专题03 三角形中的最值、范围(解析版)
- 格式:doc
- 大小:3.89 MB
- 文档页数:14
2021年上海市16区中考数学一模汇编专题03 三角形一、单选题1.(2021·上海崇明区·九年级一模)已知点G 是ABC 的重心,如果连接AG ,并延长AG 交边BC 于点D ,那么下列说法中错误的是( )A .BD CD =B .AG GD =C .2AG GD = D .2BC BD =【答案】B【分析】根据三角形重心的定义和性质解答即可.【详解】解:∵点G 是ABC 的重心,∵BD CD =,2AG GD =,2BC BD =,∵A 、C 、D 正确,B 错误,故选B .【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.2.(2021·上海松江区·九年级一模)如图,已知在Rt ABC 中,90C ∠=︒,点G 是ABC 的重心,GE AC ⊥,垂足为E ,如果8CB =,则线段GE 的长为( )A .53B .73C .83D .103【答案】C【分析】因为点G 是ABC 的重心,根据三角形的重心是三角形三条中线的交点以及重心的性质:重心到顶点的距离与重心到对边中点的距离之比是2:1,可知点D 为BC 的中点,21AG GD =,根据GE AC ⊥,可得90AEG ∠=︒,进而证得AEG △∵ACD △,从而得到EG AG CD AD=,代入数值即可求解. 【详解】如图,连接AG 并延长交BC 于点D .点G 是ABC 的重心,∴点D 为BC 的中点,21AG GD =, 8CB =,∴142CD BD BC ===,GE AC ⊥,∴90AEG ∠=︒,90C ∠=︒,∴90AEG C ∠=∠=︒,EAG CAD ∠=∠(公共角),∴AEG △∵ACD △, ∴EG AGCD AD =,21AG GD =,∴23AG AD =,∴243EG AG AD ==,∴83EG =.故选:C . 【点睛】本题考查了相似三角形的判定和性质,三角形的重心的定义及其性质,熟练运用三角形重心的性质是解题的关键.二、填空题3.(2021·上海长宁区·九年级一模)如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD 中,AB AC ==32AD CD ==,点E 、点F 分别是边AD ,边BC 上的中点.如果AC 是凸四边形ABCD 的相似对角线,那么EF 的长等于_________.【答案】4【分析】根据相似三角形的判定及性质可得BC ,ACB CAD ∠=∠,继而可证//BC AD ,根据等腰三角形三线合一性质可得CF =BF =12BC =1,34AE =,∵AFC =∵FAE =90°,继而在Rt∵AFC 中,根据勾股定理可得AF ,继而在Rt∵AEF 中,由勾股定理即可求解.【详解】解:∵AB AC =,DA DC =,∵ABC DAC △∽△∵2AC BC AD =⋅,ACB CAD ∠=∠,∵AB AC ==32AD CD ==, ∵2BC =,又ACB CAD ∠=∠,∵//BC AD ,∵AB =AC又点E 、点F 分别是边AD ,边BC 上的中点.∵AF∵BC ,AF∵AD ,CF =BF =12BC =1,34AE =, 即∵AFC =∵FAE =90°,在Rt∵AFC 中,由勾股定理,得:AF ===∵在Rt∵AEF 中,由勾股定理,得:4EF ===.【点睛】本题考查相似三角形的判定及其性质、等腰三角形的性质、勾股定理的应用,解题的关键是求出综合利用所学知识求得BC ,AF 的长度.4.(2021·上海黄浦区·九年级一模)已知一个直角三角形的两条直角边长分别为3和6.则该三角形的重心到其直角顶点的距离是________.【分析】根据题意,画出图形,如解图所示,连接CO 并延长交AB 于点D ,利用勾股定理求出AB ,根据直角三角形斜边上的中线等于斜边的一半即可求出CD ,再利用三角形重心的性质即可求出结论.【详解】解:Rt∵ABC 中,∵ACB=90°,AC=6,BC=3,点O 为三角形的重心,连接CO 并延长交AB 于点D ,,CD 为∵ABC 的中线,∵CD=12AB∵O 为∵ABC 的重心,∵该三角形的重心到其直角顶点的距离CO=23 【点睛】此题考查的是直角三角形的性质和重心的定义及性质,掌握勾股定理、直角三角形斜边上的中线等于斜边的一半和重心的定义及性质是解题关键.5.(2021·上海浦东新区·九年级一模)已知AD 、BE 是ABC 的中线,AD 、BE 相交于点F ,如果AD=3,那么AF=______.【答案】2【分析】由三角形的重心的概念和性质,由AD 、BE 为∵ABC 的中线,且AD 与BE 相交于点F ,可知F 点是三角形ABC 的重心,根据重心的特点即可求解.【详解】∵AD 、BE 是ABC 的中线,AD 、BE 相交于点F ,∵F 点是三角形ABC 的重心, ∵AF=23AD=23×3=2。
2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)专题03 等边三角形【题型1】等边三角形的性质1.(2022·全国·八年级课时练习)下列条件中,不能判断ABC V 是等边三角形的是( ).A .AB AC =,60B Ð=oB .AB AC =,B A Ð=ÐC .60A B Ð=Ð=oD .2A B CÐ+Ð=Ð【答案】D【分析】根据等边三角形的定义和判定定理判断即可.【详解】解:A 选项:∵AB =AC .∠B =60°.∴△ABC 是等边三角形,故A 选项不符合题意;B 选项:∵∠B =∠A ,∴AC =BC ,∵AB =AC ,∴AB =AC =BC ,∴△ABC 是等边三角形,故B 选项不符合题意;C 选项:∵∠A =∠B =60°,∠C =180°−∠A −∠B =60°,∴∠A =∠B =∠C ,∴AB =AC =BC ,∴△ABC 是等边三角形,故C 选项不符合题意;D 选项:∵∠A +∠B =2∠C ,∠A +∠B +∠C =180°,∴∠C =60°,不能判断△ABC 是等边三角形,故D 选项符合题意,故选:D .【点睛】本题考查了等边三角形的判定,解题的关键是熟悉等边三角形的定义及等边三角形的判定定理.注意:等边三角形的判定定理有:①三边都相等的三角形是等边三角形,②三角都相等的三角形是等边三角形,③有一个角等于60°的等腰三角形是等边三角形.【变式1-1】2.(2022·全国·八年级专题练习)如图,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为____°.【答案】60【分析】根据等边三角形的性质可得AB BC =,A ABC CB =Ð∠,证明△ABD ≌△BCE (SAS ),根据全等三角形的性质可得∠1=∠CBE ,根据三角形外角的性质可得∠2=∠1+∠ABE ,继而根据等量代换可得∠2=∠CBE +∠ABE =∠ABC ,即可求解.【详解】解:∵△ABC 是等边三角形,∴AB BC =,A ABC CB =Ð∠,在△ABD 和△BCE 中,AB BC ABC ACB BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△BCE (SAS ),∴∠1=∠CBE ,∵∠2=∠1+∠ABE ,∴∠2=∠CBE +∠ABE =∠ABC =60°.故答案为:60.【点睛】本题考查了等边三角形的性质,三角形外角的性质,全等三角形的性质与判定,掌握等边三角形的性质是解题的关键.【题型2】等边三角形的判定1.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,已知P 、Q 是△ABC 的BC 边上的两点,BP =PQ =QC =AP =AQ ,则∠BAC 的大小为( )A .120°B .110°C .100°D .90°【答案】A 【分析】根据等边三角形的性质,得∠PAQ =∠APQ =∠AQP =60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP =∠CAQ =30°,从而求解.【详解】解:∵PQ =AP =AQ ,∴△APQ 是等边三角形,∴∠PAQ =∠APQ =∠AQP =60°,∵BP =AP , QC =AQ∴∠B =∠BAP ,∠C =∠CAQ .又∵∠BAP +∠ABP =∠APQ =60°,∠C +∠CAQ =∠AQP =60°,∴∠BAP =∠CAQ =30°.∴120BAC BAP PAQ CAQ Ð=Ð+Ð+Ð=°.故∠BAC 的度数是120°.故选:A .【点睛】此题主要考查了运用等边三角形的性质与判定、等腰三角形的性质以及三角形的外角的性质.【变式2-1】2.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,在等边△ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD上,且2ED=BC,则∠ACE=_______【题型3】等边三角形的判定和性质1.(2022·山东·济南市济阳区垛石街道办事处中学八年级阶段练习)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm.若AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN=_________.【答案】2cm【分析】作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠MAB=∠B=∠CAN=∠C=30°∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为:2cm.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.【变式3-1】2.(2022·福建·莆田哲理中学八年级期末)如图,AB =AC ,AE =EC =CD ,∠A =60°,延长DE 交于AB 于F ,若EF =2,则DF =_________.【答案】6【分析】由AB AC =,60A Ð=°得到△ABC 是等边三角形,由等边三角形的性质和AE EC CD ==,推出BE =4,再由∠DBE =∠CDE =30°,推出ED =BE =4,从而求出DF 的长度.【详解】解:∵AB AC =,60A Ð=°,∴△ABC 是等边三角形,又∵AE EC =,∴∠AEB =90°,∠ABE =∠DBE =30°,∵∠ACB =60°,EC CD =,∴∠CED =∠CDE =30°,∴∠AEF=30°,∴∠FEB =60°,∴∠BFE =90°,∵2EF =,∴BE =4,∵∠DBE=∠CDE =30°,∴ED=BE =4,∴DF = ED+EF =6.故答案为6.【点睛】本题考查了等腰三角形的判定与性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,解题的关键是根据已知条件推出△BEF 是直角三角形.【题型4】含30度角的直角三角形1.(2020·湖北·公安县教学研究中心八年级期中)如图,∠B =∠D =90°,AB =AD ,∠2=60°,BC =5,则AC =( )A .5B .10C .15D .2.5【答案】B 【分析】利用HL 证明Rt △ACB ≌Rt △ACD ,推出∠1=30°,再利用含30度角的直角三角形的性质即可求解.【详解】解:∵∠B =∠D =90°,AB =AD ,AC =AC ,∴Rt △ACB ≌Rt △ACD (HL ),∴∠ACB =∠ACD =60°,∴∠1=30°,∵BC =5,∴AC =2BC =10,故选:B .【点睛】本题考查全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是证明Rt △ACB ≌Rt △ACD .【变式4-1】2.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC D 中,90C Ð=°,BE 平分ABC Ð,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.【答案】6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =Ð=Ð=Ð,再根据三角形的内角和定理可得30CBE Ð=°,设AE BE x ==,则9CE x =-,在Rt BCE V 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE Q 平分ABC Ð,ABE CBE \Ð=Ð,ED Q 垂直平分AB ,AE BE \=,ABE A \Ð=Ð,ABE CBE A \Ð=Ð=Ð,又90C Ð=°Q ,90ABE CBE A \Ð+Ð+Ð=°,解得30CBE Ð=°,设AE BE x ==,则9CE AC AE x =-=-,Q 在Rt BCE V 中,90C Ð=°,30CBE Ð=°,2BE CE \=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.一.选择题1.(2020·全国·九年级专题练习)如图,将一副三角尺如图所示叠放在一起,若12AB cm =,则阴影部分的面积是( )A .12B .18C .24D .362.(2022·广东清远·八年级期中)如图,在Rt ABC V 中,90ACB Ð=°,30A Ð=°,1BC =,则AB =( )A .2B C D .1.5【答案】A 【分析】根据含30°角的直角三角形的性质定理得出AB =2BC ,代入求出即可.【详解】解:Q 在Rt ABC D 中,90ACB Ð=°,30A Ð=°,2AB BC \=,1BC =Q ,2AB \=,故选:A .【点睛】本题考查了含30°角的直角三角形的性质定理,能根据含30°角的直角三角形的性质定理得出AB =2BC 是解此题的关键.3.(2022·江苏·八年级单元测试)如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E Ð=o ,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm4.(2022·全国·八年级课时练习)如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC =6,则DE 的长为( )A .1B .2C .3D .45.(2021·贵州·铜仁市第十一中学八年级期中)如图,D 是等边ABC V 的边AC 上的一点,E 是等边ABC V外一点,若BD CE =,12Ð=Ð,则对ADE V 的形状最准确的是( ).A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C 【分析】先根据已知利用SAS 判定△ABD ≌△ACE 得出AD =AE ,∠BAD =∠CAE =60°,从而推出△ADE 是等边三角形.【详解】解:∵三角形ABC 为等边三角形,∴AB =AC ,∵BD =CE ,∠1=∠2,在△ABD 和△ACE 中,12AB AC BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴AD =AE ,∠BAD =∠CAE =60°,∴△ADE 是等边三角形.故选:C .【点睛】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.6.(2021·江苏·九年级专题练习)如图,一块三角形空地上种草皮绿化,已知AB =20米,AC =30米,∠A =150°,草皮的售价为a 元/米2,则购买草皮至少需要( )A .450a 元B .225a 元C .150a 元D .300a 元【答案】C 【详解】如图,过点C 作CD ⊥BA 交BA 的延长线于点D ,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD÷2=×20×15÷2=150m2,∵草皮的售价为a元/米2,∴购买这种草皮的价格:150a元.故选C.二、填空题7.(2022·广东·平洲一中八年级期中)如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=_____cm.8.(2022·上海·七年级专题练习)如图,已知O是等边△ABC内一点,D是线段BO延长线上一点,且Ð=_____.Ð=120°,那么BDC=,AOBOD OA【答案】60°【分析】由AOB Ð的度数利用邻补角互补可得出60AOD Ð=°,结合OD OA =可得出AOD D 为等边三角形,而根据旋转全等模型由SAS 易证出BAO CAD D @D ,根据全等三角形的性质可得出120ADC AOB Ð=Ð=°,再根据BDC ADC ADO Ð=Ð-Ð即可求出BDC ∠的度数.【详解】解:ABC D Q 为等边三角形,AB AC \=,60BAC Ð=°.120AOB Ð=°Q ,180AOD AOB Ð+Ð=°,60AOD \=°∠.又OD OA =Q ,AOD \D 为等边三角形,AO AD \=,60OAD Ð=°,60ADO Ð=°.60BAO OAC OAC CAD Ð+Ð=Ð+Ð=°Q ,BAO CAD \Ð=Ð.在BAO D 和CAD D 中,AB AC BAO CAD AO AD =ìïÐ=Ðíï=î,()BAO CAD SAS \D @D ,120ADC AOB \Ð=Ð=°,60BDC ADC ADO \Ð=Ð-Ð=°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质以及角的计算,通过证明BAO CAD D @D ,找出120ADC AOB Ð=Ð=°是解题的关键.9.(2022·山东临沂·八年级期末)已知等腰ABC V 的一底角∠B =15°,且斜边AB =6cm ,则ABC V 的面积为__10.(2020·辽宁阜新·中考真题)如图,直线a,b过等边三角形ABC顶点A和C,且//a b,142Ð=°,则2Ð的度数为________.【答案】102°【分析】根据题意可求出BACÐ的度数,再根据两直线平行内错角相等即可得出答案.【详解】Q三角形ABC为等边三角形\Ð=°BAC60//Qa b\Ð=Ð+Ð=°+°=°BAC214260102故答案为:102°.【点睛】本题考查了平行线的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.11.(2022·内蒙古·呼和浩特市回民区秋实学校八年级阶段练习)如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE = ,则BC =________.12.(2022·全国·八年级专题练习)如图,在△ABC 中,AB AC =,点D 在BC 上,AD DE =,如果20BAD Ð=o ,∠AED =60o ,那么∠EDC 的度数为___度.【答案】10【分析】先证明△ADE 是等边三角形,从而得到∠ADE =∠AED =60°,再根据等腰三角形的性质与三角形外角的性质得到∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,据此求解即可.【详解】解:∵AD =DE ,∠AED =60°,∴△ADE 是等边三角形,∴∠ADE =∠AED =60°,∵AB =AC ,∴∠B =∠C ,∵∠ADC =∠B +∠BAD ,∠AED =∠C +∠EDC ,∴∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,∴2∠EDC =60°-∠C +∠B -40°,∴∠EDC =10°,故答案为:10.【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质,三角形外角的性质,证明△ADE 是等边三角形是解题的关键.三、解答题13.(2021·辽宁营口·九年级期中)ABC V 与CDE △都是等边三角形,连接AD 、BE .(1)如图①,当点B 、C 、D 在同一条直线上时,则BCE Ð=______度;(2)将图①中的CDE △绕着点C 逆时针旋转到如图②的位置,求证:AD BE =.【答案】(1)120;(2)证明见解析.【分析】(1)根据CDE △是等边三角形及点B 、C 、D 在同一条直线上即可求解;(2)证明BCE ACD D D ≌即可求解.【详解】解:(1)∵CDE △是等边三角形,∴60DCE Ð=°,∵点B 、C 、D 在同一条直线上,∴180BCE DCE ÐÐ+=°,∴180120BCE DCE ÐÐ=°-=°(2)∵ABC V 与CDE △都是等边三角形,∴BC =AC ,CE =CD ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,∴∠BCE =∠ACD ,在BCE V 与ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,∴()BCE ACD SAS D D ≌,∴BE =AD .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质;解题的关键是熟练掌握全等三角形的判定方法.14.(2021·江苏·南通田家炳中学一模)如图,已知点D 、E 在ABC V 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE Ð的度数.【答案】(1)证明见解析;(2)90o.【分析】(1)作AF BC ^于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE V 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF BC ^于F .Q AB AC =,AD AE =,\BF CF =,DF EF =,15.(2021·江西·信丰县第七中学八年级阶段练习)如图,△ABC中,∠A=90°,∠B=60°,BC的垂直平分线交BC与点D,交AC于点E.求证:(1)AE=DE;(2)若AE=6,求CE的长.【答案】(1)证明见解析;(2)12.【分析】(1)由垂直平分线可得EB=EC,则得∠EBC=∠C=30°=∠ABE,由角平分线性质可得AE=DE;(2)根据直角三角形中,30°所对直角边为斜边的一半.即可得到答案.【详解】(1)证明:连接BE,∵∠A=90°,∠B=60°,∴∠C=30°.∵DE垂直平分BC,16.(2022·江苏·八年级专题练习)如图,点C 为线段AB 上一点,ACM V ,CBN V 是等边三角形,直线AN MC 、交于点E ,直线BM CN 、交于点F .(1)求证:AN BM =;(2)求证:EC FC =;(3)求证://AB EF .【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)只需要证明△CAN ≌△CMB 即可得到答案;(2)根据△CAN ≌△CMB 得到∠EAC =∠FNC ,再由AC =MC ,∠ACE =∠MCF =60°,即可证明△AEC ≌△MFC ,得到CE =CF ;(3)根据CE =CF ,∠ECF =60°,推出△ECF 是等边三角形,则∠CEF =∠ACE =60°,即可得证.【详解】解:(1)∵△ACM 和△CBN 都是等边三角形,∴AC =MC ,CN =CB ,∠ACM =∠BCN =60°,∴∠MCN =180°-∠ACM -∠BCN =60°,∴∠CAN =∠ACM +∠MCN =∠MCN +∠BCN =∠BCM =120°,∴△CAN ≌△CMB (SAS ),∴AN =BM ;(2)∵△CAN≌△CMB,∴∠EAC=∠FNC,∵AC=MC,∠ACE=∠MCF=60°,∴△AEC≌△MFC(ASA),∴CE=CF;(3)∵CE=CF,∠ECF=60°,∴△ECF是等边三角形,∴∠CEF=∠ACE=60°,∴EF∥AB.【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,平行线的判定,解题的关键在于能够熟练掌握相关知识进行求解.17.(2022·全国·八年级课时练习)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定△ADE的形状是_____三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为_____.【答案】等边 6【分析】(1)由等边三角形的性质得出AD=AE,∠DAC=∠EAC=30°,证出∠DAE=60°,由等边三角形的判定可得出结论;(2)证明△ACE≌△CBG(S A S),由全等三角形的性质得出AE=CG,证△CEF≌△GBF(AA S),由全等三角形的性质得出CF=GF,则可得出答案.【详解】解:(1)∵BC=2BD,∴BD=CD,∵△ABC是等边三角形,∴∠BAD=∠DAC=30°,∵点D关于直线AC的对称点为点E,∴AD=AE,∠DAC=∠EAC=30°,∴∠DAE=60°,∴△ADE是等边三角形.故答案为:等边;(2)∵点D关于直线AC的对称点为点E.∴△ACD≌△ACE,∴CE=CD,∠ACD=∠ACE,∵BG=CD,∴CE=BG,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=CB,∴∠ACD=∠GBC=120°,∴∠ACE=∠GBC=120°,∴△ACE≌△CBG(S A S),∴AE=CG,∵∠BCE=∠ACE﹣∠ACB=60°,∴∠BCE+∠BGC=180°,∴BG∥CE,∴∠G=∠FCE,∵F为BE的中点,∴BF=EF,∵∠BFG=∠CFE,∴△CEF≌△GBF(AA S),∴CF=GF,18.(2021·河北唐山·八年级期末)在三角形纸片ABC 中,90ABC Ð=°,30A Ð=°,4AC =,点E 在AC 上,3AE =.将三角形纸片ABC 按图中方式折叠,使点A 的对应点A ¢落在AB 的延长线上,折痕为ED ,A E ¢交BC 于点F .(1)求CFE Ð的度数;(2)求BF 的长度.【答案】(1)60°;(2)1.【分析】(1)先根据折叠的性质可得30A A ¢Ð=Ð=°,再根据邻补角的定义可得90A BF =¢Ð°,然后根据直角三角形的性质可得60A FB ¢Ð=°,最后根据对顶角相等即可得;(2)先根据线段的和差可得1CE =,再根据等边三角形的判定与性质可得1EF CE ==,然后根据折叠的性质可得3A E AE ¢==,从而可得2A F ¢=,最后利用直角三角形的性质即可得.【详解】(1)由折叠的性质得:30A A ¢Ð=Ð=°,90ABC Ð=°Q ,点A ¢落在AB 的延长线上,18090ABC A BF ¢Ð=°Ð=-\°,9060A FB A ¢¢\Ð=°-Ð=°,由对顶角相等得:60CFE A FB ¢Ð=Ð=°;(2)4,3C E A A ==Q ,1CE AC AE \=-=,Q 在ABC V 中,90ABC Ð=°,30A Ð=°,9060C A \Ð=°-Ð=°,由(1)知,60CFE Ð=°,。
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
专题03 解三角形中的最值、范围问题高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、不等式、导数等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.本专题围绕解三角形中的最值、范围问题精选例题,并给出针对性练习,以期求得热点难点的突破.【热点难点突破】例1.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.例2.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.例3.锐角的内角,,的对边分别为,,,已知的外接圆半径为,且满足.(1)求角的大小; (2)若,求周长的最大值.【答案】(1);(2)当为正三角形时,周长的最大值为6.【解析】(1)由正弦定理,得,再结合,得,解得,由为锐角三角形,得.(2)由、及余弦定理,得,即,结合,得,解得(当且仅当时取等号),所以(当且仅当时取等号),故当为正三角形时,周长的最大值为6.例4. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且2a =,242cos sin 25B C A ++=. (1)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (2)当ABC ∆的周长取最大值时,求b 的值. 【答案】(1)10(0,2]{}3;(210【解析】 (1)2442cossin 1cos()sin 255B C A B C A ++=⇒+++=,即1sin cos 5A A -=-, 又∵0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩,若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥,则b 的取值范围为10(0,2]{}3;(2)设ABC ∆的周长为l ,由正弦定理得 10(sin sin )2[sin sin()]sin 3a l abc a B C B A B A =++=++=+++102(sin sin cos cos sin )22(3sin cos )2210)3B A B A B B B B θ=+++=++=++, 其中θ为锐角,且10sin 10310cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2210l =+10cos B =,310sin B = 此时sin 10sin ab B A==例5. 【2016年北京卷】在∆ABC 中,2222+=a c b ac . (1)求B ∠ 的大小;(22cos cos A C + 的最大值. 【答案】(1)4π;(2)1. 【解析】(1)由余弦定理及题设得22222cos 222a cb ac B ac ac +-===,又∵0B π<∠<,∴4B π∠=;(2)由(1)知34A C π∠+∠=, 32cos 2cos()4A C A A π+=+-22222A A A =-+ 22cos()4A A A π==-,因为304A π<∠<,所以当4A π∠=2cos A C +取得最大值1.例6. 如图,有一码头P 和三个岛屿,,A B C , 303,90mi ,30PC mile PB n le AB n mile ===,0120PCB ∠=, 090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【答案】(1)3mile (2)(30603307n mile +【解析】(1)在PBC ∆中, 090,3,120PB PC PCB ==∠=,由正弦定理得,sin sin PB PCPCB PBC=∠∠,即0903sin120sin PBC =∠, 解得1sin 2PBC ∠=, 又因为在PBC ∆中, 00060PBC <∠<,所以030PBC ∠=, 所以030BPC ∠=,从而303BC PC == 即,B C 两个岛屿间的距离为3mile ;(2)因为090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=, 在PAB ∆中, 90,30PB AB ==,由余弦定理得,2202212?cos609030290303072PA PB AB PB AB =+-=+-⨯⨯⨯= 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3073030330330603307S PA AB BC CP =+++=+=+所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行, 其航程为(30603307n mile +. 【方法总结】1.已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.2.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.3.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系式a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数无解一解两解一解一解无解4.在△ABC 中有如下结论sin A >sin B ⇔a >b .5.已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边.5.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.【精选精练】1. ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ 【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 2.为了竖一块广告牌,要制造三角形支架,如图,要求60ACB ∠=︒, BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. 312⎛⎫+⎪ ⎪⎝⎭米 B. 2米 C. (13米 D. (23+米 【答案】D【解析】由题意设(1)BC x x =>米, (0)AC t t =>米,依题设0.50.5AB AC t =-=-米,在ABC 中,由余弦定理得: 22202cos60AB AC BC ACBC =+-,即()2220.5t t x tx -=+-,化简并整理得:20.25(1)1x t x x -=>-,即0.75121t x x =-++-,因1x >,故0.7512231t x x =-++≥+-312x =+时取等号),此时t 取最小值23,应选答案D 3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC >,3a = 则b+c 的取值范围是( ) A. 31,2⎛⎫ ⎪⎝⎭B.3322⎛⎫ ⎪ ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.13,22⎛⎤⎥⎝⎦ 【答案】B【解析】由222b c a bc +-=得:2221cos 22b c a A bc +-==,则A=3π,由0AB BC >可知:B 为钝角, 21sin aR A==,则sin ,sin b B c C ==,sin sin sin b c B C B +=+=+2sin(3π)B -33=sin cos 3sin()226B B B π+=+,由于223B ππ<<,25366B πππ<+<,所以13sin()23B π<+<332b c <+<,选B 4.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,3a S 为ABC ∆的面积,则3cos S B C 的最大值为( )(A )1 (B 31+ (C 3 (D )3 【答案】C【解析】∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设ABC ∆外接圆的半径为R ,则3222sin sin 3a R A π===,∴1R =, ∴133cos sin 3cos 3cos 2S B C bc A B C B C ==+ 3sin 3cos 3)B C B C B C =+=-,故3cos S B C 3C .5.已知,,a b c 分别为内角,,A B C 的对边,其面积满足214ABC S a ∆=,则cb的最大值为( ) A.21 B. 2 C. 21 D. 22+【答案】C【解析】根据题意,有211sin 42ABC S a bc A ∆==,应用余弦定理,可得222cos 2sin b c bc A bc A +-=,于是212cos 2sin t t A t A +-=,其中c t b =.于是22sin 2cos 1t A t A t +=+,所以122sin 4A t t π⎛⎫+=+ ⎪⎝⎭,从而122t t+≤,解得t 21.选C.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为32S =,则ab 的最小值为__________. 【答案】12【解析】由正弦定理可得()2sin cos 2sin sin 2sin sin C B A B B C B =+=++,即2sin cos 2sin cos 2sin cos sin C B B C C B B =++,∴2sin cos sin 0B C B +=,∴1cos 2C =-, 23C π=,由133sin 2S ab C =⋅==,∴12c ab =,再由余弦定理可得2222cos c a b ab C =+-⋅,整理可得2222134a b a b ab ab =++≥,当且仅当a b =时,取等号,∴12ab ≥故答案为12. 7.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】626+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF =62-,所以AB 的取值范围为(62-,6+2).8. 在中,内角的对边分别为,且满足,为锐角,则的取值范围为__________. 【答案】【解析】分 由结合正弦定理可得:,且,为锐角,则:,即,据此有:,,,,即,,据此可得:,则的取值范围为.9.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且n m //.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值. 【答案】(1)3π;(2)34. 【解析】 n m //,所以()0cos 2cos =--A b c B a ,由正弦定理得-B A cos sin ()0cos sin sin 2=-A B C ,A C AB B A cos sin 2cos sin cos sin =+∴()A C B A cos sin 2sin =+∴,由π=++C B A ,A C C cos sin 2sin =∴由于π<<C 0,因此0sin >C ,所以21cos =A ,由于π<<A 0,3π=∴A (2)由余弦定理得A bc c b a cos 2222-+=bc bc bc bc c b =-≥-+=∴21622,因此16≤bc ,当且仅当4==c b 时,等号成立;因此ABC ∆面积34sin 21≤=A bc S ,因此ABC ∆面积的最大值34. 10. 已知3x π=是函数()sin2cos2f x m x x =-的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,若()2f B =,且3b =2ca -的取值范围. 【答案】(1)(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)33⎛ ⎝ 【解析】试题分析: (1)3x π=是函数()f x 的一条对称轴213f m π⎛⎫⇒=+⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭,根据三角函数的性质,即可求出单调性;(2)()2f B = 可得3B π=,又3b =由正弦定理得: 2sin sin(+=3sin 236c a A A A ππ⎛⎫-=-- ⎪⎝⎭,由230,3sin 3362A A ππ⎛⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪ ⎝⎭⎝⎭⎝,即可求出结果. 试题解析: (1)3x π=是函数()sin2cos2f x m x x =-的一条对称轴213f m π⎛⎫⇒=+ ⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭⇒增区间: (),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)()2f B = sin 2163B B ππ⎛⎫⇒-=⇒= ⎪⎝⎭ 又3b =2sin ,2sin 2sin 3a A c C A π⎛⎫===+ ⎪⎝⎭2sin sin(+=3sin 236c a A A A ππ⎛⎫⇒-=-- ⎪⎝⎭ 210,,sin ,1366262A A A πππππ⎛⎫⎛⎫⎛⎫⎛⎫∈⇒-∈-⇒-∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33sin 36A π⎛⎛⎫⇒-∈ ⎪ ⎝⎭⎝,即332c a ⎛⇒-∈ ⎝ 11. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求角A 的值; (2)若3b =b a ≤,求a 的取值范围.【答案】(1) 3A π=;(2) )3,3a ∈.【解析】试题分析:(1)根据余弦的二倍角公式以及两角和与差的余弦公式化简cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,可得sin A 的值,从而求得A 的值;(2)3b a =≤,∴c a ≥,∴32C ππ≤<,63B ππ<≤,再由正弦定理可得结果.试题解析:(1)由已知cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+=⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 044B A B B ⎛⎫-+-=⎪⎝⎭化简得3sin 2A =,又三角形ABC 为锐角三角形,故原创精品资源学科网独家享有版权,侵权必究! 11 3A π=. (2)∵3b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤由正弦定理得: sin sin a b A B =即: 3sin 32a B =,即32sin a B =由13sin ,22B ⎛⎤∈ ⎥ ⎝⎦知)3,3a ⎡∈⎣. 12. 如图,是两个小区所在地,到一条公路的垂直距离分别为,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对的张角与对的张角相等,试确定点的位置;(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对所张角最大,试确定点的位置.【答案】(1)4;(2). 【解析】试题分析:(1)利用张角相等的相似性即可确定点P 的位置;(2)由题意得到三角函数,换元之后结合对勾函数的性质可得当时满足题意. 试题解析:(1)张角相等,∴,∴ (2)设,∴, ∴,, ,设,,,, ∴,,当且仅当时,等号成立,此时,即。
专题03 全等三角形及其性质知识网络重难突破一、全等图形的概念形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.注意:一个图形经过平移、翻折、旋转前后的图形全等.典例1.下列各组中的两个图形属于全等图形的是()A.B.C.D.【答案】B【分析】利用全等图形的概念可得答案.【解析】解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误.故选:B.【点睛】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.二. 利用全等图形求对应边、角两个全等的多边形,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.全等多边形的对应边、对应角分别相等.符号“≌”表示全等,读作“全等于”.典例1.如图,四边形ABCD≅四边形A B C D∠的大小是.'''',则A【答案】95︒【分析】利用全等图形的定义可得130∠=∠'=︒,然后再利用四边形内角和为360︒可得答案.D D'''',【解析】解:四边形ABCD≅四边形A B C D∴∠=∠'=︒,130D D∴∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,A B C D360360756013095故答案为:95︒.【点睛】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.三、找全等三角形的对应边、对应角1.能够完全重合的两个三角形叫全等三角形.2.两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.注意:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.3. 找对应边、对应角的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.③有公共边的,公共边常是对应边.④有公共角的,公共角常是对应角.⑤有对顶角的,对顶角常是对应角.⑥两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).典例1.如图,已知Rt ABC Rt CDE∆≅∆,下列结论中不正确的是()A .AC CE =B .BAC ECD ∠=∠ C .ACB ECD ∠=∠ D .B D ∠=∠【答案】C【分析】根据全等三角形的性质解答即可.【解析】解:Rt ABC Rt CDE ∆≅∆,AC CE ∴=,故A 正确;BAC ECD ∴∠=∠,故B 正确; B D ∴∠=∠,故D 正确;但不能得出ACB ECD ∠=∠,故C 错误;故选:C .【点睛】此题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等解答.典例2.如图为6个边长相等的正方形的组合图形,则123(∠+∠+∠= )A .90︒B .120︒C .135︒D .150︒【答案】C【分析】标注字母,利用“边角边”判断出ABC ∆和D EA ∆全等,根据全等三角形对应角相等可得14∠=∠(或观察图形得到14)∠=∠,然后求出1390∠+∠=︒,再判断出245∠=︒,然后计算即可得解.【解析】解:如图, 观察图形得14∠=∠,3490∠+∠=︒,1390∴∠+∠=︒, 又245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:C .【点睛】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.四. 全等三角形的性质的应用全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形对应边上的高、中线、角平分线分别相等;④全等三角形的周长相等,面积相等.典例1.如图,ABC DECAC=,则BD长()CE=,7∆≅∆,B、C、D在同一直线上,且5A.12 B.7 C.2 D.14【答案】A【分析】由全等三角形的性质得到7==,再根据BD DC CBCB CE=+即可得解.AC DC==,5【解析】解:ABC DEC∆≅∆,=,∴=,CB CEAC DCAC=,CE=,75DC=,∴=,75CBBD DC CB∴=+=+=.7512故选:A.【点睛】此题考查了全等三角形的性质,熟记全等三角形的对应边相等是解题的关键.典例2.如图,若ABC ADE∆≅∆,则下列结论中一定成立的是()A .ABC AED ∠=∠B .BAD CAE ∠=∠C .AB AE =D .AC DE =【答案】B 【分析】根据全等三角形的对应边相等、对应角相等判断即可.【解析】解:A 、ABC ADE ∆≅∆,ABC AED ∴∠=∠,但ABC ∠与AED ∠不一定相等,本选项结论不成立,不符合题意;B 、ABC ADE ∆≅∆,BAC DAE ∴∠=∠,BAC DAC DAE DAC ∴∠-∠=∠-∠,即BAD CAE ∠=∠,本选项结论成立,符合题意;C 、ABC ADE ∆≅∆,AB AD ∴=,AB 与AE 不一定相等,本选项结论不成立,不符合题意;D 、ABC ADE ∆≅∆,AC AE ∴=,AC 与DE 不一定相等,本选项结论不成立,不符合题意;故选:B .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.典例3.两个全等的直角三角形重叠在一起.将其中的一个三角形沿着点B 到C 的方向平移到DEF ∆的位置,4AB =,1DO =,平移距离为2.则阴影部分面积为( )A .7B .6C .14D .4【答案】A【分析】根据平移的性质得到ABC DEF ∆≅∆,根据全等三角形的性质求出OE ,根据梯形的面积公式计算,得到答案.【解析】解:由平移的性质可知,ABC DEF ∆≅∆,4DE AB ∴==,2BE =,ABC DEF S S ∆∆=,413OE DE DO ∴=-=-=,∴阴影部分的面积()143272ABC OEC ABEO S S S ∆∆=-==⨯+⨯=梯形, 故选:A .【点睛】本题考查的是全等三角形的性质、平移的性质,掌握全等三角形的对应边相等是解题的关键.典例4.已知两个直角三角形全等,其中一个直角三角形的面积为S ,斜边为a ,则另一个直角三角形斜边上的高为( )A .2a SB .a SC .S aD .2S a【答案】D【分析】利用三角形的面积计算出斜边上的高,再根据全等三角形对应边上的高相等可得答案. 【解析】解:直角三角形的面积为S ,斜边为a ,∴此斜边上的高为:2S a, 两个直角三角形全等,∴两个直角三角形斜边上的高也相等,∴另一个直角三角形斜边上的高为:2S a, 故选:D .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边上的高、中线以及对应角的平分线相等.巩固训练一.选择题1.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形【答案】B【分析】直接利用全等图形的定义分析得出答案.【解析】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选:B.【点睛】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.2.下列图形中与如图图形全等的是()A.B.C.D.【答案】B【分析】认真观察图形,根据全等形的定义,能够重合的图形是全等形,可得答案.【解析】解:A、圆里面的正方形与已知图形不能重合,故此选项不合题意;B、与已知图形能完全重合,故此选项符合题意;C、中间是长方形,与已知图形不重合,故此选项不合题意;D、中间是长方形,与已知图形不重合,故此选项不合题意.故选:B .【点睛】本题考查的是全等图形,属于较容易的基础题,做题时要认真观察图形,同时还要想到是否能够重合.3.下列各组中的两个图形为全等形的是( )A .两块三角尺B .两枚硬币C .两张4A 纸D .两片枫树叶【答案】C【分析】利用全等图形的定义解答即可.【解析】解:A 、两块三角尺不一定是全等形,故此选项不合题意; B 、两枚硬币不一定是全等形,故此选项不合题意;C 、两张4A 纸是全等形,故此选项符合题意;D 、两片枫树叶不一定是全等形,故此选项不合题意;故选:C .【点睛】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.4.如图,已知方格纸中是4个相同的正方形,则1∠与2∠的和为( )A .45︒B .60︒C .90︒D .100︒【答案】C【分析】首先证明ABC AED ∆≅∆,根据全等三角形的性质可得1AED ∠=∠,再根据余角的定义可得290AED ∠+∠=︒,再根据等量代换可得1∠与2∠的和为90︒. 【解析】解:由图可知,ABC AED ∆≅∆,1AED ∴∠=∠,290AED ∠+∠=︒,1290∴∠+∠=︒,故选:C .【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.5.如图,ABC ADC∠相等的角是()∆≅∆,则与BACA.ACD∠∠B.ADC∠D.ACB∠C.DAC【答案】C【分析】根据全等三角形的性质得出对应角相等即可.【解析】解:ABC ADC∆≅∆,∴∠=∠,BAC DAC故选:C.【点睛】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.6.如图,点E在AB上,AC与DE相交于点F,ABC DEC∠∠=∠=︒.则DFAB CEBA∆≅∆,20∠=︒,65的度数为()A.65︒B.70︒C.85︒D.110︒【答案】B【分析】根据全等三角形的性质得到65∠,根据三角形的外角DEC B∠=∠=︒,根据平角的定义求出AEF性质计算,得到答案.【解析】解:ABC DEC∠=∠=︒,∆≅∆,65B CEB∴∠=∠=︒,65DEC B180656550∴∠=︒-︒-︒=︒,AEFDFA A AEF∴∠=∠+∠=︒+︒=︒,205070故选:B.【点睛】本题考查的是全等三角形的性质、三角形的外角性质,掌握全等三角形的对应角相等是解题的关键.7.如图,若ABC ADE∆≅∆,则下列结论中不一定成立的是()A.ACB DAC∠=∠∠=∠B.AC AE=D.BAD CDE=C.BC DE【答案】A【分析】根据翻三角形全等的性质一一判断即可.【解析】解:ABC ADE∆≅∆,∴=,AE ACAD AB=,ABC ADE∠=∠,=,BC DE∴∠=∠,BAD CAE=,AD AB∴∠=∠,ABD ADB∴∠=︒-∠-∠,BAD ABD ADB180CDE ADB ADE∴∠=︒-∠-,180∠=∠,ABD ADE∴∠=∠BAD CDE故B、C、D选项不符合题意,故选:A.【点睛】本题考了三角形全等的性质,解题的关键是三角形全等的性质.8.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到DEF∆的位置,8DO=,平移距离为4,则阴影部分面积为()AB=,3A .18B .24C .26D .32【答案】C【分析】根据平移的性质得到ABC DEF ∆≅∆,根据全等三角形的性质求出OE ,根据梯形的面积公式计算,得到答案.【解析】解:由平移的性质可知,ABC DEF ∆≅∆,8DE AB ∴==,4BE =,ABC DEF S S ∆∆=,835OE DE DO ∴=-=-=, ∴阴影部分的面积()1584262ABC OEC ABEO S S S ∆∆=-==⨯+⨯=梯形, 故选:C . 【点睛】本题考查的是全等三角形的性质、平移的性质,掌握全等三角形的对应边相等是解题的关键.9.如图,ABE ACD ∆≅∆,10BC =,4DE =,则DC 的长是( )A .8B .7C .6D .5【答案】B【分析】由全等三角形的性质可得BE CD =,即可求解.【解析】解:ABE ACD ∆≅∆,BE CD ∴=,14BE CD BC DE ∴+=+=,214CD ∴=,7CD ∴=, 故选:B .【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.10.如图,OCA OBD ∆≅∆,3AO =,2CO =,则AB 的长为( )A .1B .3C .4D .5【答案】D【分析】因为OCA OBD ∆≅∆,所以2CO BO ==,进而可求出AB 的长.【解析】解:OCA OBD ∆≅∆,2CO BO ∴==,235AB AO BO ∴=+=+=, 故选:D .【点睛】本题考查了全等三角形的性质,属于基础题,全等三角形对应边相等.11.已知ABC DEF ∆≅∆,且DEF ∆的面积为18,6BC =,则BC 边上的高等于( )A .13B .3C .4D .6【答案】D【分析】利用全等三角形的性质找出同一个三角形的底边长及面积,代入面积公式即可求解三角形的高.【解析】解:设ABC ∆的面积为S ,边BC 上的高为h ,ABC DEF ∆≅∆,6BC =,DEF ∆的面积为18, ∴两三角形的面积相等即18S =, 又1182S BC h ==, 6h ∴=,故选:D .【点睛】本题考查了全等三角形性质的应用;要会利用全等三角形的对应边相等,由一边长及面积,要会求三角形的高.12.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D.全等三角形的对应角平分线相等【答案】D【分析】认真读题,只要甄别,其中A、B、C选项中都没有“对应”二字,都是错误的,只有D是正确的.【解析】解:A、B、C项没有“对应”∴错误,而D有“对应”,D是正确的.故选:D.【点睛】本题考查了全等三角形的性质;注意全等三角形的性质中指的是各对应边上高,中线,角平分线相等.对性质中对应的真正理解是解答本题的关键.13.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【答案】D【分析】能够完全重合的两个三角形叫做全等三角形,利用全等三角形的性质判断得出即可.【解析】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.【点睛】此题主要考查了全等三角形的性质,正确把握相关性质是解题关键.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.二.填空题14.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a b>,求出阴影部分的面积为.【答案】2()a b -【分析】根据全等形的概念得到阴影部分的边长为a b -的正方形,根据正方形的面积公式计算即可. 【解析】解:如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a b -的正方形,∴阴影部分的面积2()a b =-,故答案为:2()a b -.【点睛】本题考查的是全等图形,掌握全等形的对应边相等是解题的关键.15.如图,已知ABC DEF ∆≅∆且45A ∠=︒,60E ∠=︒,那么F ∠= 度.【答案】75【分析】根据全等三角形的对应角相等求出D ∠,根据三角形内角和定理计算,得到答案. 【解析】解:ABC DEF ∆≅∆,45A ∠=︒,45D A ∴∠=∠=︒,180180456075F E F ∴∠=︒-∠-∠=︒-︒-︒=︒,故答案为:75.【点睛】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.。
一、选择题1.在△ABC中,sin A=34,a=10,则边长c的取值范围是()A.15,2⎛⎫+∞⎪⎝⎭B. (10,+∞)C. (0,10)D.400,3⎛⎤⎥⎝⎦【答案】D【解析】由正弦定理得sin104040sin sin0,3sin334a Cc C CA⎛⎤===∈ ⎥⎝⎦,选D.2.在△ABC中,角A、B、C所对的边分别为a、b、c,且BC边上的高为3a,则c bb c+的最大值是( ) A. 8B. 6C. 32D. 4【答案】D3.在ABC∆中,内角,,A B C的对边分别是,,a b c,若32sin242Bπ⎛⎫+=⎪⎝⎭,且2a c+=,则ABC∆周长的取值范围是( )A. (]2,3B. [)3,4C. (]4,5D. [)5,6【答案】B【解析】由0<B <π得,4π <324B π+ 74π< , ∵32sin 242B π⎛⎫+=⎪⎝⎭,∴324B π+= 34π 解得B =3π,又∵a +c =2, ∴由余弦定理可得,b 2=a 2+c 2-2accosB =(a +c )2-2ac -ac =4-3ac ,∵a +c =2,a +c ≥2ac ,当且仅当a =c 时取等号,∴0<ac ≤1,则-3≤-3ac <0, 则1≤b 2<4,即1≤b <2.∴△ABC 周长L =a +b +c =b +2∈[3,4). 故选B4.在ABC ∆中,角A B C 、、 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A .32 B . 22 C . 12 D . 12- 【答案】C5.已知ABC ∆ 是锐角三角形,若2A B = ,则ab的取值范围是( ) A .()2,3 B .()2,2 C . ()1,3 D . ()1,2【答案】A【解析】由题意得,在ABC ∆中,由正弦定理可得sin sin a Ab B=,又因为2A B = ,所以 2cos a B b = ,又因为锐角三角形,所以ππ20,,π30,22B C B ⎛⎫⎛⎫∈=-∈ ⎪ ⎪⎝⎭⎝⎭所以()ππ,2cos 2,364B B <<∈故选A .6.已知锐角的三个内角的对边分别为,若,则的值范围是( )A.B. C.D.【答案】D∵是锐角三角形,∴,解得,∴, ∴.即的值范围是.二、填空题7.在ABC 中, 60ACB ∠=︒, 1BC >, 12AC AB =+,当ABC 的周长最短时, BC 的长是__________. 【答案】21+【解析】设边AB 、BC 、AC 所对边分别为c 、a 、b ,依题意,有:12{1 60b c a C =+>=︒,由余弦定理,得: 2222cos c a b ab C =+-,即2221122 c a c a c⎛⎫⎛⎫=++-+⎪⎪⎝⎭⎝⎭,化简,得:211241a aca-+=-,ABC的周长:122a b c a c++=++2121212a aaa-+=++-()26321a aa-=-.令1t a=-,则三角形周长为:()()2613139993222222t ttt t+-+=++≥+,当332tt=,即22t=,212a=+时ABC的周长最短.8.设,m n R∈,若直线:10l mx ny+-=与x轴相交于点A,与y轴相交于点B,且l与圆224x y+=相交所得弦的长为2,O为坐标原点,则AOB∆面积的最小值为_________.【答案】3整理得:2213m n+=,令直线l解析式中0y=,解得:1xm=,1Am∴(,),即1OAm=,令0x=,解得11y Bn n=∴:,(,),即1OBn=,222m n mn+≥,当且仅当m n=时取等号,222m nmn+∴≤,又AOB为直角三角形,22111322ABCS OA OBmn m n∴=⋅=≥=+,当且仅当2216m n==时取等号,则AOB 面积的最小值为3.9.已知ABC ∆为锐角三角形,角A , B , C 的对边分别是,,a b c 其中2c = , 3cos cos 2sin ca Bb A C+=则ABC 周长的取值范围为___________.【答案】(23+2,6].=433 (sinA +sin (23π-A ))+2=433 (sinA +32cosA +12sinA )+2 =4sin (A +6π)+2. ∵C =3π,△ABC 是锐角三角形, ∴A ,B ∈(6π, 2π),∴A +6π∈(3π, 23π),∴sin (A +6π)∈(32,1],∴a +b +c =4sin (A +6π)+2∈(23+2,6].10.在ABC ∆中, ,2,45BC x AC B ===︒,若三角形有两解,则x 的取值范围是______. 【答案】222x << 【解析】∵在△ABC 中, ,2,45BC x AC B ===︒,且三角形有两解, ∴如图: 452xsin x ︒<<, 解得222x <<, ∴x 的取值范围是(2,22, 故答案为: (2,22).11.设锐角ABC 的三内角,,A B C 所对边的边长分别为,,a b c ,且1,2a B A ==,则b 的取值范围为____. 【答案】()2,312.在钝角中,内角的对边分别为,若,,则的取值范围是__________.【答案】【解析】三条边能组成三角形 ,则两边之和大于第三边,两边之差小于第三边,据此可得:1<c<7,①若∠C 为钝角,则:,解得:c>5,②若∠A 为钝角,则:,解得:,③结合①②③可得c 的取值范围是.13.在锐角ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若2C B =,则cb的取值范围是________. 【答案】(2,3【解析】因为2C B =,所以sin sin22sin cos 2cos ,2cos cC B B B c b B B b==∴== 因为锐角ABC ∆,所以0,02,03,222B C B A C B B πππππ<<<=<<=--=-<()23cos ,,2,3642cB B b ππ⎛⎫∴<<∴∈∈ ⎪ ⎪⎝⎭14.若的面积为,且∠C 为钝角,则∠B =_________;的取值范围是_________.【答案】15.在锐角中,角、、所对的边分别为,且、、成等差数列,,则面积的取值范围是__________. 【答案】【解析】 ∵中、、成等差数列, ∴.由正弦定理得,∴,∴,∵为锐角三角形,∴,解得.∴, ∴,∴, 故面积的取值范围是.三、解答题16.已知函数()233sin sin cos 2f x x x x =+-. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在△ABC 中,角,,A B C 的对边分别为,,a b c ,若A 为锐角且()32f A =, 4b c +=,求a 的取值范围.【答案】(1) ()sin 23f x x π⎛⎫=- ⎪⎝⎭,单调增区间()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)[)2,4a ∈【解析】(1)函数变形()1cos2133sin2sin 2223x f x x x π-⎛⎫⎛⎫=+-=-⎪ ⎪⎝⎭⎝⎭,即()sin 23f x x π⎛⎫=- ⎪⎝⎭,令222,232k x k k Z πππππ-+≤-≤+∈,解得51212k x k ππππ-+≤≤+,所以单调增区间()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)()3sin 23f A A π⎛⎫=-= ⎪⎝⎭, 0,2A π<< 22333A πππ-<-<所以233A ππ-= 解得3A π=,又4b c +=,在△ABC 中, ()()22222344b c a b c bc b c bc +=+-=+-≥=,等边三角形时等号成立,所以2a ≥,又因为是三角形所以,4b c a a +><,所以[)2,4a ∈。
专题03 相似三角形中的最值问题专练(一)班级:___________姓名:___________得分:___________一、选择题1.一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm,则它的最大边长为()A. 10cmB. 15cmC. 20cmD. 25cm【答案】C【分析】根据相似四边形的性质列式计算即可.本题考查的是相似多边形的性质,掌握相似多边形的对应边比的比相等是解题的关键.【解答】解:设它的最大边长为xcm,∵两个四边形相似,∴15=4x,解得,x=20,2.在如图所示的5×5方格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.在如图所示的方格中,作格点三角形和△ABC相似,则所作的格点三角形的最小面积和最大面积分别为()A. 0.5,2.5B. 0.5,5C. 1,2.5D. 1,5【答案】B【分析】本题主要考查的是相似三角形的性质,勾股定理的有关知识,作出面积最小和面积最大的格点三角形,因为相似三角形的面积比等于相似比的平方,所以此题只要求得两三角形的一组对应边的比即可.根据格点三角形边长的求解方法,易得AB,DE与GH的长.即可得出问题的解.【解答】解:如图所示,△DEF和△GHI分别是面积最小和面积最大的三角形.因为△DEF ,△GHI 和△ABC 都相似,AB =√2,DE =1,GH =√10,所以它们的相似比为DE :AB =1:√2,GH :AB =√10:√2,又因为相似三角形的面积比等于相似比的平方,而△ABC 的面积为12×2×1=1, ∴△DEF 的面积为12×1=0.5,△GHI 的面积为(√10√2)2×1=5,3. 如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A. 5B. 6C. 7D. 8【答案】B【分析】 设⊙O 与AC 相切于点D ,连接OD ,作OP ⊥BC 垂足为P交⊙O 于F ,此时垂线段OP 最短,MN 最小值为OP −OF =53,当N 在AB 边上时,M 与B 重合时,MN 最大值=103+1=133,由此不难解决问题.本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点MN 取得最大值、最小值时的位置,属于中考常考题型.【解答】解:如图,设⊙O 与AC 相切于点D ,连接OD ,作OP ⊥BC 垂足为P 交⊙O 于F , 此时垂线段OP 最短,PF 最小值为OP −OF ,∵AC =4,BC =3,∴AB =5∵∠OPB =90°,∴OP//AC∵点O 是AB 的三等分点,∴OB=23×5=103,OPAC=OBAB=23,∴OP=83,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD//BC,∴ODBC =OQAB=13,∴OD=1,∴MN最小值为OP−OF=83−1=53,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=103+1=133,∴MN长的最大值与最小值的和是6.4.如图,在平面直角坐标系中,M,N,C三点的坐标分别为(13,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A. −14≤b≤1 B. −54≤b≤1 C. −94≤b≤12D. −214≤b≤1【答案】B本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN.证明△PAB∽△NCA ,得出PB NA =PA NC ,设PA =x ,则NA =PN −PA =3−x ,设PB =y ,代入整理得到y =3x −x 2=−(x −32)2+94,根据二次函数的性质以及12≤x ≤3,求出y 的最大与最小值,进而求出b 的取值范围.【解答】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,{∠APB =∠CNA =90∘∠PAB =∠NCA =90∘−∠CAN, ∴△PAB∽△NCA ,∴PB NA =PA NC ,设PA =x ,则NA =PN −PA =3−x ,设PB =y ,∴y 3−x =x 1,∴y =3x −x 2=−(x −32)2+94, ∵−1<0,12≤x ≤3,∴x =32时,y 有最大值94,此时b =1−94=−54, x =3时,y 有最小值0,此时b =1,∴b 的取值范围是−54≤b ≤1.5. 如图,已知边长为4的正方形截去一角成为五边形ABCDE ,其中AF =2,BF =1,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( ) A. 10B. 8C. 252D. 12【答案】D本题考查了二次函数的最值的运用.关键是设线段的长,利用相似的性质表示矩形的面积,用二次函数解题.延长NP 交EF 于G 点,设PG =x ,则PN =4−x ,利用平行线构造相似三角形,得出线段的比相等,从而表示矩形PNDM 的长、宽,再表示矩形的面积,利用配方法求函数的对称轴,根据x 的取值范围求最大值.【解答】解:延长NP 交EF 于G 点,设PG =x ,则PN =4−x ,∵PG//BF ,∴△APG∽△ABF , ∴AG AF =PG FB ,即AG 2=x 1,解得AG =2x ,∴MP =EG =EA +AG =2+2x ,∴S 矩形PNDM =PM ⋅PN =(2+2x)(4−x)=−2x 2+6x +8=−2(x −32)2+252(0≤x ≤1),∵−2<0,对称轴为x =32∴抛物线开口向下,且当x <32时,S 随x 的增大而增大,又PG =x ≤BF =1,∴当x =1时,函数有最大值为12,即当PG =1时,矩形PNDM 的面积最大,最大值为12.6. 如图,定点C 、动点D 在⊙O 上,并且位于直径AB 的两侧,AB =5,AC =3,过点C 在作CE ⊥CD 交DB 的延长线于点E ,则线段CE 长度的最大值为( )A. 5B. 8C. 325D. 203【答案】D【分析】本题考查了相似三角形的判定和性质,圆周角定理,解直角三角形,勾股定理的应用,确定CE什么时候取最大值是解题的关键.当CD是直径时,CE最长,由AB是直径,得到∠ACB=90°,利用勾股定理得出BC的长度,又因为∠A=∠D,∠ABC=∠ACE=90°,推出△ABC∽△DCE,根据相似三角形的性质列方程求解.【解答】解:当CD是直径时,CE最长,∵AB是直径,∴∠ACB=90°,∴BC=√ AB2−AC2=√ 52−32=4,∵∠A=∠D,∠ABC=∠ACE=90°,∴△ABC∽△DCE,∴ AC CD =BC CE,即 3 5=4CE,∴CE=203,二、填空题7.若△ABC的三条边长的比为3:5:6,与其相似的另一个△A′B′C′的最小边长为12cm,那么△A′B′C′的最大边长是__________.【答案】24cm【分析】本题考查对相似三角形性质的理解,相似三角形的对应边成比例.根据相似三角形的性质,依题意设△A′B′C′三边为3x,5x,6x,其中最小边是12cm,求出x,可求得最长边.【解答】解:三角形三边之比等于与他相似的三角形的三边之比,即3:5:6,与△ABC相似的△A′B′C′最小边为12cm,设△A′B′C′三边为3x,5x,6x,则3x=12cm时,解得x=4,则最长边为4×6=24cm.8.如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形DEFG,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.【答案】12√1313【分析】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理,作AQ⊥BC于点Q,交DG于点P,设GF=(4−x),由PQ=x,则AP=4−x,证△ADG∽△ABC得比例式,据此知EF=DG=32勾股定理求得EG,进一步可求得答案.【解答】解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4−x,由DG//BC知△ADG∽△ABC,∴APAQ =DGBC,即4−x4=DG6,则EF=DG=32(4−x),∴EG=√EF2+GF2=√94(4−x)2+x2=√134x2−18x+36=√134(x−3613)2+14413,∴当x=3613时,EG取得最小值,最小值为12√1313.9.如图,在Rt△ABC中,∠BAC=90∘,AB=3,AC=6√2,D、E分别是边BC、AC上的动点,则DA+DE的最小值为.【答案】163【分析】本题考查轴对称−最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,如图,作A关于BC的对称点A′,连接AA′,交BC于F,过A′作A′E⊥AC于E,交BC于D,则AD=A′D,此时AD+DE的值最小,就是A′E的长,根据相似三角形对应边的比可得结论.【解答】解:作A关于BC的对称点A′,连接AA′,交BC于F,过A′作A′E⊥AC于E,交BC于D,则AD=A′D,此时AD+DE的值最小,就是A′E的长;Rt△ABC中,∠BAC=90°,AB=3,AC=6√2,∴BC=√32+(6√2)2=9,S△ABC=12AB·AC=12BC·AF=3×6√2=9AF,∴AF=2√2,∴AA′=2AF=4√2,∵∠A′FD=∠DEC=90°,∠A′DF=∠CDE,∴∠A′=∠C,∵∠AEA′=∠BAC=90°,∴△AEA′∽△BAC,∴AA′A′E =BCAC,∴4√2A′E =96√2,∴A′E=163,10.如图,已知Rt△ABC中,∠B=90∘,有三个正方形内接于△ABC,最大正方形的边长BD=16,另一个正方形的边长DE=12,则最小正方形的边长GF=.【答案】9【分析】本题主要考查的是平行线分线段成比例的有关知识,根据正方形的性质和∠B=90∘,得到HG//FJ//DK//AB,然后利用平行线分线段成比例进行求解即可.【解答】解:如图∵Rt△ABC中,∠B=90∘,四边形BDMK,四边形DFEJ,四边形FGHI均为正方形,最大正方形的边长BD=16,另一个正方形的边长DE=12,∴HG//FJ//DK//AB,∴CDBC =DKAB,FJAB=CFBC,∴CDDK =FCJF=BCAB,∴12+CF16=CF12,解得:CF=36,∴CD=12+36=48,∴BCAB =CDDK=4816=3,∵HG//AB,∴HGAB =CGBC,∴CGHG =BCAB=3,∴CF−FGHG=3,∴36−FGFG=3,解得:GF=9.11.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为______,线段DH长度的最小值为______.【答案】3√2;√13−√2【分析】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD 于N.首先利用相似三角形的性质证明EM=2FN,推出EM=2,FN=1,当点P与A 重合时,PQ的值最大,由勾股定理和直角三角形的性质求出OD,OH即可解决问题.本题考查矩形的性质,勾股定理,相似三角形的判定与性质,梯形的中位线的性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ//PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF//ON//BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD−OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,故答案为3√2,√13−√2.三、解答题12.折纸的思考.[操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB>BC)(如图 ①),使AB与DC重合,得到折痕EF,把纸片展开(如图 ②).第二步,如图 ③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△PBC.(1)说明△PBC是等边三角形.[数学思考](2)如图 ④,小明画出了图 ③的矩形ABCD和等边三角形PBC.他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图 ⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm,其邻边长为acm.对于每一个确定的a的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a的取值范围.[问题解决](4)用一张正方形铁片剪出一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.【答案】(1)证明:由折叠的性质得直线EF是线段BC的垂直平分线,直线BG是PC的垂直平分线,∴PB=PC,PB=CB,∴PB=PC=CB,∴△PBC是等边三角形.(2)解:本题答案不唯一.例如.以点B为中心,在矩形ABCD中把△PBC绕点B逆时针方向旋转适当的角度,得到△P1BC1,再以点B为位似中心,将△P1BC1放大,使C1的对应点C2落在CD上,得到△P2BC2.(3)解:当等边三角形的边长为3cm,高为acm时,则a=3√3,2当等边三角形的边长为acm,高为3cm时,则a=2√3. ①当0<a≤3√3时,如图.2 ②当3√2<a<2√3时,如图.2 ③当a≥2√3时,如图.(4)解:165.【分析】本题是几何变换综合题,主要考查轴对称的性质,相等垂直平分线的性质,旋转的性质,位似变换的性质,等边三角形的性质,直角三角形的性质,相似三角形的判定和性质,勾股定理.(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)由旋转的性质和位似的性质即可得出答案;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可;(4)证明△AEF∽△DCE,得出AEDC =EFCE=14,设AE=x,则AD=CD=4x,DE=AD−AE=3x,在Rt△CDE中,由勾股定理得出方程,解方程即可.【解答】解:(2)如图,△CEF是直角三角形,∠CEF=90∘,CE=4,EF=1,∴∠AEF+∠CED=90∘,∵四边形ABCD是正方形,∴∠A=∠D=90∘,AD=CD,∴∠DCE+∠CED=90∘,∴∠AEF=∠DCE,∴△AEF∽△DCE,∴AEDC =EFCE=14.设AE=x,则AD=CD=4x,∴DE=AD−AE=3x,在Rt△CDE中,由勾股定理得(3x)2+(4x)2=42,解得x=45,∴AD=4×45=165.故答案为165.13.如图,一张正三角形的纸片的边长为2cm,D、E、F分别是边AB、BC、CA(含端点)上的点,设BD=CE=AF=x(cm),ΔDEF的面积为y(cm2).(1)求y关于x的函数表达式和自变量的取值范围;(2)求ΔDEF的面积y的最大值和最小值.【分析】(1)根据题意可知△AEG≌△BEF≌△CFG三个三角形全等,且在△AEG中,AE= x,AG=2−x;可得△AEG的面积y与x的关系;(2)利用二次函数的性质解决问题即可.本题考查动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,另外要求能根据函数解析式判断函数图象的形状.【解答】解:(1)∵AF=BD=CE=x,且等边△ABC的边长为2,∴BE=CF=AD=2−x,∵∠A=∠B=∠C,∴△ADF≌△BED≌△CFE(SAS).在△ADF中,AF=x,AD=2−x,∵S△ADF=12AD×AF×sinA=√34x(2−x);∴y=S△ABC−3S△ADF=√3−3×√34x(2−x)=3√34x2−3√32x+√3(0≤x≤2).(2)∵y=3√34x2−3√32x+√3∴其图象为二次函数,且开口向上,∵0≤x≤2,∴√3≤y≤√3,4∴△DEF的面积的最大值为√3,最小值为√3.414.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)AC=______cm,BC=______cm;(2)当t=5(s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值;(3)设点P的运动时间为t(s),△PBQ的面积为y(cm2),当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围;(4)探求(3)中得到的函数y有没有最大值?若有,求出最大值;若没有,说明理由.【答案】(1)8;6;(2)如图1:∵点P从点A出发沿AB方向向点B运动,速度为1cm/s,∴当t=5时,AP=5,∵点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,∴CQ=4,∴PQ为△ABC的中位线,∴PQ垂直平分AC,∴CM=AM,CP=AP,∴△BCM的周长是:BC+CM+BM=6+CM+BM,∴当点M在点P处时,CM+BM=AP+BP=AB为最短,此时,△BCM的周长最小,最小值为:6+10=16;(3)如图2:当Q在BC上运动时,过Q作QH⊥AB于H,∵AP=t,BQ=2t,∴PB=10−t,∵△BQH∽△BAC,∴2t10=QH8,∴QH=85t,∴y=12⋅(10−t)⋅85t=45t2+8t(0<t≤3);如图3:当Q在CA上运动时,过Q作QH′⊥AB于H′,∵AP=t,BQ=2t,∴PB=10−t,AQ=14−2t,∵△AQH′∽△ABC,∴14−2t10=QH′6,∴QH′=35(14−2t),∴y=12⋅(10−t)⋅35(14−2t)=35t2−515t+42(3<t<7),(4)当0<t≤3时,y=−45t2+8t=−45t2+8t,则当t=3时,y max=845,当3<t<7时,y=35t2−515t+42=35(t−172)2−2720无最大值,则当t=3时,y max=845.【分析】(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;(2)根据所给的条件求出AP和CQ的长,得出PQ垂直平分AC,再根据三角形的面积公式求出当点M在点P处时,CM+BM=AP+BP=AB为最短,从而得出△BCM周长的最小值;(3)分别从当点Q在边BC上运动与当点Q在边CA上运动去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(4)分两种情况讨论,当0<t≤3时和3<t<7时,根据(3)求出的y与t的函数关系式,分别进行整理,即可得出答案.此题考查了相似形的综合,用到的知识点是相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,则AC=8cm,BC=6cm;故答案为:8,6;(2)如图1:∵点P从点A出发沿AB方向向点B运动,速度为1cm/s,∴当t=5时,AP=5,∵点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,∴CQ=4,∴PQ为△ABC的中位线,∴PQ垂直平分AC,∴CM=AM,CP=AP,∴△BCM的周长是:BC+CM+BM=6+CM+BM,∴当点M在点P处时,CM+BM=AP+BP=AB为最短,此时,△BCM的周长最小,最小值为:6+10=16;(3)如图2:当Q在BC上运动时,过Q作QH⊥AB于H,∵AP=t,BQ=2t,∴PB =10−t ,∵△BQH∽△BAC , ∴2t 10=QH 8, ∴QH =85t , ∴y =12⋅(10−t)⋅85t =45t 2+8t(0<t ≤3); 如图3:当Q 在CA 上运动时,过Q 作QH′⊥AB 于H′,∵AP =t ,BQ =2t ,∴PB =10−t ,AQ =14−2t ,∵△AQH′∽△ABC ,∴14−2t10=QH′6, ∴QH′=35(14−2t),∴y =12⋅(10−t)⋅35(14−2t)=35t 2−515t +42(3<t <7),(4)当0<t ≤3时,y =−45t 2+8t =−45t 2+8t ,则当t =3时,y max =845, 当3<t <7时,y =35t 2−515t +42=35(t −172)2−2720无最大值, 则当t =3时,y max =845.15. 【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x 2+16x +19的最小值.解:4x 2+16x +19=4x 2+16x +16+3=4(x +2)2+3因(x +2)2大于等于0,所以4x 2+16x +19大于等于3,即4x 2+16x +19的最小值是3.此时,x =−2(2)求−m 2−m +2的最大值解:−m 2−m +2=−(m 2+m)+2=−(m 2+m +14−14)+2=−(m +12)2+94 因(m +12)2大于等于0,所以−(m +12)2小于等于0,所以−(m +12)2+94小于等于94,即−m 2−m +2的最大值是94,此时,m =−12.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF 剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则AFAB =AEAC=EFBC,AF8=AE10=x6,AF=43x,AE=53x,S矩形BDEF=EF⋅BF=x(8−43x)=8x−43x2…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=ℎ,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为______.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为______.(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为______.(直接写出答案)【答案】aℎ4720 1458√3cm2【分析】【探索发现】利用配方法解决问题即可.【拓展应用】利用相似三角形构建二次三项式,再利用配方法解决问题即可.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD 交于点H,取BF中点I,FG的中点K,转化为图②中模型解决问题即可.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,转化为图②中模型解决问题即可.本题主要考查相似形的综合问题,熟练掌握中位线定理、相似三角形的判定与性质、等腰三角形的性质及类比思想的运用是解题的关键.【解答】解:【探索发现】S矩形BDEF =EF⋅BF=x(8−43x)=8x−43x2=−43(x−3)2+12,∵−43(x−3)2≤0,∴S矩形BDEF =EF⋅BF=x(8−43x)=8x−43x2=−43(x−3)2+12=−43(x−3)2+12≤12,∴矩形BDEF的面积的最大值为12.【拓展应用】设PN=b,∵PN//BC,∴△APN∽△ABC,∴AEAD =PNBC,∵BC=a,BC边上的高AD=ℎ,∴ℎ−PQℎ=ba,PQ=aℎ−bℎa,∴S=b⋅PQ=abℎ−ℎb2a =−ℎab2+bℎ=−ℎa(x−a2)2+aℎ4≥aℎ4∴S的最大值为:aℎ4;则矩形PQMN面积的最大值为aℎ4;故答案为:aℎ4.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD 交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵{∠FAE=∠DHE AE=AH∠AEF=∠HED,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI=AB+AF2=24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为12×BG⋅12BF=12×(40+20)×12(32+16)=720,故答案为720.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵∠B=∠C=60°,∴EB=EC,∵EH⊥BC,∴BH=HC,∵EHHC=tan60°=√3设CH=BH=x,Z则EH=√3x,∵BC=BH+CH=108=2x,x=54,∴BH=CH=54,EH=54√3,∴EBEC=2BH=108,∵AB=70,∴AE=38,∴BE的中点Q在线段AB上,∵CD=76,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为14BC⋅EH=14×108×54√3=1458√3cm2,故答案为1458√3cm2.。
【中考数学二轮核心考点讲解】第03讲最值问题专题最值的种类你是否都提前总结过?1. 垂线段最值类型:2. 点与点之间,线段最短类型;3. 轴对称最值类型(也称将军饮马型);4. 二次函数最值类型;5. 辅助圆中最值类型;6. 费马点最值类型;7. 胡不归最值类型;8. 阿波罗尼斯圆最值类型.【例题1】(2019•鸡西)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.【分析】本题属于“将军饮马最值类型”【解析】如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC ≥4,∴PD+PC的最小值为4.【例题2】在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为AE AB DE=+;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),8BD=,2AB=,8DE=,若135ACE=︒,求线段AE长度的最大值.【分析】本题属于“两点之间,线段最短类型”【解析】(1)AE AB DE=+;理由:在AE上取一点F,使AF AB=.易得=AE AF EF AB DE=++(2)猜想:12AE AB DE BD=++.证明:在AE上取点F,使AF AB=,连结CF,在AE上取点G,使EG ED=,连结CG.CQ是BD边的中点,12CB CD BD∴==.ACQ平分BAE∠,BAC FAC∴∠=∠.在ACB∆和ACF∆中,AB AFBAC FACAC AC=⎧⎪∠=∠⎨⎪=⎩,()ACB ACF SAS∴∆≅∆,CF CB∴=,BCA FCA∴∠=∠.同理可证:CD CG=,DCE GCE∴∠=∠.CB CD=Q,CG CF∴=120ACE∠=︒Q,18012060BCA DCE∴∠+∠=︒-︒=︒.60FCA GCE∴∠+∠=︒.60FCG∴∠=︒.FGC∴∆是等边三角形.12FG FC BD ∴==. AE AF EG FG =++Q .12AE AB DE BD ∴=++.(3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG . C Q 是BD 边的中点,12CB CD BD ∴==.()ACB ACF SAS ∆≅∆Q ,CF CB ∴=,BCA FCA ∴∠=∠.同理可证:CD CG =,DCE GCE ∴∠=∠ CB CD =Q ,CG CF ∴= 135ACE ∠=︒Q ,18013545BCA DCE ∴∠+∠=︒-︒=︒. 45FCA GCE ∴∠+∠=︒. 90FCG ∴∠=︒.FGC ∴∆是等腰直角三角形.12FC BD ∴=.8BD =Q , 4FC ∴=, 42FG ∴=. 42AE AB DE =++Q . 2AB =Q ,8DE =,1042AE AF FG EG ∴++=+….∴当A 、F 、G 、E 共线时AE 的值最大2,最大值为1042+.故答案为:1042+. 【例题3】(2019•普洱一模)已知菱形ABCD 中,AB =5,∠B =60°,⊙A 的半径为2,⊙B 的半径为3,点E 、F 分别为⊙A 、⊙B 上的动点,点P 为DC 边上的动点,则PE +PF 的最小值为 5 .【分析】本题属于“轴对称最值类型”【解析】当P 与C 重合时,F 点在BC 上,E 点在AC 上,此时PE +PF 的值最小; 连接AC ,∵菱形ABCD ,AB =5,∠B =60°, ∴AC =5,∵⊙A 的半径为2, ∴EC =3,∵⊙B 的半径为3, ∴FC =2, ∴PE +PF =5;故答案为5;【例题4】(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.8【分析】本题属于“圆中常规最值类型”【解析】如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.【例题5】如图,四边形的两条对角线AC、BD相交所成的锐角为60︒,当8+=时,四边形ABCDAC BD的面积的最大值是.【分析】本题属于“二次函数最值类型”【解析】ACQ与BD所成的锐角为60︒,∴根据四边形面积公式,得四边形ABCD 的面积1sin602S AC BD =⨯⨯︒, 设AC x =,则8BD x =-, 所以2133(8)(4)43224S x x x =-⨯=--+, 所以当4x =,S 有最大值43. 故答案为:43.【例题6】(2019•上虞区一模)如图,已知ABC ∆,DEF ∆均为等腰直角三角形,102EF =,顶点D ,E 分别在边AB ,AC 上滑动.则在滑动过程中,点A ,F 间距离的最大值为 .【分析】本题属于“辅助圆最值类型”【解析】DEF ∆均为等腰直角三角形,102EF =,10DE DF ∴==,ABC ∆Q 是等腰直角三角形,以ED 为直角作等腰直角三角形EDM ,以M 为圆心,AM 为半径作圆, 随着D 、E 点运动,A 始终在圆M 上, 当A 、M 、F 三点共线时,AF 最大; AM EM =Q , 52AM ∴=,45DEF MED ∠=∠=︒Q , 90MEF ∴∠=︒, 510MF ∴=, 52510AF ∴=+,故答案为52510+.【例题7】(2019•武汉)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =.点O 是△MNG 内一点,则点O 到△MNG三个顶点的距离和的最小值是.【分析】本题属于“费马点最值类型”【解析】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2【例题8】如图,在ACEe经过点C,且圆的直径AB在线段AE上.∆中,CA CE∠=︒,OCAE=,30(1)试说明CE是Oe的切线;(2)若ACEe的直径AB;∆中AE边上的高为h,试用含h的代数式表示O(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD OD +的最小值为6时,求O e 的直径AB 的长.【分析】本题属于“胡不归最值类型” 【解析】(1)连接OC ,如图1, CA CE =Q ,30CAE ∠=︒,30E CAE ∴∠=∠=︒,260COE A ∠=∠=︒, 90OCE ∴∠=︒,CE ∴是O e 的切线;(2)过点C 作CH AB ⊥于H ,连接OC ,如图2, 由题可得CH h =.在Rt OHC ∆中,sin CH OC COH =∠g , 3sin 60h OC OC ∴=︒=g , 233OC h ∴==,432AB OC h ∴==; (3)作OF 平分AOC ∠,交O e 于F ,连接AF 、CF 、DF ,如图3, 则11(18060)6022AOF COF AOC ∠=∠=∠=︒-︒=︒.OA OF OC ==Q ,AOF ∴∆、COF ∆是等边三角形, AF AO OC FC ∴===, ∴四边形AOCF 是菱形,∴根据对称性可得DF DO =. 过点D 作DH OC ⊥于H ,OA OC =Q ,30OCA OAC ∴∠=∠=︒, 1sin sin302DH DC DCH DC DC ∴=∠=︒=g g , ∴12CD OD DH FD +=+. 根据垂线段最短可得:当F 、D 、H 三点共线时,DH FD +(即1)2CD OD +最小,此时3sin 6FH OF FOH OF =∠==g , 则43OF =,283AB OF ==.∴当12CD OD +的最小值为6时,O e 的直径AB 的长为83.【例题9】阅读以下材料,并按要求完成相应的任务. 已知平面上两点A 、B ,则所有符合(0PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点(,0)C m ,(0,)D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得0::M OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q ,~POM DOP ∴∆∆…… 任务:(1)将以上解答过程补充完整.(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,D 为ABC ∆内一动点,满足2CD =,利用(1)中的结论,请直接写出23AD BD +的最小值.【分析】本题属于“阿波罗尼斯圆最值类型”【解析】解(1)在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q , ~POM DOP ∴∆∆. :MP PD k ∴=, MP kPD ∴=,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值, 即C ,P ,M 三点共线时有最小值,利用勾股定理得2222222()CM OC OM m kr m k r =+++.(2)4AC m==Q,23CDBC=,在CB上取一点M,使得2433CM CD==,∴23AD BD+的最小值为2244104()3+=.1.(2019•乐山)如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4【解析】连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【解析】如图:当点F与点C重合时,点P在P 1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.3.(2019•黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.【解析】如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠F AC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.故选:B.4.(2019•包头)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b 的最大值是()A.﹣B.﹣C.﹣1 D.0【解析】连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.5.如图,正三角形ABC的边长为3+,在正三角形ABC中放入正方形DEMN和EFPH,使得D、E、F 在边AB上,点P、N分别在边CB、CA上,这两个正方形面积和的最小值是,最大值是99﹣54.【解析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A=∠B=60°,AB=3+,在Rt△ADN中,AD=DN=m,在Rt△BPF中,BF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3﹣m,∴S=m2+n2=m2+(3﹣m)2=2(m﹣)2+当点M落在BC上,则正方形DEMN的边长最小,正方形EFPH的边长最大,如图,在Rt△ADN中,AD=DN,AN=DN,∴DN+DN=3+,解得DN=3﹣3,在Rt△BPF中,BF=PF,∴(3﹣3)+3﹣3+EF+PF=3+,解得PF=6﹣9,∴6﹣3≤m≤3﹣3,∴当m=时,S最小,S的最小值为;当m=3﹣3时,S最大,S的最大值=2(3﹣3﹣)2+=99﹣54.故答案为;99﹣54.6.如图,平面直角坐标系中,A、B在x轴上,A(2,0)、B(8,0),点C为y轴上一动点,当∠ACB最大时,C点坐标为(0,4)或(0,﹣4).【解析】当过A、B两点的⊙P与y轴正半轴相切于C时,∠ACB最大时,作PH⊥AB于H,连结PC、P A,如图,∵A(2,0)、B(8,0),∴OA=2,AB=6,∵PH⊥AB,∴AH=BH=3,∴OH=OA+AH=5,∵⊙P与y轴相切,∴PC⊥y轴,∴四边形PHOC为矩形,∴OC=PH,PC=OH=5,在Rt△P AH中,∵AH=3,P A=5,∴PH==4,∴OC=4,∴C点坐标为(0,4),当⊙P与y轴的负半轴相切时,C点坐标为(0,﹣4).故答案为(0,4)或(0,﹣4).7.(2019•威海)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).【解析】如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=(k≠0)的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=k,整理得k=m2+4m,∴A(m,m+4),B(m+4,m),∴M(m+2,m+2),∴OM===,∴OM的最小值为.故答案为.8.(2019•凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【解析】∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.9.(2019•东营)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N 分别是AC、BC的中点,则MN的最大值是.【解析】∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.10.(2019•乐山)如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是3.【解析】∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,∴S△POQ=(﹣+2)•x=﹣(x﹣2)2+3,∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.11.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.12.(2019•北仑区模拟)如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为2.【解析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=2,BC=4,∴EC=2,故答案为2;13.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【解析】∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.14.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC =60°,⊙O的半径为6,则点P到AC距离的最大值是6+3.【解析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.15.(2019•眉山)如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为2.【解析】连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.16.(2019•通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是﹣1.【解析】过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣117(2019•营口)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为8.【解析】过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.18.(2019•舟山)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【解析】∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)19.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A 旋转,当∠ABF最大时,S△ADE=6.【解析】作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.20.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD =120°,则CD的最大值是14.【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.21.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【解析】连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.22.(2019•连云港)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是3.【解析】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.23.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【解析】过点C 作CG ⊥BA 于点G ,作EH ⊥AB 于点H ,作AM ⊥BC 于点M . ∵AB =AC =5,BC =4, ∴BM =CM =2, 易证△AMB ∽△CGB , ∴,即∴GB =8,设BD =x ,则DG =8﹣x , 易证△EDH ≌△DCG (AAS ), ∴EH =DG =8﹣x , ∴S △BDE ===,当x =4时,△BDE 面积的最大值为8. 故答案为8. 24.(2019秋•嘉兴期末)一副三角板(ABC ∆与)DEF ∆如图放置,点D 在AB 边上滑动,DE 交AC 于点G ,DF 交BC 于点H ,且在滑动过程中始终保持DG DH =,若2AC =,则BDH ∆面积的最大值是( )A .3B .33C .32D .33【解析】如图,作HM AB ⊥于M , 2AC =Q ,30B ∠=︒,23AB ∴=, 90EDF ∠=︒Q ,90ADG MDH ∴∠+∠=︒, 90ADG AGD ∠+∠=︒Q , AGD MDH ∴∠=∠,DG DH =Q ,90A DMH ∠=∠=︒,()ADG MHD AAS ∴∆≅∆,AD HM ∴=,设AD x =,则23BD x =-,211113(23)(3)22222BDH S BD MH BD AD x x x ∆∴===-=--+g g , BDH ∴∆面积的最大值是32,故选:C .25.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为 433+ .【解析】将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形, AM MM ∴=',MA MD ME D M MM ME ∴++='+'+, D M ∴'、MM '、ME 共线时最短, 由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得433D E DG GE '=+=+,MA MD ME ∴++的最小值为433+.26.(2012•金牛区校级二模)如图,在△AOB 中,OA =OB =8,∠AOB =90°,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上,若tan CDO =,则矩形CDEF 面积的最大值s =.【解析】设CD =x ,CF =y .过F 作FH ⊥AO 于H .在 Rt △COD 中, ∵,∴.∴.∵∠FCH +∠OCD =90°,∴∠FCH =∠CDO . ∴.∴.∵△AHF 是等腰直角三角形,∴.∴AO =AH +HC +CO . ∴.∴.易知,∴当x =5时,矩形CDEF 面积的最大值为.故答案为:. 27.(2019•雁塔区校级一模)问题提出:(1)如图1,在四边形ABCD 中,AB BC =,3AD CD ==,90BAD BCD ∠=∠=︒,60ADC ∠=︒,则四边形ABCD 的面积为 33 ; 问题探究:(2)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,135ABC ∠=︒,22AB =,3BC =,在AD 、CD 上分别找一点E 、F ,使得BEF ∆的周长最小,并求出BEF ∆的最小周长; 问题解决: (3)如图3,在四边形ABCD 中,2AB BC ==,10CD =,150ABC ∠=︒,90BCD ∠=︒,则在四边形ABCD 中(包含其边沿)是否存在一点E ,使得30AEC ∠=︒,且使四边形ABCE 的面积最大.若存在,找出点E 的位置,并求出四边形ABCE 的最大面积;若不存在,请说明理由.【解析】(1)AB BC =Q ,3AD CD ==,90BAD BCD ∠=∠=︒ ()ABD CBD SAS ∴∆≅∆ADB CDB ∴∠=∠,且60ADC ∠=︒30ADB CDB ∴∠=∠=︒,且90BAD BCD ∠=∠=︒ 3AB BC ∴==∴四边形ABCD 的面积1233332=⨯⨯⨯=故答案为:33(2)如图,作点B 关于AD 的对称点M ,作点B 关于CD 的对称点N ,连接MN ,交AD 于点E ,交CD 于点F ,过点M 作MG BC ⊥,交CB 的延长线于点G , Q 点B ,点M 关于AD 对称BE EM ∴=,22AB AM ==,42BM ∴=Q 点B ,点N 关于CD 对称BF FN ∴=,3BC CN ==BEF ∴∆的周长BE BF EF NF EF EM MN =++=++= 135ABC ∠=︒Q ,45GBM ∴∠=︒,且GM BG ⊥, 45GBM GMB ∴∠=∠=︒BG GM ∴=,且222BG GM BM +=, 4BG GM ∴==,43310GN BG BC CN ∴=++=++=,∴在Rt GMN ∆中,2210016229MN GM GN =+=+=BEF ∴∆的最小周长为229(3)作ABC ∆的外接圆,交CD 于点E ,连接AC ,AE ,过点A 作AM CD ⊥于点M ,作BN AM ⊥于点N , Q 四边形ABCE 是圆内接四边形 180ABC AEC ∴∠+∠=︒ 30AEC ∴∠=︒,BN AM ⊥Q ,AM CD ⊥,90BCD ∠=︒, ∴四边形BCMN 是矩形2BC MN ∴==,BN CM =,90CBN ∠=︒, 150ABC ∠=︒Q ,60ABN ∴∠=︒,且BN AM ⊥ 30BAN ∴∠=︒, 112BN AB ∴==,33AN BN == 32AM ∴=+,1CM =30AEC ∠=︒Q ,AM CE ⊥,2234AE AM ∴==+,3323ME AM ==+ 423CE CM ME AE ∴=+=+=∴点E 在AC 垂直平分线上,ABC ACE ABCE S S S ∆∆=+Q 四边形,且ABC S ∆是定值,AC 长度是定值,点E 在ABC ∆的外接圆上,∴当点E 在AC 的垂直平分线上时,ABCE S 四边形最大()()()232331223184322AMEABCE ABCM S S S ∆++∴=+=⨯++⨯+=+四边形四边形 28.(2010•滨州模拟)如图,在平面直角坐标系中,已知四边形ABCD 是等腰梯形,A 、B 在x 轴上,D 在y 轴上,//AB CD ,17AD BC ==,5AB =,3CD =,抛物线2y x bx c =-++过A 、B 两点.(1)求b 、c ;(2)设M 是x 轴上方抛物线上的一动点,它到x 轴与y 轴的距离之和为d ,求d 的最大值;(3)当(2)中M 点运动到使d 取最大值时,此时记点M 为N ,设线段AC 与y 轴交于点E ,F 为线段EC 上一动点,求F 到N 点与到y 轴的距离之和的最小值,并求此时F 点的坐标.【解析】(1)易得(1A -,0)(4B ,0), 把1x =-,0y =;4x =,0y =分别代入2y x bx c =-++, 得101640b c b c --+=⎧⎨-++=⎩,解得34b c =⎧⎨=⎩.(3分)(2)设M 点坐标为2(,34)a a a -++,2||34d a a a =-++.①当10a -<…时,2224(1)5d a a a =-++=--+, 所以,当0a =时,d 取最大值,值为4; ②当04a <<时,2244(2)8d a a a =-++=--+所以,当2a =时,d 取最大值,最大值为8; 综合①、②得,d 的最大值为8.(不讨论a 的取值情况得出正确结果的得2分)(3)N 点的坐标为(2,6),过A 作y 轴的平行线AH ,过F 作FG y ⊥轴交AH 于点Q ,过F 作FK x ⊥轴于K , 45CAB ∠=︒Q ,AC 平分HAB ∠, FQ FK ∴=1FN FG FN FK ∴+=+-,所以,当N 、F 、K 在一条直线上时,1FN FG FN FK +=+-最小,最小值为5. 易求直线AC 的函数关系式为1y x =+,把2x =代入1y x =+得3y =, 所以F 点的坐标为(2,3).29.(2019•淮安)如图①,在△ABC 中,AB =AC =3,∠BAC =100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE .小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP = 50 °;②连接CE ,直线CE 与直线AB 的位置关系是 EC ∥AB .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解析】(1)①如图②中, ∵∠BPE =80°,PB =PE , ∴∠PEB =∠PBE =50°, ②结论:AB ∥EC .理由:∵AB =AC ,BD =DC , ∴AD ⊥BC , ∴∠BDE =90°, ∴∠EBD =90°﹣50°=40°, ∵AE 垂直平分线段BC , ∴EB =EC ,∴∠ECB =∠EBC =40°, ∵AB =AC ,∠BAC =100°, ∴∠ABC =∠ACB =40°, ∴∠ABC =∠ECB , ∴AB ∥EC .故答案为50,AB ∥EC .(2)如图③中,以P 为圆心,PB 为半径作⊙P . ∵AD 垂直平分线段BC , ∴PB =PC ,∴∠BCE =∠BPE =40°, ∵∠ABC =40°, ∴AB ∥EC .(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.。
解三角形之最值、范围问题一、单选题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =c sin B ,则tan A 的最大值为( ) A .1 B .54C .43D .32【答案】C2.在ABC ∆中,角,,A B C 的对边分别是,,,a b c 且,,A B C 成等差数列,2b =,则a c +的取值范围是( )A .(]2,3B .(]2,4C .(]0,4 D .(2,【答案】B3.锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2225a b c +=,则cos C 的取值范围是( ) A .(123,) B .(112,)C .[45D .[45,1) 【答案】C4.在ABC 内角A ,B ,C 的对边分别是a ,b ,c ,若()()3cos sin sin 1cos A B A B -=+,6a c +=,则ABC 的面积的最大值为( )A .BCD .【答案】D5.已知ABC 三内角,,A B C 的对边分别为,,a b c cos sin 0A a C +=,若角A 的平分线交BC 于D 点,且1AD =,则b c +的最小值为( )A .2B .C .4D .【答案】C6.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,且()()()3sin sin sin c B C a A c -+=-⋅,则ABC 周长的最大值为( )A .8B .9C .12D .15【答案】B二、解答题7.已知函数()2cos 3cos 1f x x x x =-+.(1)求函数()f x 的单调递减区间;(2)在锐角ABC 中,角,,A B C 所对的边分别,,a b c .若()1,f C c ==D 为AB 的中点,求CD 的最大值. 【答案】(1)递减区间511[,]1212k k k Z ππππ++∈;(2)32. 8.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )sin a B A +,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______.(1)求角B ;(2)若a c +=,求ABC 周长的最小值,并求周长取最小值时ABC 的面积.【答案】(1)3π;(2)4.9.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=-.(1)求BDC ∠; (2)若3A π∠=,求ABD △周长的最大值. 【答案】(1)6π;(2)12 10.已知ABC 的内角、、A B C 所对的边分别是,,,a b c 在以下三个条件中任先一个:①22(sin sin )sin sin sin B C A B C -=-;②sin4A =;③sin sin 2B C b a B +=; 并解答以下问题:(1)若选___________(填序号),求A ∠的值;(2)在(1)的条件下,若(0)a b m m ==>,当ABC 有且只有一解时,求实数m 的范围及ABC 面积S 的最大值.【答案】(1)条件选择见解析;60A =;(2)({}2m ∈⋃,max S =. 11.已知函数()21sin cos cos 62f x x x x π⎛⎫=-+- ⎪⎝⎭. (1)当[],0x π∈-时,求出函数()f x 的最大值,并写出对应的x 的值; (2)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若()12f A =,4b c +=,求a 的最小值. 【答案】(1)当56x =-π时,函数()f x 取最大值34;(2)最小值为2.12.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知1cos 2a c Bb =+. (1)若1c =,求ABC 面积的最大值;(2)若D 为BC 边上一点,4DB =,5AB =,且12AB BD ⋅=-,求AC .【答案】(1(2.13.在ABC 中,设,,A B C 所对的边分别为,,a b c ,4A π=,1cos 3B =,a b += (1)求,a b 的值;(2)已知,D E 分别在边,BA BC 上,且AD CE +=,求BDE 面积的最大值.【答案】(1)a =b =(214.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知1cos 2b a Cc =+. (1)求角A ;(2)若1AB AC ⋅=,求a 的最小值.【答案】(1)3π;(2。
专题03 三角形中的最值、范围高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、不等式、导数等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.本专题围绕三角形中的最值、范围精选例题,并给出针对性练习,以期求得热点难点的突破.【热点难点突破】例1.【2016年山东卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明; (Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值. 试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭,当且仅当a b =时,等号成立. 故 cos C 的最小值为12.例2.【2016年北京卷】在∆ABC 中,222+=a c b . (1)求B ∠ 的大小;(2cos cos A C + 的最大值. 【答案】(1)4π;(2)1.【解析】试题分析:(1)根据余弦定理公式求出cos B 的值,进而根据B 的取值范围求B 的大小;(2cos A C +进行化简变形,进而根据A 的取值范围求其最大值.点睛:正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.例3.(1(2.【答案】(1(2 6.【解析】试题分析:(1)根据已知条件,由正弦定理,(2)再求出周长的最大值。
(2,(当且仅当时取等号),(当且仅当,6.例4. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且2a =,242cos sin 25B C A ++=. (1)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (2)当ABC ∆的周长取最大值时,求b 的值. 【答案】(1)10(0,2]{}3;(2【解析】试题分析:(1)首先利用三角恒等变形求出A 的三角函数值,再利用正弦定理即可求解;(2)利用正弦定理将周长的表达式转化为以B 为变量的函数,利用三角函数的性质即可求解. 试题解析:(1)2442cossin 1cos()sin 255B C A B C A ++=⇒+++=,即1sin cos 5A A -=-, 又∵0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩,若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥,则b 的取值范围为10(0,2]{}3;(2)设ABC ∆的周长为l ,由正弦定理得10(sin sin )2[sin sin()]sin 3a l abc a B C B A B A =++=++=+++102(sin sin cos cos sin )22(3sin cos )2)3B A B A B B B B θ=+++=++=++, 其中θ为锐角,且sin 10cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2l =+,当cos B =,sin B =时取到,此时sin sin ab B A==例5.6层的写字楼,每层高均为3m36m(1(2已知从摄影位置看景物所成张角最大时,拍摄效果最佳.问:该摄影爱好者在第几层拍摄可取得最佳效果(不计人的高度)?【答案】(1)30米;(2) 时,张角.【解析】试题分析:(1)(2(2.(当时取等号).时,张角.答:该人在6层拍摄时效果最好.例6. 如图,有一码头P 和三个岛屿,,A B C , ,90mi ,30PC PB n le AB nmile ===,0120PCB ∠=, 090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【答案】(1)(2)(30n mile +(2)因为0090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=,在PAB ∆中, 90,30PB AB ==,由余弦定理得,PA ===, 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3030S PA AB BC CP =+++=+=+ 所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行,其航程为(30n mile +. 【方法总结】1.已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.2.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.3.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b4.在△ABC 中有如下结论sin A >sin B ⇔a >b .5.已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边.5.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.【精选精练】1. ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ 【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 2.为了竖一块广告牌,要制造三角形支架,如图,要求60ACB ∠=︒, BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. 1⎛+⎝⎭米 B. 2米 C. (1米 D. (2+米【答案】D3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC >,2a = 则b+c 的取值范围是( )A. 31,2⎛⎫ ⎪⎝⎭B.322⎛⎫ ⎪ ⎪⎝⎭C.13,22⎛⎫⎪⎝⎭ D.13,22⎛⎤ ⎥⎝⎦ 【答案】B【解析】由222b c a bc +-=得:2221cos 22b c a A bc +-==,则A=3π,由0AB BC >可知:B 为钝角, 21sin aR A==,则sin ,sin b B c C ==,sin sin sin b c B C B +=+=+2sin(3π)B -3=sin cos )226B B B π+=+,由于223B ππ<<,25366B πππ<+<,所以1sin()232B π<+<,322b c <+<,选B4.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,a S 为ABC ∆的面积,则cos S B C +的最大值为( )(A )1 (B 1 (C (D )3 【答案】C【解析】∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设ABC ∆外接圆的半径为R,则22sin sin 3a R A ===,∴1R =,∴1cos sin cos cos 24S B C bc A B C B C ==sin cos )B C B C B C ==-,故cos S B C +C .5.已知,,a b c 分别为内角,,A B C 的对边,其面积满足214ABC S a ∆=,则cb的最大值为( )11D. 2 【答案】C【解析】根据题意,有211sin 42ABC S a bc A ∆==,应用余弦定理,可得222cos 2sin b c bc A bc A +-=,于是212cos 2sin t t A t A +-=,其中c t b =.于是22sin 2cos 1t A t A t +=+,所以14A t t π⎛⎫+=+ ⎪⎝⎭,从而1t t+≤t1.选C.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2c o s 2cB a b =+,若ABC ∆的面积为S =,则ab 的最小值为__________. 【答案】12【解析】由正弦定理可得()2sin cos 2sin sin 2sin sin C B A B B C B =+=++,即2sin cos 2sin cos 2sin cos sin C B B C C B B =++,∴2sin cos sin 0B C B +=,∴1cos 2C =-, 23C π=,由1sin 2S ab C =⋅==,∴12c ab =,再由余弦定理可得2222cos c a b ab C =+-⋅,整理可得2222134a b a b ab ab =++≥,当且仅当a b =时,取等号,∴12ab ≥故答案为12. 7.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】)8.在边长为2的正三角形ABC 的边AB AC 、上分别取M N 、两点,点A 关于线段MN 的对称点A '正好落在边BC 上,则AM 长度的最小值为____.【答案】6【解析】显然,A P 两点关于折线MN 对称,连接MP ,可得AM PM =,则有BAP APM ∠=∠,设BAP θ∠=, 2BMP BAP APM θ∠=∠+∠=,再设AM MP x ==,则有2MB x =-,在ABC ∆中, 180120APB ABP BAP θ∠=-∠-∠=-, 1202BPM θ∴∠=-,又60MBP ∠=,在BMP ∆中,由正弦定理知sin sin BM MPBPM MBP =,即()()2,sin60sin 12022sin 12023x x x θθ-=∴=--+,060,01202120θθ≤≤∴≤-≤,所以当120290θ-=时,即15θ=时, ()sin 12021θ-=,此时x 26==,且75AMN ∠=,则AM 的最小值为6,故答案为6.9.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且//.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值.【答案】(1)3π;(2)34. 【解析】 //,所以()0cos 2cos =--A b c B a ,由正弦定理得-B A cos sin ()0cos sin sin 2=-A B C ,A C AB B A cos sin 2cos sin cos sin =+∴()A C B A cos sin 2sin =+∴,由π=++C B A ,A C C cos sin 2sin =∴由于π<<C 0,因此0sin >C ,所以21cos =A ,由于π<<A 0,3π=∴A (2)由余弦定理得A bc c b a cos 2222-+= bc bc bc bc c b =-≥-+=∴21622,因此16≤bc ,当且仅当4==c b 时,等号成立;因此ABC ∆面积34sin 21≤=A bc S ,因此ABC ∆面积的最大值34. 10. 已知3x π=是函数()sin2cos2f x m x x =-的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,若()2f B =,且b =2c a -的取值范围.【答案】(1)(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)2⎛- ⎝ 【解析】试题分析:(1)3x π=是函数()f x 的一条对称轴3f π⎛⎫⇒= ⎪⎝⎭m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭,根据三角函数的性质,即可求出单调性;(2)()2f B = 可得3B π=,又b =由正弦定理得: 2sin sin(+236c a A A A ππ⎛⎫-=-- ⎪⎝⎭,由20,362A A ππ⎛⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪ ⎝⎭⎝⎭⎝,即可求出结果.(2)()2f B = sin 2163B B ππ⎛⎫⇒-=⇒= ⎪⎝⎭又b = 2sin ,2sin 2sin 3a A c C A π⎛⎫===+ ⎪⎝⎭2sin sin(+236c a A A A ππ⎛⎫⇒-=-- ⎪⎝⎭ 210,,sin ,1366262A A A πππππ⎛⎫⎛⎫⎛⎫⎛⎫∈⇒-∈-⇒-∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6A π⎛⎛⎫⇒-∈ ⎪ ⎝⎭⎝,即2c a ⎛⇒-∈ ⎝ 11. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭. (1)求角A 的值;(2)若b =b a ≤,求a 的取值范围.【答案】(1) 3A π=;(2) )a ∈. 【解析】试题分析:(1)根据余弦的二倍角公式以及两角和与差的余弦公式化简cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,可得sin A 的值,从而求得A 的值;(2)b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤,再由正弦定理可得结果.试题解析:(1)由已知cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 044B A B B ⎛⎫-+-= ⎪⎝⎭化简得sin 2A =,又三角形ABC 为锐角三角形,故3A π=.(2)∵b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤由正弦定理得: sin sin a b A B =即:=即32sin a B =由1sin 2B ⎛∈ ⎝⎦知)a ∈. 12. 如图,是两个小区所在地,,间的距离为(1之间找一点的张角与(2)之间找一点位置.【答案】(1)4;(2【解析】试题分析:(1)利用张角相等的相似性即可确定点P 的位置;(2).。