八年级下册数学多边形内角和
- 格式:doc
- 大小:42.00 KB
- 文档页数:2
1、多边形的内角和等于(n-2)180˚,n是多边形的边数。
2、多边形的外角和等于360˚。
这两个结论的证明也比较简单,在这里简单说明一下。
1、一个多边形,边数为n,将一个顶点与其它顶点相连,可以把这个多边形分割成(n-2)个三角形,每个三角形的内角和是360˚,所以多边形的内角和就是(n-2)180˚。
2、一个多边形,边数为n,每一个内角和它相邻的外角构成一个平角,n条边就构成n 个平角。
外角和就等于n个平角减去多边形的内角和,也就是360˚。
这两个知识在考查时,主要有四种类型,我们来看一下。
1、考查多边形边数和内角和的关系。
这类型题主要是知道边数求出内角和,或者知道内角和求出边数。
第(1)题,知道边数,求内角和。
第(2)题,知道内角和,求边数。
第(3)题,稍微复杂,两个多边形,知道边数之比和内角和之比,列方程求出边数。
第(4)、(5)、(6)题,稍为复杂,知道边数,先求出内角和,再去求多边形中的某个内角。
这些题型都比较简单。
这里还有一道题比较复杂一点,同学们可以尝试做一下。
2、外角和与内角和相结合这类型的关键点是,要知道多边形的内角和是隐藏的已知量,它等于360˚。
这类题型都是根据多边形内角和与外角和的关系,列一个方程,求出边数。
3、多边形,少一个角,其余内角和是一定值。
这种题型,运用到了不等式,是一个难点和重点。
它的运用的知识是,多边形的一个内角,它的取值范围是大于0,小于180。
除去的这个角的度数等于内角和减去其余内角和,据此,可以列一个不等式组,进行求解。
下面有练习,大家可以试一下。
4、正多数形正多边形的内角相等,边相等。
考查类型,1、知道边数,求内角;2、知道内角,求边数;3、知道外角,求边数。
在考试中,经常考察的方式是这样的。
《平行四边形》题型解读6 多边形的内角和与外角和计算题型【知识梳理】1.多边形的内角和公式:(n-2)×180º;2.多边形的外角和会等于360º,它是个定值,与边数无关;3.正多边形的定义:每条边均相等,每个内角均相等的多边形是正多边形;【典型例题】例1.正十边形的每一个内角的度数为_______【解析】:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;例2.一个五边形的内角和为________【解析】:根据正多边形内角和公式:180°×(5﹣2)=540°,一个五边形的内角和是540度,例3.已知一个多边形的内角和是900º,则这个多边形是____边形。
【解析】依多边形内角和公式求解,即(n-2)×180º=900º,解得n=7,∴这个多边形是七边形。
例4. 已知一个多边形的每个内角均是108º,则这个多边形是____边形。
【解析】依平角定义及多边形外角和公式求解,由内角是108º可得它的外角是72º, 360º÷72º=5∴这个多边形是五边形。
例5.若正多边形的一个外角是60°,则该正多边形的内角和为______【解析】:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.例6. 已知一个多边形的内角和等于它的外角和的2倍,则这个多边形是____边形。
【解析】依多边形内角和公式及外角和公式求解,即(n-2)×180º=720º,解得n=6,∴这个多边形是六边形。
例7.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.【解析】:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.例8.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 .【解析】:这个正多边形的边数为360°÷60°=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.例9.已知正n 边形的每一个内角为135°,则n= .【解析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多 边形的边数.多边形的外角是:180°﹣135°=45°,n=360°÷45°=8例10.若一个多边形的每个外角都等于30°,则这个多边形的边数为 .【解析】:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是360°÷30°=12,例11.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .【解析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.解:n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.例12.将一个多边形截去一个角后,形成另一个多边形,这个新的多边形内角和为720º,则原多边形的边数为____【解析】一个多边形截去一个角,存在三种情况:①减少一条边;②增加一条边;③边数不变,所以需分三种情况进行讨论.由多边形内角和公式可得:(n-2)×180º=720º,解得n=6,∴新多边形是六边形。
专题03 多边形的内角和一、单选题1.(2020·重庆市第二十九中学校八年级月考)某多边形的内角和是其外角和的4倍,则此多边形的边数是( )A.10B.9C.8D.7【答案】A【分析】任何多边形的外角和是360°,即这个多边形的内角和是4×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选:A.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式与外角和定理,利用方程法求边数.2.(2021·四川七年级期末)某校新建的科技馆准备用正多边形地砖铺设地面,下列组合中能铺满地面的是( )A.正方形和正六边形B.正三角形和正六边形C.正五边形和正八边形D.正方形和正十边形【答案】B【分析】正多边形的组合能否铺满地面,看位于同一顶点处的几个角之和能否为360°进行判定即可.【详解】解:A、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;B、正三角形和正六边形内角分别为60°、120°,显然能构成360°的周角,故能铺满;C、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.D、正方形和正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满.故选B.【点睛】本题主要考查了平面几何图形镶嵌,解题的关键是明确围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3.(2021·全国八年级课前预习)下列叙述正确的是()A .每条边都相等的多边形是正多边形;B .如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凹多边形;C .每个角都相等的多边形叫正多边形;D .每条边、每个角都相等的多边形叫正多边形【答案】D【详解】由题意可知,A 、B 、Cj 均不正确,只有D 是正确的。
沪科版数学八年级下册19.1《多边形内角和》教学设计一. 教材分析《多边形内角和》是沪科版数学八年级下册19.1节的内容。
本节课主要让学生掌握多边形内角和定理,并能够运用该定理解决实际问题。
教材通过引入多边形的内角和与边数之间的关系,引导学生探究并发现规律,从而得出多边形内角和的计算方法。
二. 学情分析学生在学习本节课之前,已经掌握了多边形的概念以及多边形的外角和定理。
他们具备一定的观察、操作和探究能力,能够通过合作交流的方式解决问题。
但是,对于一些复杂的多边形,学生可能还不太会运用内角和定理进行计算。
三. 教学目标1.知识与技能:让学生掌握多边形内角和定理,并能运用该定理计算多边形的内角和。
2.过程与方法:通过观察、操作、探究等活动,培养学生合作交流的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.重点:多边形内角和定理的推导及其应用。
2.难点:如何引导学生发现并总结多边形内角和与边数之间的关系。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生发现规律。
2.合作交流法:学生分组讨论,共同解决问题,培养学生的合作能力。
3.实践操作法:让学生动手操作,加深对多边形内角和定理的理解。
六. 教学准备1.课件:制作多媒体课件,展示多边形的内角和定理。
2.学具:为学生准备一些多边形的模型,方便学生观察和操作。
3.黑板:准备一块黑板,用于板书重点内容。
七. 教学过程1.导入(5分钟)教师通过展示一些多边形的图片,引导学生回顾多边形的概念,同时提出问题:“你们知道多边形的内角和吗?它们之间有什么关系呢?”2.呈现(10分钟)教师通过多媒体课件,呈现多边形的内角和定理,并解释定理的含义。
同时,让学生观察一些多边形的内角和,尝试找出它们之间的关系。
3.操练(10分钟)教师提出一些有关多边形内角和的问题,让学生分组讨论,共同解决问题。
期间,教师巡回指导,帮助学生解决遇到的问题。
多边形的内角和与外角和【学案1】
说明:(学号前30的同学表示A:学号30后的同学表示B)
学习目标:经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系;探索多边形内角和公式,进一步发展学生的说理和简单推理的意识及能力。
一,阅读课本,并完成下列问题
1、什么是多边形?多边形的边,顶点,内角,对角线以及凸多边形的定义?
2、三角形内角和?四边形内角和?
二,知识探究
过多边形的一个顶点p出发将多边形分割成若干个三角形,观察,推导完成下面任务
类比探究、归纳n边形的内角和
结论:多边形内角和等于:
三,【例题讲解:】
例1:已知多边形为9边形,你能求出多边形的内角和吗?(通过边求角)
解:
例2:已知一个多边形,它的内角和等于五边形内角和的两倍,求该多边形的边数?(通过角求边)解:
四,【当堂训练】
1、n边形的内角和等于__________,
九边形的内角和等于_________
2、一个多边形的内角和等于1440°,那么它是______边形.
3、多边形的内角和随着边数的增加而,边数增加一条时,
它的内角和增加度 .
4、过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形。
这个多边形是几边形?它的
内角和是多少?【只A层次学生做】
五,【回顾反思】
1、对自己说,你有什么收获?
2、对同学说,你有什么温馨提示?
六,【分层次布置作业:】
1.p114练习(1)(2)
P117A组(1)【A、B 层均做】
2、如图所示,分别以四边形的各个顶点为圆心,半径为R•作圆(这些圆互不相交),把这些圆与四边形的
公共部分(即图中阴影部分)剪下来拼在一起,你有什么发现?并用有关的数学知识进行解释.【A,B层做】
3探究五边形内角和
你能想出几种添加辅助线求五边形内角和的方法?(提示:将五边形分割成多个三角形的方法)
表达式:
结论:五边形内角和等于。