国标2010版砂土液化判别表-A4计算模板(右侧两列可下拖)
- 格式:xls
- 大小:121.00 KB
- 文档页数:14
砂土液化判别计算表(1)
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察
工程名称:宁夏石嘴山红果子安能1×130T/h+1×30MW生物质热电联产工程岩土工程勘察。
饱和砂土及饱和粉土液化判别与计算液化土的判别与计算一、判别依据《建筑抗震设计规范》GB50011-2010:第4.3.1条:饱和砂土和饱和粉土(不含黄土)的液化判别和处理,6度时,一般情况下可不进行判别与处理,但对液化沉陷敏感的乙类建筑可按7度的要求进行判别与处理,7~9度时,乙类建筑可按本地区抗震设防烈度的要求进行判别与处理。
第4.3.2条(本人加注:此属强制性条文):地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别;存在液化土层的地基,应根据建筑的抗震设防类别、地基的液化等级,结合具体情况采取相应的措施。
(注:本条饱和土液化判别不含黄土、粉质粘土)第4.3.4条:当饱和粉土、或饱和砂土的初步判别认为需要进一步进行液化判别时,应采用标准贯入试验判别法判别地面以下20m范围内土的液化;但对本规范第4.2.1条规定可不进行天然地基和基础的抗震承载力验算的各类建筑可(不经杆长只判别地面以下15m范围内土的液化。
当饱和土标准贯入锤击数N修正)小于或等于液化判别标准贯入锤击数临界值时,应别为液化土。
【第4.2.1条:1本规范规定可不进行上部结构抗震验算的建筑;2地基主要受力层[系指条形基础底面下深度3b(b为基础底面宽度)、独立基础下1.5b,且厚度不小于5m的范围]范围内不存在软弱粘性土层(指7度、8度和9度时,地基承载力特征值分别小于80、100和120kpa的土层)的建筑:1)一般的单层厂房和单层空旷房屋、2)砌体房屋、3)不超过8层且高度在24m以下的一般民用框架和框架—抗震墙房屋、4)基础荷载与“3)项”相当的多层框架房屋和多层混凝土抗震墙房屋】二、判别方法第4.3.3条:饱和粉土及饱和砂土的液化判别1、地质年代为晚更新世(Q3)及以前的地层,7、8度时可判别为不液化。
2、粉土的粘粒(粒径<0.005㎜的颗粒)含量百分率:7度、8度和9度分别不小于10、13和16时可判别为不液化。
砂土液化判别基本原理、地震地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。
诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。
但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。
因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。
(一)地震波按其在地壳传播的位置不同,可分为体波、面波。
1、体波在地球内部传播的波为体波。
体波又可分纵波和横波,纵波又称P 波,它是从震源向四周传播的压缩波。
这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。
横波又称s波,是由震源向四周传播的剪切波。
这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。
它主要引起地面的水平方向的振动。
2、面波在地球表面传播的波,又称L波。
它是由于体波经过地层界面多次反射、折射所形成的次生波。
它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。
面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。
所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。
二、砂土液化对工程建筑的危害地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。
此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。
1
111111111
根据上表判定结果,该土层(地基)具液化性,按建筑抗震设计规范(GBJ 11-89)(3.3.4)式计算其液化指数,判断液化等级列如下表 。
d u --上覆非液化土层厚度(m ),扣除淤泥及淤泥质土层厚度(m ); d b --基础埋置深度(m ),不超过2m 时按2m ; d 0--液化土层特征深度(m ),粉土按6,砂土按7。
饱和砂土或粉土液化初步判定:
深圳地区(地震裂度7度区):①Q 3及其以前地层以及粉土的粘粒(粒径<0.005mm 颗粒)含量(7度区)>10%时为不液化土;②采用天然地基时,上覆非液化土层厚度和地下水深度符合下列条件之一时,可不考虑液化影响。
否则,从以下三式予以判别:注:d w --地下水位深度(m ),采用多年平均高水位;
①d u >d 0+d b -2 ②d w >d 0+d b -3 ③d u +d w >1.5d c +2d b -4.5
i i i。
1.液化判别方法
5.3.4 根据《建筑抗震设计规范》(GB 50011-2010)4.3.1条,饱和砂土和粉土的液化判别和地基处理,设防烈度6度时,一般情况下可不进行判别和处理。
但对液化沉陷敏感的乙类建筑可按7度的要求进行判别和处理。
(一)液化初判:
本场区③夹层粘质粉土的粘粒含量百分率大于10、⑥-2层砂质粉土的粘粒含量百分率小于10,根据上述规范4.3.3条,③夹层粘质粉土不液化,⑥-2层砂质粉土须根据标贯试验结果进一步判别。
(二)标贯试验判别:
采用标准贯入试验判别地面下20米深度范围内饱和粉土或砂土液化,液化判别标准贯入锤击数临界值可按下式计算:
3/ (4.3.4) N cr=N0β[ln(0.6d s+1.5)-0.1d w)] c
式中 N cr——液化判别标准贯入锤击数临界值
N0——液化判别标准贯入锤击数基准值,7度、设计地震分组第一组,N0可取7
d s——饱和土标准贯入点深度(m)
d w——地下水位(m)
ρc——粘粒含量百分率
β——调整系数,设计地震第一组取0.80。
计算结果,场地⑥-2层砂质粉土不液化。
砂土液化判别基本原理一、地震地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。
诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。
但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。
因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。
(一)地震波按其在地壳传播的位置不同,可分为体波、面波。
1、体波在地球内部传播的波为体波。
体波又可分纵波和横波,纵波又称P 波,它是从震源向四周传播的压缩波。
这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。
横波又称s波,是由震源向四周传播的剪切波。
这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。
它主要引起地面的水平方向的振动。
2、面波在地球表面传播的波,又称L波。
它是由于体波经过地层界面多次反射、折射所形成的次生波。
它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。
面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。
所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。
二、砂土液化对工程建筑的危害地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。
此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。