红外光谱2015-1详解
- 格式:ppt
- 大小:1.38 MB
- 文档页数:47
仪器分析实验有机化合物的红外光谱分析 2015年4月21日有机化合物的红外光谱分析开课实验室:环境资源楼312【实验目的】1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作;2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程;3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。
【基本原理】• 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对物质进行定性和定量分析。
特别是对化合物结构的鉴定,应用更为广泛。
• 红外吸收法:类型:吸收光谱法;原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。
这是因为分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。
当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对化合物进行定性和定量分析;条件:分子具有偶极矩。
【仪器与试剂】1、仪器:傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机;玛瑙研钵;红外灯。
2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。
【实验步骤】1、样品制备(1)固体样品:KBr压片法在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。
在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。
KBr压片形成后,若已透明,可用夹具固定测试;(2)液体样品:液膜法取一对NaCl窗片,用刮勺沾取液体滴在一块窗片上,然后用另一块窗片覆盖在上面,形成一个没有气泡的毛细厚度薄膜,用夹具固定,即可放入仪器光路中进行测试,此法适用于高沸点液体样品。
Infrared SpectroscopyDalian(116029),China2005-02-25红外光谱(IR)分子振动与红外光谱的基本原理分子中的原子与原子之间的化学键键长、键角不是固定不变的,如同弹簧连接起来的一组球。
整个分子一直在不断的振动着,当一定频率的光经过分子时,就被分子中相同频率的振动的键所吸收,如果分子中没有振动频率相同的键,红外光就不会被吸收。
因此,用连续改变频率的红外光照射样品时,则通过样品槽的红外光有些区域较弱,有些区域较强。
如用频率(v)或波长为横坐标,用透光率(Transmittance,T%)为纵坐标作图,就得到了红外吸收光谱。
可以设想分子中的键与弹簧相似,因此,化学键的振动可按谐振动处理,不同的是化学键振动能量是量子化的。
双原子分子振动的机械模型如下图:子质量(m1与m2)的函数:振动频率如以波数表示,则:分子的振动自由度与峰数分子中键的振动大致可分为伸缩振动和弯曲振动两种,分别以v 和δ表示,如下图所示:伸缩振动引起键长的变化,它们所产生的吸收带在高波数一端,伸缩振动有不对称伸缩和对称伸缩之分,前者在高波数一段。
弯曲振动引起键角的变化,它们的力常数较小,因此它们所产生的吸收带在低波数一端,弯曲振动有面内振动和面外振动之分,前者也在高波数一端。
它们的表示方法如下图:IR谱产生的吸收峰的数目取决于分子振动自由度。
一个原子在空间运动有三个自由度,即向x、y、z三个坐标方向运动,在含有n个原子的分子中,由于当原子结合成分子时,自由度数不损失,所以,分子自由度的总数为3n个。
分子作为一个整体,其运动状态可分为平动、振动及转动三类。
分子自由度数=平动自由度数+转动自由度数+振动自由度数振动自由度数=分子自由度数-平动自由度数-转动自由度数【注意】线性分子的转动自由度为2,非线性分子的转动自由度为3 因此,线性分子振动自由度为3n-5,非线性分子振动自由度为3n-6。
理论上讲,每个振动自由度在红外光谱区都将产生一个吸收峰。
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
红外分光光度法2015年版《药典》四部通则0402红外分光光度法是在4000~400cm-1波数范围内测定物质的吸收光谱,用于化合物的鉴别、检查或含量测定的方法。
除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析;化合物对红外辐射的吸收程度与其浓度的关系符合朗伯-比尔定律,是红外分光光度法定量分析的依据。
仪器及其校正可使用傅里叶变换红外光谱仪或色散型红外分光光度计。
用聚苯乙烯薄膜(厚度约为0.04mm)校正仪器,绘制其光谱图,用3027cm-1, 2851cm-1,1601cm-1,1028cm-1,907cm-1处的吸收峰对仪器的波数进行校正。
傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。
用聚苯乙烯薄膜校正时,仪器的分辨率要求在3110~2850cm-1范围内应能清晰地分辨出7个峰,峰2851cm-1与谷2870cm-1之间的分辨深度不小于18%透光率,峰1583cm-1与谷1589cm-1之间的分辨深度不小于12%透光率。
仪器的标称分辨率,除另有规定外,应不低于2cm-1。
供试品的制备及测定通常采用压片法、糊法、膜法、溶液法和气体吸收法等进行测定。
对于吸收特别强烈、或不透明表面上的覆盖物等供试品,可采用如衰减全反射、漫反射和发射等红外光谱方法。
对于极微量或需微区分析的供试品,可采用显微红外光谱方法测定。
1.原料药鉴别除另有规定外,应按照国家药典委员会编订的《药品红外光谱集》各卷收载的各光谱图所规定的方法制备样品。
具体操作技术参见《药品红外光谱集》的说明。
采用固体制样技术时,最常碰到的问题是多晶现象,固体样品的晶型不同,其红外光谱往往也会产生差异。
当供试品的实测光谱与《药品红外光谱集》所收载的标准光谱不一致时,在排除各种可能影响光谱的外在或人为因素后,应按该药品光谱图中备注的方法或各品种项下规定的方法进行预处理,再绘制光谱,比对。
药品红外光谱集2015药物红外光谱集是一种包含药物红外光谱的参考书,用于药学研究和判断药物的质量和纯度。
本文将重点介绍2015年的药品红外光谱集。
2015年的药品红外光谱集中收录了大量药物的红外光谱数据,这些药物包括常见的处方药、非处方药和中草药等。
这些数据是通过使用红外光谱仪对药物进行测量得到的。
红外光谱是一种用于研究物质结构的分析技术,它通过测量物质对红外光的吸收情况来确定物质的成分和结构。
因此,红外光谱集可以提供有关药物成分和结构的信息。
药品红外光谱集的使用可以帮助药学研究者确定药物的质量和纯度。
根据药典中的规定,药物的红外光谱应符合一定的标准,例如吸收峰位置和峰宽等。
通过对药物的红外光谱进行比对分析,可以判断药物是否符合这些标准。
如果药物的红外光谱与标准不符,可能意味着药物存在质量问题,需要进一步进行检验和评估。
此外,药品红外光谱集还可以用于药物的真伪鉴定。
由于每种药物的成分和结构是独特的,因此药物的红外光谱也是独特的。
通过对比未知药物的红外光谱与已知药物的红外光谱集,可以确定药物的真伪。
如果未知药物的红外光谱与已知药物的红外光谱集中的某种药物吻合,可以判断该药物是真品。
药品红外光谱集的使用还可以帮助药学研究者进行药物开发和新药探索。
通过分析药物的红外光谱,可以了解药物的成分和结构,进而研究药物的药理学和药代动力学特性。
这对于药物的活性成分和治疗效果的评估非常重要。
除了药学领域,红外光谱集在其他领域的应用也很广泛。
例如,化学工业可以使用红外光谱集来分析和鉴定化学物质。
环境科学家可以使用红外光谱集来研究土壤和水样品中的有机物成分。
食品科学家可以使用红外光谱集来分析食品中的营养成分和添加剂等。
总而言之,2015年的药品红外光谱集是一本重要的参考书,它包含了大量药物的红外光谱数据。
通过分析这些数据,可以帮助药学研究者判断药物的质量和纯度,进行药物的真伪鉴定,以及进行药物的开发和新药探索。
此外,红外光谱集还可以在化学、环境科学和食品科学等领域得到广泛的应用。