七年级方程及方程组
- 格式:doc
- 大小:788.00 KB
- 文档页数:9
七年级下册50道解二元一次方程组含答案1、求解方程组:begin{cases} x+y= \\ x-y=2 \end{cases}$$改写为:begin{cases} x+y=a \\ 2x=a+2y \end{cases}$$其中,$a$为待求解的常数。
解得:$x=\frac{a+2}{2}$,$y=\frac{a-2}{2}$,因此方程的解为$(\frac{a+2}{2},\frac{a-2}{2})$。
2、求解方程组:begin{cases} y=2x \\ x+y=3 \end{cases}$$将第一个方程代入第二个方程,得到$3x=3$,解得$x=1$,因此$y=2$,方程的解为$(1,2)$。
3、求解方程组:begin{cases} x-y=6 \\ 2x+31y=-11 \end{cases}$$将第一个方程变形为$x=6+y$,代入第二个方程得到$2(6+y)+31y=-11$,解得$y=-\frac{23}{33}$,因此$x=\frac{55}{33}$,方程的解为$(\frac{55}{33},-\frac{23}{33})$。
4、求解方程组:begin{cases} x+y=1 \\ 3x-y=3 \end{cases}$$将第一个方程变形为$y=1-x$,代入第二个方程得到$3x-(1-x)=3$,解得$x=1$,因此$y=0$,方程的解为$(1,0)$。
5、求解方程组:begin{cases} y=2x-3 \\ 3x+2y=8 \end{cases}$$将第一个方程代入第二个方程,得到$3x+2(2x-3)=8$,解得$x=2$,因此$y=1$,方程的解为$(2,1)$。
6、求解方程组:begin{cases} x+y=1 \\ 4x+y=10 \end{cases}$$将第一个方程变形为$y=1-x$,代入第二个方程得到$4x+(1-x)=10$,解得$x=3$,因此$y=-2$,方程的解为$(3,-2)$。
七年级上册数学方程公式
七年级上册数学方程公式包括以下几种:
1.一元一次方程:
-标准形式:ax + b = 0,其中a和b为常数,x为未知数。
-解法:通过移项,得到x = -b/a。
2.一元一次方程组:
-标准形式:ax + by = c,dx + ey = f,其中a、b、c、d、e和f为常数,x和y为未知数。
-解法:可以通过消元法、代入法或者加减法来求解。
3.百分数、利润和利息问题:
-百分数问题:百分数= (部分值/全部值)× 100%。
-利润问题:利润=销售价-成本价。
-利息问题:利息=本金×利率×时间。
4.比例问题:
-两个量的比值为定值,即两个量成比例。
比例公式可以表示为:a/b = c/d,其中a、b、c和d为已知数。
5.百分比问题:
-百分数×全部值=部分值。
这些公式是七年级上册数学中常见的方程公式,能够帮助解决数学问题。
在学习这些公式的同时,还可以进一步拓展学习更多的方程公式和数学概念。
第3章 一次方程与方程组知识点一次方程与方程组知识点知识点1:一元一次方程的概念只含有一个未知数,并且未知数的次数都是1,像这样的整式方程叫做一元一次方程。
(如:21,314223x x x x --=+=-) 特点:①等号两边都是整式②只含有一个未知数③未知数的次数都为1。
判断方法:首先要将整式方程化简,然后再判断是否满足一元一次方程的三个特点。
知识点2:等式的基本性质1.等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
即如果a b =,那么a c b c ±=±;2。
等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.即如果a b =,那么ac bc =,(0)ab c c c=≠; 3。
对称性:如果a b =,那么b a =;4。
传递性:如果a b =,b c =,那么a c =。
知识点3:一元一次方程的解法1。
移项法则把方程的某一项改变符号后,从方程的一边移到方程的另一边,叫做移项法则.2。
解一元一次方程的步骤①去分母:在方程两边都乘以各分母的最小公倍数; ②去括号:先去小括号,再去中括号,最后去大括号; ③移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(移项要变号)④合并同类项:把方程变成(0)ax b a =≠的形式⑤系数华为1:在方程两边都除以未知数的系数a ,得到方程的解b x a=。
知识点4:(1)二元一次方程的概念含有两个未知数,且未知项的最高次数是1的整式方程叫做二元一次方程。
如:1,323,32m x y x y n +=-=+=都是二元一次方程。
(2)二元一次方程组的概念由两个二元一次方程组成的方程组叫做二元一次方程组。
(如:2324x y x y +=⎧⎨-=⎩) 知识点5:二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解。
知识点6:二元一次方程组的解法(1)用代入法求解二元一次方程组步骤:①从方程组中选一个系数比较简单的方程,将这个方程的一个未知数用含另一个未知数的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解方程组步骤:①方程组中的两个方程中,如果同一个未知数的系数即不互为相反数又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数变为相反数或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用符号“{"联立起来.知识点7:用一次方程(或方程组)解决实际问题①行程问题:行程问题中涉及的量有路程、平均速度、时间。
二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
第5单元知识点七:二元一次方程组的应用【典型例题】 1、某市举办中学生足球赛,规定胜一场得3分,平一场得1分。
市第二中学足球队比赛11场,没输过一场,共得27分。
问该队胜几场,平几场?2、某市举办中学生足球比赛,规定胜一场得3分,平一场得1分,输一场得0分;市第二中学足球队比赛11场,胜的场次是输的场次的3倍,共得21分。
试问该队胜几场,平几场,输几场?3、甲、乙两人相距4km,以各自的速度同时出发,如果同向而行,甲2h追上乙;如果相向而行,两人0.5h后相遇,试问两人的速度各是多少?4、玻璃厂熔炼玻璃液,原料是石英砂和长石粉混合而成,要求原料中含二氧化硅70%,根据化验,石英砂中含二氧化硅99%,长石粉中含二氧化硅67%,试问3.2t原料中,石英砂和长石粉各多少吨?5、某医院利用甲乙两种原料为病人配制营养品。
已知每克甲原料含0.6单位蛋白质和0.08单位铁质,每克乙原料含0.5单位蛋白质和0.04单位铁质,如果病人每餐需34单位蛋白质和4单位铁质,那么每餐甲乙两种原料各多少克恰好满足病人的需要?6、某商场向银行申请了甲、乙两种贷款,共计68万元。
每年应付利息3.82万元,甲种贷款年利率是6%,乙种贷款年利率是5%,试问这两种贷款的金额各是多少?7、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”问甲、乙现在各多少岁?8、某村18位农民筹集5万元资金,承包了一些低产田地。
根据市场调查,他们计划对种植作物的品种进行调整,改种蔬菜和荞麦,种这两种作物每公顷所需的人数和需投入的资金如下表:在现有的条件下,这18位农民应承包多少公顷田地,怎样安排种植才能使所有的农民都有工作,且资金正好够用?知识点八:三元一次方程组及其解法【知识要点】解三元一次方程组的基本思路是通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
七年级方程知识点方程在数学中是一种很重要的工具,它用于表示特定的关系和规律,同时也可以用来求解问题。
在七年级数学中,学生需要学习一些基础的方程知识点,包括一元一次方程、二元一次方程和解方程的方法等等。
本文将详细介绍这些方程知识点。
一、一元一次方程一元一次方程指的是只有一个未知数,并且这个未知数的最高次数是一的方程。
通常形式如下:ax + b = 0其中 a 和 b 是已知数,x 是未知数。
解这个方程即是求出 x 的值。
解这个方程的方法是把常数项 b 移到等式右边,然后把系数 a 除到等式右边。
这样方程就变成了:x = -b / a例如,求出方程 3x + 5 = 0 的解:首先,把常数项 5 移到等式右边:3x = -5然后,把系数 3 除到等式右边:x = -5 / 3所以,方程 3x + 5 = 0 的解是 x = -5 / 3。
二、二元一次方程二元一次方程指的是含有两个未知数,并且这两个未知数的最高次数都是一的方程。
通常的形式如下:ax + by = cdx + ey = f其中 a、b、c、d、e 和 f 都是已知数,x 和 y 分别是两个未知数。
解这个方程组即是求出 x 和 y 的值。
解这个方程组的方法有很多种,其中比较常见的是消元法和代入法。
消元法的思路是把两个方程中的某一个未知数消去,得到一个仅包含另一未知数的方程,接着再利用这个新方程和原方程的任意一个解法求解。
代入法的思路是解出其中一个未知数,把它的值带入到另一个方程中,接着解出另一个未知数的值。
例如,求出下面的方程组的解:2x + 3y = 7x - y = 1代入法的做法是先解出 x 的值:x - y = 1x = y + 1然后代入到第一个方程中,得到:2(y + 1) + 3y = 75y + 2 = 7y = 1接着代入 y 的值求出 x 的值:x = y + 1 = 2所以,方程组 2x + 3y = 7 和 x - y = 1 的解为 x = 2,y = 1。
一、方程的概念及解法1.方程的定义:在等号两边含有未知数的式子。
2.方程的解:使方程成立的未知数的值。
3.方程的解法:a.逆运算法:通过逆向运算来求解方程。
b.移项法:通过移动项的位置来求解方程。
c.消元法:通过等式变形,将方程变为更简单的形式,再求解。
二、一元一次方程1.一元一次方程的定义:方程中只有一个未知数,并且未知数的最高次数为12.一元一次方程的解法:a.逆运算法:通过逆向运算,将未知数单独求解。
b.移项法:将未知数的项移到等号一边,常数项移到另一边,使方程变为等价方程。
三、一元二次方程1.一元二次方程的定义:方程中只有一个未知数,并且未知数的最高次数为22. 一元二次方程的标准形式:ax² + bx + c = 0。
3.一元二次方程的解法:a.因式分解法:将方程进行因式分解,使得两个括号中的内容相等。
b.完全平方法:将方程利用完全平方式变为平方形式。
c.配方法:通过配方法将方程变为平方形式后,利用公式求解。
d.根的性质法:通过根的性质进行求解,如求和、求积。
四、分式方程1.分式方程的定义:方程中含有分式,且未知数出现在分母或分子中。
2.分式方程的解法:a.求分母公倍数,将方程两边的分数化为通分后的形式,再进行等式变形求解。
b.消分母法:将方程两边的分数化为分母为1的形式,再进行等式变形求解。
五、绝对值方程1.绝对值方程的定义:方程中含有绝对值符号,未知数出现在绝对值内或外。
2.绝对值方程的解法:a.分类讨论法:根据绝对值的取正值和取负值分别讨论。
b.移项分组法:通过移项和分组,将方程变为绝对值为常数的形式。
六、方程组1.方程组的定义:由若干个方程组成的集合。
2.方程组的解法:a.代入法:将其中一个方程的解代入另一个方程,依次求解。
b.消元法:通过加减乘除等运算将方程组化简为更简单的形式,再求解。
c.矩阵法:通过矩阵的计算求解方程组。
d.图解法:将方程组转化为坐标系中的图形,通过图形的交点求解。