电镜结构
- 格式:ppt
- 大小:2.62 MB
- 文档页数:45
扫描电镜的结构及原理一、简介1特点:扫描电子显微镜主要特点是电子束在样品上进行逐点扫描,获得三维立体图像,图像观察视野大、景深长、富有立体感。
在观察样品表面形貌的同时,进行晶体学分析及成分分析。
常规的扫描电镜分辨本领通常为7~10nm,加速电压在1~50 kV范围。
生物样品一般用10~20kV,成像放大率几十倍至几十万倍。
2用途:扫描电镜可对样品进行综合分析,已成为重要分析工具,纤维、纸张、钢铁质量等,观察矿石结构、检测催化剂微观结构、观看癌细胞与正常细胞差异等。
3日本日立公司产品S-5200型为超高分辨率(ultra-highresolutio n)扫描电镜,加速电压为1k V时,分辨率可达1.8nm,加速电压为30kV时,分辨率高达0.5nm。
此外,还具有独特的电子信号探测系统,不但能观察样品三维形态结构甚至能看到样品的原子或分子结构,在使用性能方面已超越任何一种常规扫描电镜。
二、扫描电镜的结构扫描电镜的组成:(1)、电子光学系统:组成:①电子枪与透镜系统;②电子探针扫描偏转系统作用:产生直径为几十埃的扫描电子束,即电子探针,使样品表面作光栅状扫描。
①电子枪组成:阴极、阳极、栅极。
直径约为0.1mm钨丝制成,加热后发射的电子在栅极和阳极作用下,在阳极孔附近形成交叉点光斑,其直径约几十微米。
扫描电镜没有成像电镜,成像原理与透射电镜截然不同。
所有透镜皆为缩小透镜,起缩小光斑的作用。
缩小透几十镜将电子枪发射的直径约为30μm电子束缩小成几十埃,由两个聚光镜和一个末透镜完成三个透镜的总缩小率为2000~3000倍。
两个聚光镜分别是第一聚光镜和第二聚光镜,可将在阳极孔附近形成的交叉点缩小。
聚光镜可动光阑位于第二聚光镜和物镜之间,用于控制选区衍射时电子书的发散角。
扫描电镜的基本结构和工作原理教材扫描电镜的基本结构和工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察物质表面形貌和成分的高分辨率显微镜。
相比传统光学显微镜,扫描电镜具有更高的放大倍率和更好的分辨率,能够观察到更细微的细节。
一、基本结构扫描电镜主要由电子枪、电子透镜系统、样品台、探测器和显示器等组成。
1. 电子枪:电子枪是扫描电镜的核心部件之一,负责产生高能电子束。
电子枪由热阴极和阳极组成,热阴极通过加热产生热电子,经过加速电场加速后形成电子束。
2. 电子透镜系统:电子透镜系统由多个透镜组成,用于控制电子束的聚焦和聚束。
电子束经过电子透镜系统后,能够形成较小的束斑并具有较高的聚焦度,从而提高分辨率。
3. 样品台:样品台是放置待观察样品的平台,通常由金属材料制成。
样品台上的样品通过调整样品台的位置和角度,可以在电子束下进行观察。
4. 探测器:探测器是用来接收经过样品表面反射或散射的电子信号,并将其转化为图像信号。
常见的探测器有二次电子探测器和反射电子探测器等。
5. 显示器:显示器用于显示扫描电镜观察到的图像,将电子信号转化为可见的图像。
二、工作原理扫描电镜的工作原理基于电子和物质的相互作用。
当高能电子束照射到样品表面时,会与样品中的原子和电子发生相互作用,产生各种信号。
1. 二次电子信号:当电子束照射到样品表面时,会激发样品表面的原子和电子,使其发射出较低能量的二次电子。
二次电子信号的强度与样品表面形貌和成分有关,通过探测器接收并放大二次电子信号,可以得到样品表面形貌的图像。
2. 反射电子信号:部分电子束会被样品表面反射回来,形成反射电子信号。
反射电子信号的强度与样品表面的原子排列和晶体结构有关,通过探测器接收反射电子信号,可以得到样品的晶体结构信息。
3. 辐射光谱:当电子束与样品表面相互作用时,还会产生X射线、荧光和透射电子等辐射。
通过分析这些辐射信号,可以获取样品的元素成分和化学状态等信息。
扫描电镜的基本结构和工作原理讲解扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,用于观察和研究微观世界中的样品。
它通过利用电子束与样品的相互作用,获取样品表面的形貌和成分信息。
本文将详细介绍扫描电镜的基本结构和工作原理。
一、基本结构扫描电镜主要由以下几个部分组成:1. 电子枪(Electron Gun):电子枪是扫描电镜的核心部件之一,它产生高能电子束。
电子束的形成是通过热发射或场发射的方式,通过加热或加电场使金属阴极发射电子。
2. 准直系统(Condenser System):准直系统用于聚焦和准直电子束。
它由准直透镜和聚焦透镜组成,能够将电子束聚焦成细小的束斑并准直。
3. 样品台(Sample Stage):样品台是放置待观察样品的平台。
它通常具有微动装置,可以在水平和垂直方向上移动样品,以便于观察不同区域。
4. 扫描线圈(Scan Coils):扫描线圈用于控制电子束在样品表面的扫描。
通过调节扫描线圈的电流,可以控制电子束的位置和扫描速度。
5. 检测器(Detector):检测器用于接收样品表面反射、散射或发射的信号。
常用的检测器包括二次电子检测器和反射电子检测器。
6. 显示器和计算机系统:显示器用于显示扫描电镜获取的图像,计算机系统用于图像的处理和分析。
二、工作原理扫描电镜的工作原理可以简单概括为以下几个步骤:1. 电子束的产生:电子束由电子枪产生,通过加热或加电场的方式使金属阴极发射电子。
电子枪通常采用热阴极或场发射阴极。
2. 电子束的准直和聚焦:电子束经过准直系统的聚焦透镜和准直透镜,被聚焦成细小的束斑并准直。
3. 电子束与样品的相互作用:准直后的电子束通过扫描线圈控制在样品表面的扫描。
当电子束与样品相互作用时,会发生多种相互作用,包括二次电子发射、反射电子、散射电子等。
4. 信号的检测:样品表面反射、散射或发射的信号被检测器接收。
扫描电镜的基本结构和工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它通过扫描样品表面并利用电子束与样品相互作用来获取样品的表面形貌和成份信息。
下面将详细介绍扫描电镜的基本结构和工作原理。
一、基本结构1. 电子枪:扫描电镜的电子枪是电子束的发射源,它由热阴极和加速电极组成。
热阴极通过加热发射电子,加速电极则用于控制电子束的能量和聚焦。
2. 准直系统:准直系统包括准直磁铁和透镜,主要用于聚焦电子束并使其垂直于样品表面。
3. 扫描线圈:扫描线圈用于控制电子束在样品表面的扫描范围,通过改变扫描线圈的电流,可以实现对样品不同区域的扫描。
4. 检测系统:检测系统主要包括二次电子检测器和后向散射电子检测器。
二次电子检测器用于检测样品表面的二次电子发射信号,后向散射电子检测器则用于检测样品表面的后向散射电子。
5. 显示和记录系统:显示和记录系统用于将检测到的信号转化为图象,并显示在显示器上或者记录在存储介质上。
二、工作原理扫描电镜的工作原理主要分为以下几个步骤:1. 电子束的发射:扫描电镜中的电子束是通过热阴极发射的。
热阴极受到加热,产生高能电子。
2. 电子束的聚焦:经过准直系统的调节,电子束被聚焦为一个细小的束流,并且垂直于样品表面。
3. 电子束的扫描:扫描线圈控制电子束在样品表面的扫描范围。
电子束按照预设的扫描模式在样品表面扫描,扫描过程中,电子束与样品表面相互作用。
4. 信号的检测:样品表面与电子束相互作用后,会产生一系列的信号,包括二次电子和后向散射电子。
二次电子检测器和后向散射电子检测器将这些信号转化为电信号。
5. 图象的生成:检测到的电信号经过放大和处理后,转化为图象信号。
这些图象信号经过显示和记录系统的处理,最平生成可见的样品表面形貌图象。
扫描电镜的基本结构和工作原理使其能够在高分辨率下观察样品的表面形貌和成份信息。
相比传统的光学显微镜,扫描电镜具有更高的放大倍数和更高的分辨率,可以观察到更细微的细节。
简述透射电镜的基本结构、操作步骤及注意事项。
透射电镜是一种高分辨率的电子显微镜,广泛用于材料科学、生物学、化学等领域的研究中。
本文将简述透射电镜的基本结构、操作步骤及注意事项。
一、基本结构透射电镜的基本结构包括电子源、准直系统、样品舞台、成像系统和探测器等部分。
电子源:透射电镜使用的电子源通常是热阴极,其工作原理是通过加热使钨丝发射电子。
准直系统:准直系统主要包括透镜和光阑,其作用是将电子束聚焦并限制其直径。
样品舞台:样品舞台通常由两部分组成,一部分用于支撑样品,另一部分用于调节样品的位置和角度。
成像系统:成像系统由物镜和投影仪组成,其作用是将电子束通过样品后的信息转换为图像。
探测器:透射电镜使用的探测器通常是荧光屏或CCD相机,其作用是记录成像系统成像的图像。
二、操作步骤1. 准备样品:样品需要制备成薄片,并在样品舞台上固定好。
2. 调节准直系统:调节准直系统,使其能够将电子束聚焦并限制其直径。
3. 调节样品位置:调节样品位置和角度,使其能够被电子束扫描到。
4. 调节成像系统:调节成像系统,使其能够将电子束通过样品后的信息转换为图像。
5. 开始成像:通过探测器记录成像系统成像的图像。
6. 分析图像:对成像得到的图像进行分析和处理,得出所需的信息。
三、注意事项1. 样品制备:样品需要制备成薄片,厚度通常在几纳米到几百纳米之间。
2. 样品固定:样品需要被固定在样品舞台上,以避免样品在扫描过程中移动或晃动。
3. 准直系统调节:准直系统需要在使用前进行调节,以确保电子束能够被聚焦并限制其直径。
4. 调节样品位置:在调节样品位置和角度时,需要小心操作,以避免损坏样品或样品舞台。
5. 成像系统调节:成像系统需要在使用前进行调节,以确保能够将电子束通过样品后的信息转换为图像。
6. 安全操作:在使用透射电镜时,需要注意安全操作,避免电子束对人体产生伤害。
总之,透射电镜是一种高分辨率的电子显微镜,其基本结构包括电子源、准直系统、样品舞台、成像系统和探测器等部分。
透射电镜结构原理及明暗场成像1 简介透射电子显微镜如图1所示(Transmission Electron Microscope,TEM)是利用高能电子束充当照明光源而进行放大成像的大型显微分析设备,透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。
提高加速电压,可缩短入射电子的波长。
一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况,在自然科学研究中起到日益重要的作用图1 透射电镜2 透射电镜的基本结构及工作原理透射电子显微镜由以下几大部分组成:照明系统,成像光学系统;记录系统;真空系统;电气系统,如图2所示。
成像光学系统,又称镜筒,是透射电镜的主体。
照明系统主要由电子枪和聚光镜组成。
电子枪是发射电子的照明光源。
聚光镜是把电子枪发射出来的电子会聚而成的交叉点进一步会聚后照射到样品上。
照明系统的作用就是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。
图2 透射电子显微镜主体的剖面图成像系统主要由物镜、中间镜和投影镜组成。
物镜是用来形成第一幅高分辨率电子显微图像或电子衍射花样的透镜。
透射电子显微镜分辨本领的高低主要取决于物镜。
因为物镜的任何缺陷都被成像系统中其它透镜进一步放大。
欲获得物镜的高分辨率,必须尽可能降低像差。
通常采用强激磁,短焦距的物镜。
物镜是一个强激磁短焦距的透镜,它的放大倍数较高,一般为100-300倍。
目前,高质量的物镜其分辨率可达0.1nm左右。
中间镜是一个弱激磁的长焦距变倍透镜,可在0-20倍范围调节。
当M>1时,用来进一步放大物镜的像;当M<1时,用来缩小物镜的像。
在电镜操作过程中,主要是利用中间镜的可变倍率来控制电镜的放大倍数。
肥大细胞电镜结构特点肥大细胞是一类具有重要免疫功能的细胞,具有特殊的电镜结构特点。
肥大细胞主要存在于皮肤、呼吸道、消化道等与外界环境接触较多的组织中,是机体免疫系统的重要成员之一。
肥大细胞的电镜结构特点主要表现在细胞膜、细胞质、细胞核和细胞器等方面。
肥大细胞的细胞膜具有较为平滑的表面,没有明显的微绒毛或纵脊。
细胞膜的内侧贴附有一层较宽的胞质密层,称为细胞外基质。
细胞膜上还有许多微小的突起物,称为细胞膜突起。
这些突起物与其他细胞相比较为丰富,具有重要的生理功能。
肥大细胞的细胞质内含有丰富的颗粒状物质,这些颗粒状物质主要由肥大细胞特有的细胞器——肥大细胞颗粒组成。
肥大细胞颗粒是肥大细胞的重要特征,也是肥大细胞免疫功能的重要基础。
肥大细胞颗粒主要分为两种类型:大颗粒和小颗粒。
大颗粒主要由肥大细胞特有的肥大细胞特异性酸性蛋白(MCPT)组成,其直径约为0.2-0.5μm。
小颗粒则主要由肥大细胞特异性碱性蛋白(MCBP)组成,其直径约为0.1μm。
颗粒状物质内还含有其他一些酶类物质,如组胺、肥大细胞介素-4(IL-4)、肥大细胞介素-5(IL-5)等。
肥大细胞的细胞核呈椭圆形或卵圆形,位于细胞的中央或稍偏离中央位置。
细胞核内含有染色质,呈颗粒状或线状排列。
细胞核表面有较为规整的核膜,核膜上布满核孔。
细胞核内还有一到数个核仁,核仁主要参与蛋白质合成。
肥大细胞的细胞器主要有内质网、高尔基体、线粒体和高度分化的内质网系统等。
内质网是肥大细胞的重要细胞器之一,参与细胞内蛋白质的合成和修饰。
高尔基体主要参与细胞内物质的转运和分泌。
线粒体是细胞内能量的主要产生场所,参与细胞呼吸。
肥大细胞的内质网系统非常发达,形成了一个广泛的网络。
这种特殊的内质网系统有助于肥大细胞颗粒的形成和分泌。
肥大细胞的电镜结构特点主要包括:细胞膜具有平滑的表面和丰富的细胞膜突起;细胞质内含有丰富的肥大细胞颗粒;细胞核呈椭圆形或卵圆形,核内含有染色质和核仁;细胞器包括内质网、高尔基体、线粒体和发达的内质网系统。
扫描电镜的结构与操作透射电子显微镜与光学显微镜一样,照明束穿过样品経过透镜的放大后,整个像是同时形成的。
而扫描电子显微镜(Scanning Electron Microscope,简称扫描电镜或SEM)则以完全不同的方式成像。
其基本要点是:用极狭窄的电子束去扫描样品,即电子束在样品上作光栅运动。
电子束与样品相互作用将会产生各种信息,例如样品的二次电子发射,发射出来的电子称为二次电子。
使用我们下面将讨论的方法,二次电子能产生样品表面放大的形貌像。
这个像是在样品被扫描时按时序地建立起来的,即使用逐点成像的方法获得放大的像。
早在1935年,透射电镜发明后不久,Knoll就提出利用一个扫描电子束从固体表面获得图像的原理。
但由于技术上的原因,直至1965年扫描电镜才成为商品而被利用。
此后,由于扫描电镜具有许多优点,使它在许多学科包括生物学的各个方面获得广泛的应用,成为极有价值的工具。
结构扫描电镜主要是由电子光学系统和显示单元组成,电子光学系统也称为镜筒,它的外观与透射电镜的镜筒相似,实际上相当于透射电镜的照明系统(SEM不需要成像系统),它是由电子枪、几个磁透镜、扫描线圈以及样品室组成(见图2-1)电子枪与透射电镜的电子枪基体相同,只是加速电压较低,一般在40kV以下。
磁透镜一般有三个:第一、二聚光镜和物镜,其作用与透射电镜的聚光镜相同:缩小电子束的直径,把来自电子枪的约30μm大小的电子束经过第一、二聚光镜和物镜的作用,缩小成直径约为几十埃的狭窄电子束。
这是因为扫描电镜的分辨率主要取决于电子束的直径,所以要尽可能缩小它,为此物镜还装备有物镜可动光栏和消散器。
一个带有扫描电路的偏转线圈通以锯齿波的电流,产生的磁场作用于电子束上使它在样品上扫描。
扫描的区域、扫描速率和每厘米的扫描线数都可以选择。
这个电路同时输送锯齿波电流给显示部分的显像管(CRT)的偏转线圈,所以镜筒的电子束与显像管的电子束是严格同步的。
出于与透射电镜同样的理由,镜筒也是被真空系统排气至高真空,一般为10-3Pa的真空度。
实验透射电镜的结构原理及应用一、目的要求1.结合透射电镜实物,介绍其基本结构和工作原理,以加深对透射电镜的了解。
2.学习衍射图谱的分析步骤。
3.学习操作透射电镜,获得的明暗场像二、透射电镜的基本结构透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。
透射电镜由电子光学系统、真空系统及电源与控制系统三部分组成。
电子光学系统是透射电子显微镜的核心,而其他两个系统为电子光学系统顺利工作提供支持。
2.1 电子光学系统电子光学系统通常称镜筒,是透射电子显微镜的核心,由于工作原理相同,在光路结构上电子显微镜与光学显微镜有很大的相似之处。
只不过在电子显微镜中,用高能电子束代替可见光源,以电磁透镜代替光学透镜,获得了更高的分辨率(图9-6)电子光学系统分为三部分,即照明部分、成像部分和观察记录部分。
照明部分的作用是提供亮度高、相干性好、束流稳定的照明电子束。
它主要由发射并使电子加速的电子枪、会聚电子束的聚光镜和电子束平移、倾斜调节装置组成。
成像部分主要由物镜、中间镜,投影镜及物镜光阑和选区光阑组成。
穿过试样的透射电子束在物镜后焦面成衍射花样,在物镜像面成放大的组织像,并经过中间镜、投影镜的接力放大,获得最终的图像。
观察记录部分由荧光屏及照像机组成。
试样图像经过透镜多次放大后,在荧光屏上显示出高倍放大的像。
如需照像,掀起荧光屏,使像机中底片曝光,底片在荧光屏之下,由于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数厘米的间距,但仍能得到清晰的图像。
2.2 真空系统电子光学系统的工作过程要求在真空条件下进行,这是因为在充气条件下会发生以下情况:栅极与阳极间的空气分子电离,导致高电位差的两极之间放电;炽热灯丝迅速氧化,无法正常工作;电子与空气分子碰撞,影响成像质量;试样易于氧化,产生失真。
目前一般电镜的真空度为10-5托左右。
真空泵组经常由机械泵和扩散泵两级串联成。
cell冷冻电镜结构
细胞冷冻电镜是一种用于观察和分析细胞结构的技术,利用冷冻固定和电子显微镜成像技术,可以在高分辨率下观察细胞内部的超微结构。
通过将细胞冷冻固定在适当的温度下,可以有效地保存细胞的超微结构,并使用电子显微镜进行成像。
这种技术可以用于研究细胞内各种细胞器的形态和功能,以及细胞膜的结构和功能。
细胞冷冻电镜技术还可以用于观察细胞表面的结构和功能,例如膜蛋白、细胞受体和细胞粘附分子等。
这些结构和功能对于理解细胞的生物学行为和疾病机制具有重要意义。
总的来说,细胞冷冻电镜是一种重要的技术,可以帮助科学家更好地了解细胞的超微结构和功能,并为生物学和医学研究提供有价值的信息。