北京科技大学液态成形理论与工艺复习题
- 格式:docx
- 大小:619.39 KB
- 文档页数:11
材料成形部分复习题一、液态成形部分(一)填空1、形状复杂、体积也较大的毛坯常用砂型铸造方法。
2、铸造时由于充型能力不足,易产生的铸造缺陷是浇不足和冷隔。
3、液态合金的本身流动能力,称为流动性。
4、合金的流动性越好,则充型能力好。
5、铸造合金的流动性与成分有关,共晶成分合金的流动性好。
6.合金的结晶范围愈小,其流动性愈好7、同种合金,结晶温度范围宽的金属,其流动性差。
8、为防止由于铸造合金充型能力不良而造成冷隔或浇不足等缺陷,生产中采用最方便而有效的方法是提高浇注温度。
9、金属的浇注温度越高,流动性越好,收缩越大。
10、合金的收缩分为液态收缩、凝固收缩和固态收缩三个阶段。
11、合金的液态、凝固收缩是形成铸件缩孔和缩松的基本原因。
13、同种合金,凝固温度范围越大,铸件产生缩松的倾向大。
14、同种合金,凝固温度范围越大,铸件产生缩孔的倾向小。
15、顺序凝固、冒口补缩,增大了铸件应力的倾向。
16、为防止铸件产生缩孔,便于按放冒口,铸件应采用顺序凝固原则。
17、控制铸件凝固的原则有二个,即顺序原则和同时原则。
18、按铸造应力产生的原因不同,应力可分为热应力和机械应力。
19、铸件厚壁处产生热应力是拉应力。
铸件薄壁处产生热应力是压应力。
20、铸件内部的压应力易使铸件产生伸长变形。
21、铸件内部的拉应力易使铸件产生缩短变形。
23、为防止铸件产生热应力,铸件应采用同时凝固原则。
24、防止铸件变形的措施除设计时使壁厚均匀外,工艺上应采取反变形法。
25、为防止铸件热裂,应控铸钢、铸铁中含 S 量。
26、为防止铸件冷裂,应控铸钢、铸铁中含 P 量。
27、灰铸铁的石墨形态是片状。
28、常见的铸造合金中,普通灰铸铁的收缩较小。
29、可锻铸铁的石墨形态是团絮状。
30、球墨铸铁的石墨形态是球形。
31、常见的铸造合金中,铸钢的收缩较大。
32、手工砂型铸造适用于小批量铸件的生产。
33、形状复杂、体积也较大的毛坯常用砂型铸造方法。
(二)选择1、形状复杂,尤其是内腔特别复杂的毛坯最适合的生产方式是( B )。
材料加工原理(液态成型部分)复习题:名词解释:1、自发形核在不借助任何外来界面的均匀熔体中形核的过程。
2、非自发形核在不均匀熔体中,依靠外来杂质界面或各种衬底形核的过程。
3、气孔为梨形、圆形、椭圆形的孔洞,表面较光滑,一般不在铸件表面露出,大孔独立存在,小孔则成群出现。
4、非金属夹杂物在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。
5、残余应力产生应力原因消除后,铸件中仍然存在的应力。
6、充型能力液态金属充满铸型型腔,获得尺寸精确、轮廓清晰的成型件的能力。
7、缩孔指铸件在冷凝过程中收缩而产生的孔洞,形状不规则,孔壁粗糙。
8、缩松铸件断面上出现的分散而细小的缩孔。
9、铸造应力铸件在发生体积膨胀或收缩时,往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在变形的同时产生应力10、单相合金凝固过程中只析出一个固相的合金 (固溶体,金属间化合物,纯金属)11、多相合金凝固过程中同时析出两个以上新相的合金(共晶、包晶、偏晶转变的合金)12、溶质再分配合金在凝固时,随着温度不同,液固相成分发生改变,且由于固相成分与液相原始成分不同,排出溶质在液-固界面前沿富集,并形成浓度梯度,从而造成溶质在液、固两相重新分布,这种现象称之为“溶质再分配”现象。
13、平衡凝固在接近平衡凝固温度的低过冷度下进行的凝固过程。
14、溶质分配系数一定温度下,处于平衡状态时,组分在固定相中的浓度和在流动相中的浓度之比15、动力学过冷度物体实际结晶温度与理论结晶温度的差。
液态成型理论基础:1、纯金属和实际合金的液态结构有何不同?举例说明。
答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏、成分起伏。
液态成形理论及工艺复习题及解答一、选择题1、下述描述影响异质形核速率的因素中错误的是( B )。
A接触角θ越小,形核速率越大 B 接触角θ越大,形核速率越大C 形核基底数量多,形核速率越大D 过冷度越大,形核速率越大2、在常见的凝固条件下,单相合金的凝固过程是以( C )生长方式进行的。
A平面状 B 胞状 C 枝晶状 D 上述所有3、在下述共晶组织形态中,属于不规则共晶组织的是( D )。
A层片状 B 棒状 C 球状 D 针状4、下述关于影响液态金属充型能力的描述中,错误的是( D )。
A合金的结晶温度范围越宽,充型能力越差B 铸型的蓄热系数越大,充型能力下降C 浇注温度越高,充型能力越好D 充型压头越大,充型能力下降5、下述所谓防止铸造变形的措施中,错误的是( C )。
A铸型上放置压铁 B 在铸造模样上设置预变形量C 过早打箱D 设置防变形筋6、不能减小铸造应力的措施是( C )。
A预热铸型 B 铸件厚大部位放置冷铁C 选择弹性模量大和收缩系数小的合金D 合理控制打箱时间7、下述防止析出性气孔的措施中,错误的是( D )。
A采用真空熔炼 B 浮游去气C 提高金属凝固时的外压D 减小铸件冷却速度8、高压造型法的目的就在于制出均匀的高紧实度铸型。
在下述各种压实方法中,紧实度最高、最均匀的是( D )。
A上压法 B 下压法 C 上压、下压两次进行 D 两面压实法9、金属铜、铁、铝、镁的氧化物中,不能起致密保护作用的是( D )。
A铜 B 铁 C 铝 D 镁10、型砂最适宜水分含量的确定依据是( B )。
A湿压强度峰值 B 透气性峰值 C 紧实度 D 过筛性11、在下述铸造方法中,无需分型面的是( D )。
A砂型铸造 B 压力铸造 C 低压铸造 D 熔模铸造12、在下述铸造方法中,生成率最高的是( B )。
A砂型铸造 B 压力铸造 C 低压铸造 D 熔模铸造13、压力铸造生产条件下,铸件最容易产生的铸造缺陷是( B )。
材料制备加⼯理论题复习提纲(北科⼤)材料制备加⼯(宋⽼师上课部分)第⼀章材料加⼯成形的⽅法1.概述:根据化学成分和显微结构分为:⾦属材料、⽆机粉⾦属材料、⾼分⼦材料、复合材料成形。
2.⾦属材料的精确成形包括:铸造、塑性成形、焊接。
3.⾦属塑性成形:利⽤⾦属在外⼒作⽤下所产⽣的塑性形变来获得具有⼀定形状、尺⼨和⼒学性能的材料。
(⼀般作⽤⼒有冲击⼒和压⼒)4.⾦属塑性成形包括:轧制:⾦属坯料在两个回转轧辊之间受压变形⽽形成各种产品的成形⼯艺。
挤压:⾦属坯料在挤压模内被挤出模孔⽽变形的成形⼯艺。
拉拔:将⾦属坯料拉过拉拔模的模孔⽽变形的成形⼯艺。
锻压:⾦属坯料在上下砥铁间受冲击⼒或压⼒⽽变形的成形⼯艺称为⾃由锻,坯料在⼀定形状的锻模模膛内受冲击⼒或挤压⼒⽽变形的成形⼯艺称模锻,⾦属板料在冲模之间受压产⽣分离或变形的成形⼯艺称冲压。
5.焊接与其他连接⽅法的重要区别是通过原⼦之间的结合⽽实现连接。
6.材料成形加⼯技术的发展趋势:精密成形-材料制备与成形⼀体化-复合成型-数字化成形-材料成形⾃动化-绿⾊清洁⽣产。
第⼆章钢铁材料⽣产⼯艺1.炼铁:矿⽯到钢材可分为两个流程:(长流程)⾼炉-转炉-轧机流程;(短流程)直接还原或熔融还原-电炉-轧机流程。
2.设备:⾼炉本体和五个辅助设备系统3.原料:铁矿⽯和熔剂(作⽤:1.使还原出来的铁与脉⽯和⽯灰⽯实现良好分离,并顺利从炉缸中流出,即渣铁分离。
2.使⼀定数量和⼀定物理、化学性能的炉渣去除有害杂质硫,确保⽣铁质量。
)、⾼炉燃料(焦炭:在风⼝前燃烧,提供冶炼所需热量;固体碳及其氧化物co充当还原剂;在⾼温区焦炭作为⽀撑料柱⾻架,同时保证⽓路流通;铁⽔渗碳。
、煤粉)4.铁矿粉造块⽅法:烧结法和球团法。
5.⾼炉冶炼原理:⽤CO和H2还原铁氧化物(间接还原)T<570℃时,CO作还原剂:3Fe2O3+CO=2Fe3O4+CO2Fe3O4+CO=3FeO+CO2FeO+CO=Fe+CO2当温度⼤于570℃时,⽤H2作还原剂3Fe2O3+H2=2Fe3O4+H2OFe3O4+H2=3FeO+H2OFeO+H2=Fe+H2O间接还原时⽤⽓体作为还原剂,可逆反应,还原剂不能充分利⽤,需要⼀定过量的还原剂。
液态成形复习资料第一章1.凝固成形]:熔炼金属,并将熔融金属浇注、压射或吸入铸型型腔中,凝固成为一定形状和性能的铸件。
2.凝固成形]:熔炼金属,并将熔融金属浇注、压射或吸入铸型型腔中,凝固成为一定形状和性能的铸件。
3.按液体的构成类型,可分为:原子液体(如液态金属、液化惰性气体)分子液体(如极性与非极性分子液体)离子液体(如各种简单的及复杂的熔盐)4.液体具有流动性(液体最显著的性质);可完全占据容器的空间并取得容器内腔的形状;(类似于气体,不同于固体)不能够象固体那样承受剪切应力,表明液体的原子或分子之间的结合力没有固体中强;类似于气体,不同于固体)具有自由表面(类似于固体,不同于气体);液体可压缩性很低(类似于固体,不同于气体5.物理性质:密度、粘度、电导率、热导率和扩散系数等;物理化学性质:等压热容、等容热容、熔化和气化潜热、表面张力等;热力学性质:蒸汽压、膨胀和压缩系数及其它6.液体的结构和性质与材料成型的关系液体的界面张力、潜热等性质凝固过程的形核及晶体生长的热力学熔体的结构信息凝固的微观机制液体的原子扩散系数、界面张力、传热系数、结晶潜热、粘度等性质成分偏析、固-液界面类型及晶体生长方式热力学性质及反应物和生成物在液相中的扩散速度铸造合金及焊接熔池的精炼7.晶体:平移、对称性特征(长程有序)——原子以一定方式周期排列在三维空间的晶格结点上,同时原子以某种模式在平衡位置上作热振动气体:完全无序为特征——分子不停地作无规律运动Array液体:长程无序——不具备平移、对称性;近程有序——相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团,液体结构表现出局域范围的有序性8.物质熔化时体积变化﹑熵变(及焓变)一般均不大(见表1-1),金属熔化时典型的体积变化V m/V S(V m为熔化时的体积增量)为3~5%左右,表明液体的原子间距接近于固体,在熔点附近其混乱度只是稍大于固体而远小于气体的混乱度。
1、液态金属黏性的本质是什么?AA、金属液体原子间结合力的大小B、金属液体密度的大小C、金属材料熔点的大小D、金属材料的化学成分2、关于黏度对铸件成型过程的影响哪个说法是错误的?CA、黏度大将影响到金属的充型B、黏度大,对流小,易产生偏析、夹杂物等C、黏度大,夹杂物易上浮,排渣好D、黏度大,液态金属流动阻力大。
3、下列哪种缺陷与液态金属充型能力差无关?BA、浇不足B、偏析C、砂眼D、夹砂4、关于对液态金属充型能力的影响哪个说法是正确的?DA、金属的密度大,流动性差B、铸型的温度高,流动性差C、浇注的温度高,流动性差D、铸件结构复杂,流动性差5、使用下列哪种铸型,铸件冷却最快?CA、砂型铸型B、金属型铸型C、水冷金属型铸型D、石膏型铸型6、下列哪种凝固方式不会内产生分散性缩松现象?AA、逐层凝固B、中间凝固C、体积凝固D、前三种都会7、下列哪种晶粒具有明显的各向异性?BA、中心等轴晶B、柱状晶C、表面细等轴晶D、前三种都有8、铸件的三个晶区中,哪种晶区容易产生缩孔和缩松?CA、表面细晶区B、柱状晶区C、中心等轴区D、三种都容易产生9、在凝固过程中,向液态金属中添加少量其他物质促进形核、抑制生长,达到细化晶粒目的方法属于下列哪种?DA、控制力学条件细化晶粒B、控制浇注工艺细化晶粒C、动态细化晶粒D、孕育变质处理细化晶粒10、下列哪种浇注工艺方法会得到粗壮的柱状晶?AA底注式B单孔中心顶注式C单孔靠壁型顶注式 D 6孔靠壁型顶注式11、如图所示是下列哪种定向凝固方式?CA、快速凝固法B、液态金属冷却法C、发热剂法D、深过冷定向凝固法12、图示哪种快速凝固方法可使合金凝固成金属粉末?DA 气枪法B 旋铸法C 表面快速熔凝法D 雾化法13、如图所示零件,应采用下列哪种造型方法?BA、整模造型B、分模造型C、三箱造型D、胎模造型、14、若浇注系统直浇道、横浇道和内浇道的截面积分别为和。
浇注中小型铸铁、铸钢件时,应如何分配浇注系统的截面积比例?AA、B、C、D、15、关于冒口的作用的说哪个是错误的?BA、补缩、排气B、提高尺寸精度C、集渣D、控制凝固顺序16、浇注系统中的浇口杯制作成如图所示形状的主要优点是什么?AA、挡渣效果好B、制作工艺简单C、金属液消耗少D、对铸型的冲刷力大17、离心铸造适合铸造下列哪种铸件形状?CA、空心方形铸件B、实心方形铸件C、空心回转体铸件D、实心回转体铸件18、在离心铸造工艺过程冲,加入熔渣剂的作用是什么?DA、改变逐渐的化学成分B、增加逐渐的重量C、提高铸件的尺寸精度D、创建顺序凝固条件,消除皮下缩孔19、砂型铸造中,型芯的作用是什么?AA、形成铸件的内孔B、改善铸件的性能C、增加铸件强度D、减少铸件重量20、下列哪种铸造方法可以浇注出双金属铸件?DA、金属型铸造B、砂型铸造C、熔模铸造D、离心铸造1、影响液态金属黏度的因素有哪些?答:因素:温度、化学成分、杂质。
《金属精密液态成形技术》复习题答案第1章绪论一、简答题1.常用金属精密液态成形方法有哪些?答:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空铸造、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成行技术、石墨型铸造、电渣熔铸、电磁铸造2.金属精密液态成形技术的特点是什么?对铸件生产有哪些影响?答:(1)特点:特殊的铸型制造工艺与材料;特殊的液态金属充填方式与铸件冷凝条件。
(2)对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸件表面粗糙度降低,从而可实现近净成形。
在某些精密液态成形过程中,金属液是在外力(如离心力、电磁力、压力等)作用下完成充型和凝固的,因此提高了金属液的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。
第2章熔模铸造成形一、名词解释1.硅溶胶:是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体溶液。
2.水玻璃模数:水玻璃中的二氧化硅与氧化钠摩尔数之比。
3.树脂模料:以树脂及改性树脂为主要组分的模料。
4.压型温度:熔模压制时压型的工作温度。
5.涂料的粉液比:涂料配置中粉料和液体的比例。
6.析晶:是当物体在处于非平衡态时,会析出另外的相,该相以晶体的形式被析出。
7.硅酸乙酯水解:硅酸乙酯通过熔剂(乙醇)和催化剂(盐酸)的作用与水发生反应的全过程。
8.皂化物:油脂等样品中能与氢氧化钠或氢氧化钾起皂化反应的物质。
二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。
2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。
3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越大。
4.涂料中最基本的两个组成粘结剂和耐火粉料之间的比例,即为涂料的粉液比。
5.通常按模料熔点的高低将其分为高温、中温和低温模料。
北京科技大学液态成形理论与工艺复习题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII作业11、哪些现象说明金属的熔化并不是原子间结合力的全部破坏?以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。
[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。
2、实际液态金属的结构是怎样的?实际液态金属和合金由大量时聚时散、此起彼伏游动着的原子集团、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构十分复杂。
1.过冷度对液固态转变单位体积自由能变化的作用,对均质形核临界形核半径、临界形核功、形核速率有何影响;PPT20之前2.试推导均质形核临界晶核半径;PPT16 173.试推导液固相转变单位体积自由能变化:PPT124.影响异质形核的因素:形核温度T:合金成分一定,过冷度大于某一值时,T↓,形核速率υ↑。
形核时间:满足形核条件时,形核时间↑,形成晶核的数量n↑。
形核基底的数量:其他条件一定时,形核基底数量↑,形成晶核的数量n↑接触角θ:接触角θ↓,形核速率υ↑。
形核基底的形状:形核基底界面为凹面时,临界晶核体积最小,形核功也最小,最易形核。
5.促进形核、抑制形核的措施及其应用举例促进形核:增大冷却速率;T;晶粒细化剂,异质形核;机械、超声振动,电磁搅拌,枝晶破碎。
抑制形核:快冷,非晶;去除固相质点;悬浮熔炼或熔融玻璃隔离,避免坩埚表面成为异质形核的基体。
6.粗糙界面与光滑界面的生长方式粗糙界面(金属):连续长大光滑界面(非金属、亚金属):侧面长大(二维晶核台阶、晶体缺陷台阶)连续生长:粗糙面的界面结构,有许多位置可供原子着落,液相扩散来的原子很容易被接纳并与晶体连接起来,且在生长过程中仍可维持粗糙界面结构。
只要原子供应不成问题,就可以不断地进行“连续生长”。
侧面生长:光滑面的界面结构,单个原子与晶面的结合较弱,容易跑走,因此,只有依靠在界面上出现台阶,然后从液相扩散来的原子沉积在台阶边缘,依靠台阶向侧面生长,故称为“侧面生长”。
作业2(少很多看PPT)3、随着凝固速度的增加,定向凝固组织的变化规律极低速凝固→平面状;凝固速率增大→平界面失稳而形成胞晶;当生长速率达到一定值时→胞晶向枝晶转变;进一步增大生长速率→枝晶生长转变为更细的胞晶;在极高速下生长→平面凝固的界面4、二次枝晶臂的间距与局部凝固时间的关系λ2=A2t f 13t f:局部凝固时间;当合金成分一定时,A2为常数t f=∆ToG T R△To:合金凝固温度间隔一次枝晶:λ1=A1G T-1/2R-1/4λ1:一次枝晶间距;A1:常数;G T:温度梯度;R:凝固速度5、什么叫溶质分配因数,平衡、近平衡、非平衡溶质分配因素的凝固条件有何特点溶质分配因数k:凝固过程固相溶质质量分数CS与液相溶质质量分数CL之比。
k =CS/CL平衡凝固:极缓慢结晶条件下,充分进行固液界面附近的溶质迁移、固液相内部的溶质扩散。
平衡凝固:在凝固的每个阶段,固、液两相中的成分均能及时、充分扩散均匀,液、固相溶质成分完全达到平衡状态图对应温度的平衡成分。
近平衡凝固:凝固速率稍快时,固液界面附近的溶质迁移达到平衡;固液相内部的溶质扩散不能充分进行。
非平衡凝固:凝固速率进一步加快,固液相内部的溶质扩散不能充分进行;固液界面附近的溶质迁移偏离平衡。
作业33、名词解释:能量起伏、结构起伏、浓度起伏、粘度、运动粘度、雷诺数、层流、紊流、表面张力和表面能。
1.能量起伏:液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,称为能量起伏2.结构起伏: 由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,称为结构起伏3.浓度起伏: 对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏4.粘度: 流体在层流流动状态下,流体中的所有液层按平行方向运动。
在层界面上的质点相对另一层界面上的质点作相对运动时,会产生摩擦阻力。
当相距1cm的两个平行液层间产生1cm/s的相对速度时,在界面1cm2面积上产生的摩擦力,称为粘滞系数或粘度5.运动粘度:液体在重力作用下流动时内摩擦力的量度,数值等于γ=η/ρ。
6.表面张力:产生新的单位面积表面时系统自由能的增量。
与表面能大小、单位一致,从不同角度描述同一现象。
7.表面能:表面自由能(简称表面能)为产生新的单位面积表面时系统自由能的增量。
8.雷诺数: 流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。
用符号Re表示。
Re是一个无因次量。
9.层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。
10.紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋。
4.提高浇注温度会带来什么负作用?(看PPT找)1.纯金属、共晶合金、固溶体合金液态金属充型的停止流动机理;纯金属、共晶成分合金和结晶温度范围很窄的合金停止流动机理I区——在金属的过热量未散失尽以前为纯液态流动,II区——先形成凝固壳,又被完全熔化,而后的金属液是在被加热了的管道中流动,冷却强度下降;III区——未被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热热量。
IV区——液相和固相具有相同的温度——结晶温度。
由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。
宽结晶温度范围合金的停止流动机理纯液态流动->形核,晶粒数量增多,金属液粘度增加->结成连续网络->发生堵塞停止流动2.影响液态金属充型能力的因素;影响因素通过两个途径发生作用:影响金属与铸型之间热交换条件→改变金属液的流动时间;影响金属液在铸型中的水力学条件→改变金属液的流速。
四类因素:金属性质、铸型性质、浇铸条件和铸件结构第一类——金属性质方面①金属的密度②金属的比热容③金属的导热系数④金属的结晶潜热⑤金属的粘度⑥金属的表面张力⑦金属的结晶特点第二类——铸型性质方面①铸型的蓄热系数②铸型的密度ρ2③铸型的比热容c④铸型的导热系数λ2⑤铸型的温度;⑥铸型的涂料层;⑦铸型的发气性和透气性。
第三类——浇注条件方面①液态金属的浇注温度②液态金属的静压头③浇注系统中压头损失总和Σh浇;④外力场。
第四类——铸件结构方面①铸件的折算厚度R②由铸件结构所规定的型腔的复杂程度引起的压头损失。
提高充型能力的措施有:金属性质方面,合理选择合金成分以提高其流动性,如在可能的情况下,可优先选择纯金属、共晶成分和金属间化合物。
铸型性质方面,可降低铸型的蓄热系数或提高铸型的温度。
浇铸条件方面,提高浇注温度和充型压头,简化浇注系统结构。
铸件结构方面,依据折算厚度大、结构简单铸件的充型能力高的特点,合理设计铸件结构。
3.流动性与充型能力的联系和区别;影响流动性的因素。
区别:1)概念不同。
合金的流动性指液态合金本身的流动能力,是合金本身的铸造性能之一。
合金的充型能力是指液态合金充满型腔,形成轮廓清晰,形状完整的铸件的能力。
2)影响因素不同。
合金流动性与金属的成分、温度、杂质含量及其物理性质有关。
充型能力金属性质、铸型性质、浇铸条件和铸件结构这四类因素的影响。
联系:1) 合金的流动性愈好,合金的充型能力愈强。
2) 通常在相同的条件下,浇注各种合金的流动性试样,以试样的长度表示该合金的流动性,并以所测得的合金流动性表示合金的充型能力。
因此可认为,合金的流动性是在确定条件下的充型能力。
作业4(没有对应的PPT)1.温度场的三个要素:时间、位置、温度在X、Y、Z直角坐标系中,连续介质各个地点在同一时刻t的温度分布叫做温度场。
铸件温度场的作用:预计断面上各时刻的凝固区域大小及变化、凝固前沿向中心推进的速度缩孔、缩松的位置、凝固时间2.由不同位置点的冷却曲线可以获得温度场,再加上何条件,可以获得凝固的动态曲线全部液态合金几乎同时从浇注温度很快降至凝固温度;接近铸件表面的合金释放结晶潜热->平台区(保持在凝固温度上);拐点—该等温面上拐点—该等温面上。
故可以由不同位置点的冷却曲线可以获得温度场。
把液相线和固相线与温度—时间曲线相交的各点分别标在坐标系中,再将各点连接起来,即得凝固的动态曲线。
3.影响铸件温度的因素,这四大方面因素也应用什么方面的分析上金属性质的影响1) 金属的热扩散率a ;2) 结晶潜热3) 金属的凝固温度铸型性质的影响1)铸型蓄热系数b2 ;2) 铸型预热温度T型浇注条件的影响1)金属过热量远远小于结晶潜热;2)增加过热度,相当于提高铸型温度,从而减小铸件温度梯度;3)浇注温度影响不很明显。
铸件结构的影响1) 铸件壁厚2) 铸件形状这四大方面因素也应用在对充型能力的影响分析上。
作业51.凝固区域可分为哪两个区,之间边界是什么,还有其它何边界,各有什么特点?(找具体答案)固—液区、液—固区;倾出边界;补缩边界2.何为平方根定律,有何物理意义用折算厚度代替凝固厚度,有何实际意义平方根定律:(t时间内铸件凝固厚度)ξ=k√t物理意义:反映铸件凝固厚度随时间的变化关系(抛物线形状)。
对时间求导,可得凝固速度V,折算厚度R=V/S,在较复杂的铸件中,其几何参数和凝固厚度很难确定,因此在实际问题中常用折算厚度代替凝固厚度。
3.凝固时间包括哪两部分?铸件的凝固时间:从液态金属充满铸型后至凝固完毕所需时间。
(t1+ t2)凝固过程大致分三个阶段:第一阶段:导出金属液过热热量所需的时间t1第二阶段:从液相线温度冷却至凝固完毕的时间t2第三阶段:凝固完毕冷却至开箱温度的时间t34.比较同样体积大小的球状、块状、板状、杆状铸件凝固时间的长短。
球状>块状>板状>杆状。
体积相同条件下,球状铸件散热面积最小,折算厚度最大,因此,其凝固时间最长;板状铸件散热面积最大,折算厚度最小,因此,其凝固时间最短。
3、根据凝固区域的宽度不同,凝固方式如何分类?试述各凝固方式的概念、特点。
根据合金固液相区宽度,可将凝固过程分为三种方式:逐层凝固:合金结晶温度范围很小或断面温度梯度很大时,铸件断面的凝固区域很窄,固液体几乎由一条界线分开,随温度下降,固体层不断加厚,逐步到达铸件中心。