力弱、射程短。
βˉ衰变:穿透力弱、用于核素治疗;正电子衰变;电子俘获衰变、γ衰变。
3.射线与物质的相互作用:带电粒子:电离作用、激发作用、散射作用、韧致辐射、吸收作用光子:光电效应、康普顿效应、电子对生成4.γ相机组成:探头、电子线路、显示装置5.临床应用放射性核素来源有:核反应堆(131I、133Xe、51Cr)、加速器(11C、18、F15O、13N)、放射性核素发生器(99mTc)、6.示踪技术特点:灵敏度高;方法相对简单,准确性好;合乎生理条件;定性、定量与定位研究相结合。
机制:合成代谢;细胞吞噬;循环通路;选择性浓聚;选择性排泄;通透弥散;离子交换和化学吸附;特异性结合。
分类:静态显像,动态显像;局部显像,全身显像;平面显像,断层显像;早期显像<2h,延迟现象>2h;阳性显像,阴性显像;静息显像,负荷显像。
7.体外分析技术:放射免疫分析,待测抗原与标记抗原间的竞争抑制(抗原抗体特异性结合);免疫放射分析,标记抗体;受体放射分析,放射性核素标记配体与特异受体结合,测定受体亲和力和数量。
8.脑血流灌注:99mTc-ECD 脑代谢:18F-FDG分子量小,不带电荷,脂溶性化合物。
应用:脑缺血性疾病,老年痴呆的诊断与鉴别诊断,癫痫灶定位诊断,脑肿瘤,锥体外系疾病的脑代谢变化,脑生理和认知功能研究,神经递质或受体显像在神经精神疾病中的应用及现状。
9.甲状腺:热结节(甲状腺腺瘤、结节性甲状腺肿),温结节(甲状腺腺瘤、结节性甲状腺肿、慢性淋巴细胞性甲状腺炎、亚急性甲状腺炎恢复期、甲状腺癌)冷结节(甲状腺囊肿、甲状腺瘤囊性变或内出血、结节性甲状腺肿、局灶性甲状腺炎、甲状腺癌)10.心肌灌注显像:99mTc-MIBI、201Tl 可逆性缺血(心计可逆性缺血)、部分可逆性缺血(心计可逆性缺血或心肌梗死伴有缺血)、固定缺损(心肌梗死或瘢痕组织)、反向再分布(严重的冠状动脉狭窄、急性心肌梗死接受溶栓治疗或经皮冠状动脉成形术治疗的患者)。
医学生联盟:5159212491核医学知识点1.MR 成像仪由以下几部分构成 ——磁体系统 ——梯度系统 ——射频系统 ——控制系统 ——运行保障系统2.重复时间(TR ):脉冲系列相邻的两次执行的时间间隔。
3.SE 系列:相邻两个90°脉冲中点间的时间间隔。
4.梯度回波系列:相邻两个小角度脉冲中点之间的时间间隔。
5.反转恢复系列:相邻两个180°反转预脉冲中点间的时间间隔。
6.回波时间(TE):产生宏观横向磁化矢量的脉冲中点到回波中点的时间间隔。
7.有效回波时间(有效TE):在FSE 、EPI 系列中,射频脉冲中点到到填充K 空间中央那个回波中点的时间间隔。
8.回波链长度(ETL):FSE 、EPI 系列中一次90°脉冲激发后所产生和采集的回波数目。
其他参数相同时,与单个回波的系列相比,采集时间缩短为原来的1/ETL 。
9.回波间隙(ES ):回波链中相邻两个回波中点之间的时间间隙。
10.反转时间:在反转恢复序列中-180°反转脉与90°激励脉冲之间的时间间隔。
11.激励次数(NEX ):又称为信号平均次数(NSA),信号采集次数。
指每个相位编码中信号采集次数。
12.采集时间(TA )13.自旋回波序列:自旋回波是指以90°脉冲激励开始,后续施以180°相位重聚焦脉冲并获得回波信号脉冲序列 14.SE 序列的特点1)目前最常用的T1WI 系列2)组织对比良好,SNR 较高,伪影少 3)信号变化容易解释5)T2WI 少用SE 系列(太慢、伪影重临床应用:最常用于颅脑、骨关节软组织、脊柱,腹部已逐渐被GRE 序列取代 15.梯度回波序列(GRE ):通过频率编码方向上的梯度场翻转而产生回波信号的序列16.翻转恢复序列(IR ):第一部分是一个﹣180°的射频脉冲,在一定延迟时间后,紧接着的第二个部分是自旋回波或快速自旋回波17.与成像质量有关的主要参数:(信噪比)SNR 、CNR 、空间分辨率、扫描时间一.SNR(信噪比)质子密度↑,SNR↑体素↑,SNR↑——FOV↑层厚↑,体素↑,SNR↑——矩阵↑,体素↓,SNR↓TR↑,SNR↑TE↑,SNR↓翻转角度为90°,信号量最大,SNR最高;角度越小,信号量越少,SNR越低NEX↑,SNR↑接收带宽↓,SNR↑采集线圈:多通道表面相控阵线圈优于表面线圈磁场强度↑,SNR↑;二.CNR(对比噪声比)1.组织间的固有差别,即T1值、T2值、质子密度、运动,差别大,对比好,CNR较大。
核医学复习重点名词解释:1.超级骨显像:显像剂在中轴骨和附肢骨近端呈均匀、对称性异常浓聚,或广泛多发异常浓聚。
骨骼影像异常清晰,肾和膀胱影像常缺失。
常见于恶性肿瘤和广泛性骨转移、甲旁亢。
2.核医学:利用放射性核素诊断、治疗疾病和进行医学研究的学科。
3.阳性显像:病灶部位的显像剂分布高于正常组织的异常影像(稀疏或缺损)“热区”显像,如急性心梗病灶、骨骼病灶。
4.有效半衰期:指生物体内的放射性核素由于机体代谢从体内排出和物理衰变两个因素作用,减少至原有放射性活动度的一半所需的时间。
5.同位素:同一元素中,具有相同的质子数而中子数不同。
6.同质异能素:质子数和中子数都相同,处于不同核能状态的原子。
7.填空题:1.甲状腺结节类型分为温结节,热结节,凉结节,冷结节。
2.脑血流灌注显像(rCBF)的显像剂特点:99mTC-ECD相对分子质量小,不带电荷,脂溶性高,通过血脑屏障。
3.心肌灌注显像剂分为:静息显像,负荷显像。
4.肾静态显像显像剂:99mTC-DMSA;肾动态显像显像剂:肾小球滤过型--99mTC-DTPA(首选),肾小管分泌型--131I-OIH(经典)。
5.肝脏主要显像方法有:肝胶体显像、肝血池显像、血流灌注显像。
6.正电子发射型计算机断层显像(PET) 适用于肿瘤病人,神经系统疾病和精神病患者,心血管疾病患者。
7. 核医学中国际制单位:Bq(贝克)惯用单位:Ci(居里)8.脑血流灌注显像适用于癫痫,TIA等疾病的诊断。
9.癫痫发作期显像表现:稀疏。
发作间期:增强。
简答题:1.肺通气灌注显像在诊断肺栓塞时影像特点:肺栓塞早期即可出现肺灌注显像和通气显像结果不匹配,即出现局部灌注缺损而通气正常。
2.骨显像的原理:显像剂:99mTC-MDP;原理:把亲骨性放射性核素或放射性核素标记的化合物引入体内与骨的主要无机盐成分-羟基磷灰石晶体发生化学吸附、离子交换以及与骨组织中有机成分相结合沉积在骨骼内。
在体外用SRECT 探测核素所发射的射线,从而使骨骼显像。
基础知识1. 细胞是人体结构和功能的基本单位。
2.细胞的结构包括细胞膜、细胞质和细胞核三部分。
3.细胞膜:又称质膜,既是细胞的屏障,又是细胞与环境之间进行物质和信息交换的媒介。
4.细胞核:细胞的控制中心,是遗传物质的主要存在部位5.细胞核由核膜、核仁、染色质和核基质组成。
6.细胞质:包括细胞器、基质和内含物。
7.细胞增殖的方式:无丝分裂,有丝分裂,减数分裂。
人体细胞以有丝分裂方式为主。
组织8.组织由细胞和细胞间质组成。
9.组织分成:上皮组织、结缔组织、肌组织和神经组织10.上皮组织无血管、淋巴管,其营养由深部结缔组织内的血管透过基膜供给,有丰富的神经末梢,可感受各种刺激。
11.上皮组织主要分为被覆上皮和腺上皮两大类,具有保护、吸收、分泌和排泄等功能。
12.腺分为外分泌腺和内分泌腺。
13.外分泌腺的分泌物经导管排泌到体表或器官腔內,如汗腺、唾液腺、胃腺、胰腺等。
14.内分泌腺无导管,腺细胞周围有丰富的毛细血管,其分泌物(称激素)直接释入血液,如甲状腺、肾上腺等。
15.结缔组织由细胞和大量细胞间质组成。
16.细胞间质包括基质、纤维和组织液。
细胞散居于细胞间质内,分布无极性。
17.结缔组织在体内广泛分布,具有连接、支持、营养、保护、防和修复等多种功能。
18.固有结缔组织:疏松结缔组织、致密结缔组织、网状组织、脂肪组织19.疏松结缔组织:又称蜂窝组织,由细胞和细胞间质组成。
20.疏松结缔组织有连接、支持、传送营养物质和代谢产物以及防御等功能。
21.致密结缔组织:主要特征是纤维丰富致密,以胶原纤维为主要成分。
22.网状组织:是造血器官和淋巴器官的基本组成成分。
主要由网状细胞和网状纤维构成。
23.网状组织为血细胞发生和淋巴细胞发育提供适宜的微环境24.脂肪组织:是一种以脂肪细胞为其主要成分的结缔组织。
它的主要作用是为机体的活动贮存和提供能量。
正常男性脂肪含量占体重的10%~20%;女性占15%~25%。
25.软骨组织:由软骨细胞和软骨基质构成。
一.总论1核医学定义利用放射性示踪技术探索、研究诊断治疗疾病的学科特点:复合型学科高度灵敏度动态观察与自然生理生命过程全面性核素治疗特点(靶向性持续低剂量照射高吸收剂量)3核素:即质子数和中子数都相同且原子核处于相同能态的原子为一种核素。
原子核所处的能量状态不同的原子是不同的核素。
4同位素:质子数相同中子数不同的元素互为同位素,具有相同的化学性质和生物学特性。
5同质异能素:质子数和中子数都相同但核的能量状态不同的核素互称同质异能素,如99Tc和99m Tc。
6激发态:原子核处于能量较高状态。
表示方法为m,如99m Tc。
7放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8放射性衰变:放出射线并转变成另一种核素9衰变类型:α衰变;β–衰变;β+衰变;电子俘获;γ衰变(1)α衰变(alpha decay)α粒子是由两个质子和两个中子组成,实际是氦核4He238U→234Pu+4He+Qα粒子的特性:由两个质子和中子组成带2个正电荷射程短,穿透力弱电离辐射生物效应作用强(2)β–衰变(Beta-minus decay)β–衰变发生在中子过剩的原子核32P→32S+β–+Ue+1.71MeV衰变时放出一个β–粒子(电子)和反中微子一种β–衰变核素发射β–粒子的平均能量约等于其最大能量的三分之一特性:(1)连续能谱;(2)穿透力较弱;(3)辐射生物效应较强。
(3)β+衰变(Beta-plus decay)正电子衰变是衰变时放出正电子(positron)的衰变,也叫β+衰变18F→18O+ β+ +ⅴ+Q发生在中子缺乏的核素,也可认为是质子过剩特征湮灭辐射衰变时发射一个正电子和一个中微子(neutrino),核中一个质子转变成中子(4)电子俘获(electron capture)定义:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线:能量转化俄歇电子:能量使电子脱离轨道内转换电子:激发态核转为基态多余能量使轨道电子脱离γ射线:能量较高处于激发态-恢复到基态(4)γ衰变(γ decay)原子核从激发态(excited state)回复到基态(ground state)时,以发射γ光子释放过剩的能量,这一过程称为γ衰变(5)三种射线比较a射线 B射线 r射线穿透力弱较强最强射程 3—4cm 10-20cm 无限大电离能力最强较强很小内照射危害最大大最小外照射危害几乎无大最10半衰期物理半衰期 T1/2:原子数减少一半的时间。
生物半衰期:生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间。
有效半衰期:放射性物质在生物体内由于物理衰变和生物代谢共同作用下减少一半的时间。
11放射性活度:单位时间内原子核的衰变数量。
12带电粒子与物质的相互作用:韧致辐射:带电粒子受到物质原子核的电场的作用,运动方向核速度都发生变化,能量减低,多余的能量以X射线的形式辐射出来。
湮没辐射:正电子与物质的电子结合,电荷消失,两电子质量转化为两个能量相等各为511KeV,方向相反γ光子。
13γ射线与物质的相互作用光电效应:γ光子与介质原子的轨道电子碰撞,把能量全部交给轨道电子,使之脱离原子,光子消失。
康普顿效应:光子把能量部分传给轨道电子,发射成为Compton 电子。
电子对生成:光子能量大于1.022MeV,与物质形成一对正.负电子对。
14外照射防护(1)时间防护缩短接触放射源时间(2)距离防护拉远放射源与工作人员距离(3)屏蔽防护人体放射源之间屏蔽15照射量表示中等能量的r或X射线在空气中的电离能力含义单位质量空气中的电荷量单位 C每 kg二放射性示踪与显像技术16放射性药物体内使用含有放射性核素诊断和治疗的化合物。
17放射性核素制备1反应堆堆照2加速器制备3裂变产物提取18诊断用放射性药物要求1合适的半衰期2衰变方式发射γ或特征性X射线的衰变核素;正电子湮没辐射产生γ光子。
电离密度低。
3光子的能量 100-200Kev20放射性核素示踪技术定义:从体外显示放射性药物在体内(器官和病变组织)的选择性分布。
原理:同一性与所研究的非放射性核素化合物具有相同的性质可测性其具有可测定的射线21放射性核素显像的原理从体外显示放射性药物在体内选择性分布23核医学显像类型静态显像 static imaging 显像剂在体内平衡时的影像。
特点:采集信息量大,图像清晰。
动态显像 dynamic imaging显像剂在体内吸收排泄多个过程时间段的影像。
特点:能反映功能随时间的变化。
24阳性显像和阴性显像阳性显像 positive 显像剂在病灶内放射性高于周围正常组织。
(急性心梗死骨骼病灶)阴性显像 negative 显像剂在病灶内放射性低于周围正常组织。
(心肌灌注显像肝胶现象)三骨骼显像26骨转移率最高:肺癌、乳腺癌、前列腺癌;好发部位:中轴骨、肋骨、骨盆骨27骨骼显像原理:磷酸盐类显像剂与骨骼羟基磷灰石结晶体结合影响因素:1局部血流量2骨骼无机盐代谢和成骨活跃程度3交感神经状态显像剂:临床常用显像剂 99mTc-MDP异常图像血流相:增高急性骨髓炎、骨肿瘤减低股骨头缺血性坏死、骨梗塞、良性骨病变血池相:增高局部血管扩张、静脉回流障碍延迟相:局部放射性增高局部放射性减低“超级影像”(superscan):显像剂再全身骨骼分布呈均匀,对称性异常浓聚,软组织分布很少,骨骼影像分厂清晰,而肾影常消失,这种影像称为超级骨显像,常见于甲亢,恶性肿瘤,广泛性骨转移患者。
闪烁现象(flare phenomenon):一些恶性肿瘤骨转移患者骨骼转移病灶在经过治疗后的一段时间,出现病灶部位浓聚较治疗前更明显,而患者的临床表现则又明显好转,再经过一段时间后,骨骼病灶的显像剂浓聚又会消退,这种现象称为闪烁现象,是骨愈合和修复的表现临床应用1早期诊断恶性转移性骨肿瘤首选方法,较X线提前3~6个月发现病灶。
2原发性骨肿瘤范围、疗效判断3急性骨髓炎早期诊断4骨折诊断5股骨头缺血性坏死早期诊断:股骨头坏死时,血管再生修复过程开始后,成骨作用加强,再梗死区周边显像剂摄取增加,呈现典型的“炸面圈”样改变。
6移植骨、假体监测7代谢性骨病8Paget病即畸形性骨炎,病变以骨盆最为常见四体外分析技术28体外分析技术利用放射性分析方法或其派生的相关技术在体外进行机体内物质种类和含量的分析测定。
分类:体外放射性分析技术放射性竟争结合分析(competitive radioactive binding assay) *放射免疫分析(RIA)放射性非竞争结合分析(non-competitive radioactive binding assay) *免疫放射分析(IRMA)体外非放射性标记免疫分析技术化学发光免疫分析时间分辨荧光免疫分析酶免疫分析29放射免疫分析原理:利用限量的特异抗体与标记抗原和非标记抗原的竞争结合反应,通过测定放射性复合物的量来计算出非标记抗原量的一种超微量分析技术。
特点:*Ag和Ag与Ab有相同的亲和力*Ag和Ab为恒量时,*Ag和Ag的总量大于Ab上的有效结合位点。
Ag的量与*AgAb 的量成反比,而与游离的*Ag成正比。
基本条件1特异性抗体:高亲和力、高特异性、高滴度的抗体。
2标记抗原放射化学纯度: 是指具有免疫活性的标记抗原占总放射性的百分数。
放化纯度要求大于90%以上3分离技术:双抗体法;沉淀法(聚乙二醇法);吸附分离法(活性炭吸附法);双抗体沉淀法(PR试剂法);固相分离法。
4标准品5放射性测量仪器质量控制质量控制:就是利用一些客观的指标,经常对分析质量进行检查,遇有质量异常则及时采取对策,以保证分析误差控制在可接受的范围。
目的:(1)证实验分析误差控制在可接受的范围。
(2)判断试剂盒质量和方法学的稳定性。
30实验室内部质量控制:1零标准管结合率( B o %)2非特异结合率(NSB%)3标准曲线直线回归参数4ED25、ED50、ED7531评价RIA试剂盒质量的指标精密度:准确性灵敏度特异性稳定性健全性32免疫放射分析基本原理:免疫放射分析法是利用过量的标记抗体与非标记抗原形成复合物,用免疫吸附剂除去多余的游离的抗体,发现复合物的放射性与非标记抗原的量呈正相关。
特点:反应动力学灵敏度:特异性稳定性标准曲线的工作范围宽缺点:抗原必须有两个以上的抗原决定簇。
35非放射性免疫分析1 化学发光免疫分析技术(chemiluminescence immunoassay).化学发光标记物:鲁米诺、异鲁米诺和吖啶脂等2 时间分辨荧光免疫分析技术基本原理:用镧系元素铕(Eu)标记抗体或抗原,建立竞争性或非竞争性的免疫分析法。
反应完后,需设法把Eu游离出来再形成一个发射荧光的络合物。
最后通过测定荧光发光的强弱来推算出待测抗原的量。
标记物:镧系元素:铕(Eu),铽(Tb),钐(Sm),镝(Dy)。
镧系元素为离子价态时(如:Eu3+;Tb3+)。
受激发光照射会发出长半衰期的荧光3.酶标记免疫分析 (enzyme immunoassay)常用的酶标记物:碱性磷酸酶(AKP)、*辣根过氧化物酶(Horseradish )和半乳糖苷酶(DG)五肿瘤显像36肿瘤显像机制:1肿瘤组织细胞过度生长,细胞异化-代谢旺盛。
2肿瘤组织异常代谢,异常结构-组织和细胞功能异常。
3肿瘤组织产生异常蛋白质-细胞免疫异常。
4肿瘤组织异常增生需要-血管异常增生和血流量增加37肿瘤显像基本原理利用肿瘤组织的代谢异常,免疫异常,功能异常,功能异常,血流异常时吸收某些放射性素或其标记物发生改变,导致肿瘤组织反射性浓度与正常组织产生差异而再显像中表现出某些特征。
38肿瘤显像特点:能同时提供肿瘤位置,形态大小等解剖形态和代谢,血流,免疫等功能异常。
特异性高,灵敏好,无创伤适应症1肿瘤的良、恶性鉴别诊断2肿瘤的分期3评价肿瘤的疗效4检测肿瘤的复发与转移5指导放疗6指导活检7肿瘤残余和治疗后纤维组织形成或坏死的鉴别8寻找原发灶39 18FDG 肿瘤代谢显像原理恶性肿瘤细胞的异常增殖学要葡萄糖的过度利用,FDG为葡萄糖类似物,是葡萄糖代谢示踪剂,应用18F-FDB进行PET显像可获得葡萄糖代谢影像40标准摄取值(standard uotake value)SUV=肿瘤组织放射性活度(MBq/g)注入放射性活度(MBq/g)/体重(g)41检查影响因素1血糖水平的影响2正常组织吸收影响3良性疾病的影响4肿瘤组织酶活性影响5肿瘤反应的影响42肿瘤显像试剂:18FDG、67Ga、201Tl 、99m Tc-MIBI、99m TC(Ⅴ)-DMSA。
六脑显像43脑血流灌注显像:原理:某些具有小分子,不带电荷,脂溶性高的胺类化合物和四配基络合物显像剂,如常用的某些能穿透完整的血脑屏障被脑细胞摄取,在脑内有关酶作用下转变为水溶性化合物不能反扩散出脑细胞而较长时间滞留在脑内。