AFLP分子标记技术及其应用2
- 格式:ppt
- 大小:4.71 MB
- 文档页数:7
AFLP 技术的基本原理与实验方法AFLP 技术的基本原理:AFLP 技术是一项新的分子标记技术,其原理是:基因组DNA经过二种酶不同的限制性内切酶酶切后,产生粘性末端,再使用连接酶将人工合成的双链接头连接在酶切位点的粘性末端。
接头一端具有与内切酶同样的识别粘性末端,互补连接后成为DNA模板进行预扩增。
接头和与接头相邻的酶切片断的几个碱基序列作为引物的结合位点。
引物由3部分组成: ①核心碱基序列,该碱基序列与人工接头互补;②特异性酶切序列;③引物3’端选择性碱基。
选择性碱基延伸到酶切片段区,这样就只有那些两端序列能与选择碱基配对的限制性酶切片段被扩增。
另外,通过选择在末端分别添加了1~3个选择性核苷酸的不同引物,可以达到选择扩增的目的。
这些选择性核苷酸使得引物选择性地识别具有特异配对序列的内切酶酶切片段。
并与之结合,实现特异性扩增。
实验方法:(1)DNA 酶切AFLP技术成功的关键在于DNA的充分酶切,所以对模板质量要求较高,在DNA完全溶解后利用紫外分光光度仪测定DNA浓度,将DNA浓度用双蒸水调整到50ng/ul,应避免其他DNA污染和抑制物质的存在。
表1:E-M酶切体系表2:P-M酶切体系表3:P-T酶切体系表4:E-T酶切体系表5:M-S酶切体系表6:T-S酶切体系※先将模板吸入PCR板中,再将内切酶、Buffer、双蒸水配制为Mix(因内切酶用量很少或者因少数枪头质量问题,每次吸取内切酶时一定要注意观察吸取是否足量),将配制好的Mix 加入到模板中,最后在配好的反应体系中加入矿物油覆盖离心,放入PCR仪或水浴锅中37℃条件下5-6小时,然后立即转入65℃条件下1小时完全酶切。
一般做1/2倍体系即可。
目前本实验室拥有的内切酶有:EcoRⅠ;MseⅠ;PstⅠ;TaqⅠ;SacⅠ,以上内切酶均为Fermentas 公司生产。
(2)连接表8:连接体系※在连接的过程中不同的内切酶都有其对应的接头(表7),不同的酶切组合就用相应的接头组合。
分子标记方法:AFLP原理和操作步骤AFLP原理:AFLP也是通过限制性内切酶片段的不同长度检测DNA多态性的一种DNA分子标记技术。
但AFLP是通过PCR反应先把酶切片段扩增,然后把扩增的酶切片段在高分辨率的顺序分析胶上进行电泳,多态性即以扩增片段的长度不同被检测出来。
实验中酶切片段首先与含有与其共同粘末端的人工接头连接,连接后的粘末端顺序和接头顺序就作为以后PCR反应的引物结合位点。
实验中,根据需要通过选择在末端上分别填加了1~3个选择性核苷的不同引物,可以达到选择性扩增的目的。
这些选择性核苷酸使得引物能选择性地识别具有特异配对顺序的内切酶片段,进行结合,导致特异性扩增。
实验试剂Taq酶、EcoRI/ MseIEcoRI/ MseI接头、E+A引物M+C引物、T4DNALigaseE和M引物、琼脂、过硫酸胺、丙烯酰胺、尿素、硝酸银、甲酰胺、dNTPs、二甲苯青、冰醋酸、玻璃硅烷、50bpMark操作步骤(一)基因组DNA提取和纯化参考大量提取DNA实验方法提取基因组DNA。
DNA的纯化:用0.8%琼脂糖凝胶(含EB0.5μg/ml)电泳检测片段大小,取出其中的1/3已提取的基因组DNA进行纯化,首先用TE缓冲液补满至总体积50ul,再等体积苯酚/氯仿/异戊醇(25:24:1)、氯仿/异戊醇(24∶1)各抽提一次,离心吸上清液于Eppendorf 管中,加入1/10体积的NaAC和二倍体积预冷的无水乙醇,-20℃放置2h以上,10000g 离心10min,用70%的乙醇漂洗DNA沉淀2次,风干后溶于30μlTE缓冲液中,UV-2401PC 紫外分光光度计检测A260、A280值并定量,再用0.8%琼脂糖凝胶(含EB0.5μg/ml)电泳检测片段大小。
注:0.1-0.2g组织可用100ul溶液E溶,0.5g组织,溶液E可增加至300ul,此时DNA 浓度大约为100ng/ul。
(二)限制性酶切及连接在0.2ml离心管中加入:模板量约为250ng,2.5μl 10×酶切缓冲液,2.5μl 10×T4DNA 连接酶切缓冲液,5U EcoRⅠ,5U MseⅠ,2U T4连接酶,50pmol MseⅠ接头,双蒸水补至25μl。
基础理论 Basic researchA FLP的原理及其应用王 斌 翁曼丽(中国科学院遗传研究所 100101)提 要:AFLP是检测DNA多态性的一种新的分子标记技术。
对其起源、基本原理、技术程序和应用范围及前景进行了介绍和描述。
关键词:分子标记技术 AFLP 原理 应用1 分子标记技术的快速发展在过去10a中,分子标记技术得到了突飞猛进的发展,至今已有10余种分子标记技术相继出现,并在各个研究领域得到了应用。
其中在植物分子生物学领域中应用最广泛的是RF LP和RA PD。
R FL P 的结果稳定可靠,重复性好,特别适应于建立连锁图,例如水稻RF LP连锁图的建立〔1,2〕。
RF L P比较作图进一步揭示了在主要粮食作物中,R FL P标记在染色体上的排列具有类似的顺序〔3,4〕。
因此R FL P 自出现至今虽然已有10多a了,但它仍是当今应用最广泛的一种分子标记。
然而,R FL P必须经过滤膜转移和So uthern杂交,费时、费力、周期长。
另外, RF L P对DN A多态性检出的灵敏度不高,RF L P连锁图上还有很多大的空间区,这限制了它的进一步发展。
PCR对分子标记技术的发展产生了巨大的推动作用,迄今所用的分子标记技术尽管可以分为多种类型,其实除了以传统的Souther n杂交为基础的RF L P外,其它各类分子标记都涉及P CR。
R AP D就是以随机引物为模板通过P CR扩增进行DN A多态性研究的,与RF LP相比,它较便宜,方便易行,非常灵敏,DN A用量少,而且不需要同位素,安全性好。
继RF L P之后,RA PD是应用最广泛的,特别是在寻找与目的基因连锁的分子标记方面,近年来报道了大量的与各种目的基因连锁的R AP D标记。
近来西红柿P to基因和水稻Xa21基因的成功分离就是首先找到了与目的基因紧密连锁的RA PD标记,然后通过M BC(M ap based clo ning)方法克隆了目的基因〔5,6〕。
分子标记――AFLP原理和操作步骤一、原理AFLP也是通过限制性内切酶片段的不同长度检测DNA多态性的一种DNA 分子标记技术。
但AFLP是通过PCR反应先把酶切片段扩增,然后把扩增的酶切片段在高分辨率的顺序分析胶上进行电泳,多态性即以扩增片段的长度不同被检测出来。
实验中酶切片段首先与含有与其共同粘末端的人工接头连接,连接后的粘末端顺序和接头顺序就作为以后PCR反应的引物结合位点。
实验中,根据需要通过选择在末端上分别填加了1~3个选择性核苷的不同引物,可以达到选择性扩增的目的。
这些选择性核苷酸使得引物能选择性地识别具有特异配对顺序的内切酶片段,进行结合,导致特异性扩增。
二、实验试剂Taq酶 EcoRI/ MseIEcoRI/ MseI接头 E+A引物M+C引物T4DNALigaseE和M引物琼脂过硫酸胺丙烯酰胺尿素硝酸银甲酰胺 dNTPs 二甲苯青冰醋酸玻璃硅烷50bpMark三、操作步骤(一)基因组DNA提取和纯化A 、参考实验一的大量提取DNA实验方法,B、DNA的纯化:用0.8%琼脂糖凝胶(含EB0.5µg/ml)电泳检测片段大小,取出其中的1/3已提取的基因组DNA进行纯化,首先用TE缓冲液补满至总体积50ul,再等体积苯酚/氯仿/异戊醇(25:24:1)、氯仿/异戊醇(24∶1)各抽提一次, 离心吸上清液于Eppendorf管中,加入1/1 0体积的NaAC和二倍体积预冷的无水乙醇,-20℃放置2h以上,10000g 离心10min,用70%的乙醇漂洗DNA沉淀2次 ,风干后溶于30μlTE缓冲液中,UV-2401PC(岛津)紫外分光光度计检测A260、A280值并定量,再用0.8%琼脂糖凝胶(含EB0.5µg/ml)电泳检测片段大小。
注:0.1-0.2g组织可用100ul溶液E溶,0.5g组织,溶液E可增加至300u l,此时DNA浓度大约为100ng/ul。
(二)限制性酶切及连接在0.2ml离心管中加入:模板量约为250ng,2.5μl 10×酶切缓冲液, 2. 5μl 10×T4DNA连接酶切缓冲液,5U EcoRⅠ, 5U MseⅠ,2U T4连接酶,50pmol MseⅠ接头(序列见表2),双蒸水补至25μl。
畜牧兽医科技信息2007.0714作者简介:任斌(1981~),男,硕士研究生,研究方向:动物分子数量遗传育种。
E-mail:renbin2050@yahoo.com.cn%通讯作者:黄生强(1968~),男,副教授,硕士生导师.研究方向:分子遗传与动物育种。
E-mail:hsq321@sina.com前言扩增片段长度多态性(AmplifiedFragmentLengthPoly-morphism,AFLP)技术是由Zabeau等1992年发明的,并于1993年获得欧洲专利局专利。
它是在RFLP和RAPD结合的基础上发展起来的,克服了两者各自的缺点,而集中了二者的优点,它既有RFLP的可靠性,又有RAPD的方便性。
AFLP被认为是迄今为止最为有效的分子标记,不管基因组DNA有多么复杂,理论上讲,用AFLP方法都可以检测出它们的多态性。
它不仅具备了多态性丰富、共显性表达、不受环境影响、无复等位效应的特点,而且还具带纹丰富、用样量少、灵敏度高、快速高效的特殊优点。
一个0.5mgDNA样品,可做4000个反应,获得8万个标记,650万条带纹。
通过实验验证,AFLP被认为是一种理想的有效的分子标记,已用于基因鉴定!基因作图!基因表达等方面。
目前,不仅在水稻、小麦和棉花等主要农作物上得以应用,还在羊、猪和狗等动物遗传育种中得到广泛应用。
本文将主要对AFLP标记技术在猪遗传育种中的应用加以综述。
1AFLP的发生发展!基本原理及其技术流程1.1AFLP的发生发展AFLP(AmplifiedFragmentLengthPolymorphism)是1992年由荷兰科学家Zabeau和Vos发展起来的一种检测DNA多态性的新方法。
至今正式发表的关于AFLP的论文还不多,可实际上做这方面研究的人已很多。
首先在棉花,水稻等农作物的遗传育种等方面得以快速应用,粟米群等[6]应用AFLP标记鉴定小豆栽培型种质遗传多样性认为AFLP是一种可靠又理想的遗传标记方法。
分子标记——AFLP原理和操作步骤一、原理AFLP也是通过限制性内切酶片段的不同长度检测DNA多态性的一种DNA分子标记技术。
但AFLP是通过P CR反应先把酶切片段扩增,然后把扩增的酶切片段在高分辨率的顺序分析胶上进行电泳,多态性即以扩增片段的长度不同被检测出来。
实验中酶切片段首先与含有与其共同粘末端的人工接头连接,连接后的粘末端顺序和接头顺序就作为以后PCR反应的引物结合位点。
实验中,根据需要通过选择在末端上分别填加了1~3个选择性核苷的不同引物,可以达到选择性扩增的目的。
这些选择性核苷酸使得引物能选择性地识别具有特异配对顺序的内切酶片段,进行结合,导致特异性扩增。
二、实验试剂Taq酶、EcoRI/ MseIEcoRI/ MseI接头、E+A引物M+C引物、T4DNALigaseE和M引物、琼脂、过硫酸胺、丙烯酰胺、尿素、硝酸银、甲酰胺、dNTPs、二甲苯青、冰醋酸、玻璃硅烷、50bpMark三、操作步骤(一)基因组DNA提取和纯化A、参考实验一的大量提取DNA实验方法,B、DNA的纯化:用0.8%琼脂糖凝胶(含EB0.5μg/ml)电泳检测片段大小,取出其中的1/3已提取的基因组D NA进行纯化,首先用TE缓冲液补满至总体积50ul,再等体积苯酚/氯仿/异戊醇(25:24:1)、氯仿/异戊醇(2 4∶1)各抽提一次,离心吸上清液于Eppendorf管中,加入1/10体积的NaAC和二倍体积预冷的无水乙醇,-20℃放置2h以上,10000g离心10min,用70%的乙醇漂洗DNA沉淀2次,风干后溶于30μlTE缓冲液中,U V-2401PC(岛津)紫外分光光度计检测A260、A280值并定量,再用0.8%琼脂糖凝胶(含EB0.5μg/ml)电泳检测片段大小。
注:0.1-0.2g组织可用100ul溶液E溶,0.5g组织,溶液E可增加至300ul,此时DNA浓度大约为100ng/ul。
(二)限制性酶切及连接在0.2ml离心管中加入:模板量约为250ng,2.5μl 10×酶切缓冲液, 2.5μl 10×T4DNA连接酶切缓冲液,5U EcoRⅠ,5U MseⅠ,2U T4连接酶,50pmol MseⅠ接头(序列见表2),双蒸水补至25μl。
•二、AFLP的基本原理是什么?•三、AFLP的实验过程怎样?•四、AFLP的应用研究如何?•五、对AFLP的评价分子标记的历史:•第一代分子标记技术RFLP(Restriction Fragment Length Polymorphism,限制性片段长度多态性)•第二代分子标记技术RAPD(Random Amplified PolymorphicDNA,随机扩增多态性DNA)AFLP(AmplifiedFragmentLengthPolymorphism,扩增片断长度多态性)•事实上,还有很多分子标记技术像SSR、ISSR、SRAP(相关序列扩增多态性)另外,还有现在号称为第三代分子标记的SNP(单核苷酸多态性)等AFLP的基本原理•基因组DNA经两种限制性内切酶酶切,形成分子量大小不等的随机限制性酶切片段,将特定的人工合成的短的双链接头连在这些片段的两端,形成一个带接头的特异片段,通过接头序列和PCR引物3ˊ端选择性碱基的识别,对特异性片段进行预扩增和选择性扩增。
最后只有那些两端序列能与选择性碱基配对的限制性酶切片段才能被扩增;最后将选择性扩增产物在高分辨率的变性聚丙烯酰胺凝胶上电泳,寻找多态性扩增片段。
AFLP的实验流程•模板制备DNA的提取(SDS法和CTAB法)酶切连接PCR扩增(PCR AMPLIFIED )预扩增(Pre-amplified)选择性扩增(Elective amplified)DNA的提取(SDS法和CTAB法)•SDS是Sodium dodecyl sulfate的缩写称为十二烷基磺酸钠,•CTAB是Cetyltrimethyl ammoniumbromide的缩写十六烷基三甲基溴化氨,•两种都是去污剂,它们都能破坏细胞膜使膜蛋白变性沉淀,故而使核酸释放出来,另外,它还能保护DNA不受内源核酸酶的降解。
酶切•为了使酶切片段大小分布均匀,一般采用两个限制性内切酶,一个用6个碱基识别位点的限制性内切酶(常用EcoRI,、PstI或SacI),另一个用4个碱基识别位点的限制性内切酶(常用MseI、TaqI)。
实验推荐分子标记技术AFLP 引言:分子标记技术是现代遗传学和分子生物学研究中不可或缺的工具之一。
由于其高度多态性和高分辨率的特点,AFLP(Amplified Fragment Length Polymorphism,扩增片段长度多态性)技术在种质资源评价、基因组构建和进化生态学研究等领域得到广泛应用。
本文将介绍AFLP 技术的基本原理、实验步骤及数据分析方法,旨在为研究人员提供一种高效、准确的分子标记技术。
一、AFLP技术的原理AFLP技术利用限制性内切酶对基因组DNA进行特异性切割,然后通过PCR扩增和电泳分离等步骤,获得多态性的DNA序列。
其原理流程如下:1. DNA提取:从不同样本(如植物、微生物等)中提取总DNA,保证所需的DNA质量和浓度。
2. 酶切反应:选择适当的限制性内切酶对DNA进行切割,生成特定的DNA片段。
3. 适配体连接:将适配体序列连接到DNA片段的末端,使其成为PCR扩增的起始模板。
4. 扩增反应:利用引物对连接的DNA片段进行PCR扩增,生成大量的AFLP产物。
5. 电泳分离:将扩增的AFLP产物进行电泳分离,根据片段的大小而呈现不同的迁移距离。
6. 成像和数据分析:利用凝胶图像获取AFLP分析结果,并进行数据分析和解读。
二、AFLP实验步骤AFLP实验的具体步骤如下:1. 样本准备:选择适当数量的样本,根据研究目的确定样品的种类和数量,并进行相应的预处理。
2. DNA提取:采用合适的DNA提取方法提取样本中的总DNA,并进行质量和浓度检测。
3. 酶切反应:选择合适的限制性内切酶对DNA进行酶切反应,生成DNA片段。
4. 适配体连接:将适配体序列连接到DNA片段末端,以便进行扩增反应。
5. 扩增反应:利用PCR技术对连接的DNA片段进行扩增,生成大量的AFLP产物。
6. 电泳分离:将扩增的AFLP产物进行凝胶电泳分离,根据片段大小进行排序,形成AFLP图谱。
7. 图谱分析:根据AFLP图谱进行数据分析,解读样品之间的遗传关系。
分子标记在作物种质资源评价中的应用作物种质资源是现代农业发展的重要基础和保障。
种质资源评价是作物育种和遗传改良的基础环节,而分子标记技术是评价作物种质资源不可或缺的手段之一。
本文将从分子标记技术原理、种质资源评价方法、应用案例等方面对其应用进行探讨。
一、分子标记技术原理分子标记可以简单解释为在分子水平上,对不同个体之间基因变异的特异性检测。
作为现代分子遗传学的重要组成部分,分子标记技术已广泛应用于种质资源评价和遗传改良。
常见的分子标记类型包括基因多态性序列标记(SSR),单倍型标记(SNP)和扩增片段长度多态性标记(AFLP)等。
分子标记的基本原理是利用基因间重复DNA序列的变异,通过PCR扩增和电泳分离,检测出个体间的DNA序列变异差异。
二、种质资源评价方法(一)基于分子标记的种质资源评价分子标记在种质资源的快速鉴定、分类和遗传多样性评价中发挥了重要作用。
基于分子标记的种质资源评价方法包括基因频率分析、遗传距离图谱、群体分化分析等。
其中,遗传距离图谱是使用分子标记数据构建的一种反映不同种质资源群体之间遗传距离关联程度的图谱。
通过不同种质资源群体之间的DNA序列变异差异,可以将其聚类到同一分支上,或者说明它们在遗传上存在相似性。
(二)基于表型的种质资源评价基于表型的种质资源评价是传统的种质资源评价方法,包括外形鉴定和生理生化鉴定等。
这些评价指标总是受到环境因素影响,因此不能全面反映种质资源的遗传特性。
基于分子标记的种质资源评价方法可以洞察到DNA序列层面上的变异情况,可以判断群体间的遗传多样性差异,有助于发现群体之间的亲缘关系和遗传稳定性。
三、应用案例(一)玉米品种种质资源评价玉米是世界上最重要的粮食作物之一,其种质资源评价具有重大意义。
使用SSR标记对我国60个玉米品种进行了RD、IR和TYL三个玉米螟的抗性评价。
研究结果表明,具有抗RD和TYL两种抗性的玉米品种比只有IR抗性的品种更为抗虫。
AFLP技术的原理与应用1. 简介AFLP(Amplified Fragment Length Polymorphism,扩增片段长度多态性)技术是一种基于PCR扩增的分子标记技术,用于研究基因组的遗传多样性和基因型差异。
它结合了限制性内切酶的切割特点和PCR扩增的高效性,可以快速而高效地分析大量DNA样本上的多态性。
2. 原理AFLP技术将DNA分子进行限制性内切酶切割,得到的片段通过两次PCR扩增反应使其增加特异性引物序列,然后通过聚丙烯酰胺凝胶电泳分析DNA片段的长度差异,从而确定遗传多样性。
AFLP技术的主要步骤包括:2.1 DNA样本的制备首先,需要从研究对象中提取DNA样本,并通过质量检测确保样本的质量和纯度。
通常使用酚/氯仿法、磁珠法等方法提取高质量的DNA。
2.2 限制性内切酶切割将提取的DNA样本与适当的限制性内切酶一起孵育,选择性切割DNA片段。
不同的内切酶会产生不同的切割模式和DNA片段长度。
2.3 适配体连接适配体是特定序列的引物,通过连接适配体,使得限制性内切酶切割的DNA 片段获得特异性序列。
适配体连接反应包括两步PCR反应,第一步是单核苷酸加酶反应(T4 DNA核苷酸转移酶),第二步是锚定PCR。
2.4 扩增和荧光标记经过适配体连接后的DNA片段即可进行扩增反应。
采用带有荧光染料的引物进行PCR扩增,荧光标记的引物可用于不同长度的DNA分子之间的区分。
2.5 凝胶电泳分析将扩增产物进行凝胶电泳分析,通常使用聚丙烯酰胺凝胶,根据DNA片段的长度差异,通过荧光检测仪或射线照射,获得DNA的长度信息。
3. 应用AFLP技术具有高通量、高灵敏度和高分辨率的特点,广泛应用于生物学和农学等领域。
以下是AFLP技术的一些应用:3.1 遗传多样性研究AFLP技术可以用于测定不同个体、种群或物种之间的遗传多样性,从而了解基因组的遗传变异情况。
3.2 基因型鉴定AFLP技术可以用于鉴定不同个体或物种之间的基因型差异,以区分各个个体或物种。