全等三角形与角平分线专题讲解
- 格式:doc
- 大小:158.50 KB
- 文档页数:9
上节课未解之谜:【例5】已知:如图,△ABC中,AB=AC,∠BAC=90°,D是AC的中点,AF⊥BD于E,交AC于F,连结DF 。
求证:∠ADB=∠CDF。
全等与角平分线问题四大属性:风、雷、水、火。
属性一:风!角的平分线上的点到这个角的两边的距离相等。
点评:果断!利索!够犀利!【例1】已知:如图,在四边形中,BC>AB,AD=CD,BD平分∠ABC。
求证:∠BAD+∠C=180°属性一:风!到这个角的两边的距离相等的点在角的平分线上。
【例2】已知:∠1=∠2,∠3=∠4,求证:AP平分∠BAC。
三角形全等属性二:雷!铁三角组合:角平分线、平行线、等腰三角形点评:几何里也有铁三角!?雷的我外焦内嫩呀!【例3】如图,在△ABC中,∠ABC与∠ACB的角平分线相交于点F,过F作DE∥BC ,交AB于D,交AC于E,若BD+CE=9,则线段DE之长为_____。
【例4】如图,在△ABC中,BD、CD 分别平分∠ABC和∠ACB。
ED∥AB,FD∥AC。
如果BC=6cm ,则△DEF的周长_____。
属性三:水!如图1所示,OP平分∠MON ,A为OM上一点,C为OP上一点。
连接AC,在射线ON 上截取OB=OA,连接BC(如图2),易证△AOC≌△BOC。
点评:充分利用角平分线的对称性,霸气!【例5】如图所示,在△ABC中,AC>AB,AD是内角平分线,P是AD上异于点A的任意一点,求证:PC-PB<AC-AB。
属性四:火!有垂直于角平分线的线,果断延长,就会得到一个等腰三角形。
点评:这是辅助线中相对比较高端的方法,此法必火!【例6】已知:如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE 。
求证:CE=12BD 。
本节课总结:遇到角平分线可以想到的四种作辅助线方法: 1.向两边做垂直(风) 2.“角、平、等”铁三角(雷) 3.截两边相等,构造全等(水)4.有垂直于角平分线的线,延长!(火)在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!1.如图,AD OB BC OA ⊥⊥,,垂足分别为D 、C ,AD 与BC 相交于点P ,若PA PB =,则1∠与2∠的大小是( ) A .12∠=∠ B .12∠>∠ C .12∠<∠ D .无法确定ODBPA21C2.如上右图,在△ABC 中,90C ∠=︒,AD 平分CAB ∠,8cm BC =,5cm BD =,则BE 等于( )A .3B .4C .5D .无法确定BCAD E3.如图,在△ABC 中,90A ∠=︒,AB AC BD ==,DE ⊥BC ,则AE 与DC 的关系是( ) A .大于 B .等于 C .小于 D .不确定ACBDE4.如图,在△ABC 中,AB AC =,36A ∠=︒,直线l 是线段AB 的垂直平分线,则EBC ∠=( ) A .72︒ B .40︒ C .36︒ D .24︒BAClE5.如图,△ABC 的外角FAC ∠的平分线为AE ,170∠=︒,DC ∥AE ,则ADC ∠=( ) A .40︒ B .50︒ C .60︒ D .70︒BFCEAD216.如图,在△ABC 中,B ∠,C ∠相邻的外角的平分线交于点D ,点D 一定在△ABC 中( )线的延长线上。
善于构造 活用性质安徽 张雷几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.1.显“距离”, 用性质很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点.已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,•故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证.【证明】过P 作PE ⊥AC 于E .∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上,D C A EHI F G2DCBA35EF14即BP是∠MBN的平分线.2.构距离,造全等有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.例3.△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB•上确定一点E使△BDE的周长等于AB的长.请说明理由.解:过D作DE⊥AB,交AB于E点,则E点即可满足要求.因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB.∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE.由“HL”可证Rt△ACD≌Rt△AED.∴AC=AE.∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB.例4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB.求证:AD=CD+AB.证明:过M作ME⊥AD,交AD于E.∵DM平分∠ADC,∠C=90°.MC=ME.根据“HL”可以证得Rt△MCD≌Rt△MED,∴CD=ED.同理可得AB=AE.∴CD+AB=ED+AE=AD.即AD=CD+AB.3.巧翻折, 造全等以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.例5.如图,已知△ABC中∠BAC=90°,AB=AC,CD•垂直于∠ABC•的平分线BD 于D,BD交AC于E,求证:BE=2CD.分析:要证BE=2CD,想到要构造等于2CD的线段,结合角平分线,•利用翻折的方法把△CBD沿BD翻折,使BC重叠到BA所在的直线上,即构造全等三角形(△BCD ≌△BFD),然后证明BE和CF(2CD)所在的三角形全等.证明:延长BA、CD交于点F∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90° ∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中21()()()BD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩已知公共边已证∴△BCD ≌△BFD (ASA ) ∴CD=FD , 即CF=2CD∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。
第7讲 全等三角形的综合、角平分线⑴平移全等型⑵ 对称全等型⑶ 旋转全等型⑴、角平分线上的点到角的两边的距离相等; ⑵、到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,ABOPPOBAABOP角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.考点1、三角形全等综合1、如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L 上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQ C.MO D.MQ(1)(2)3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35cm,点B与点O的垂直距离AB长是20cm,在点O处作一直线平行于地面,在直线上截取OC=35cm,过C作OC的垂线,在垂线上截取CD=20cm,连接OD,然后,沿着D0的方向打孔,结果钻头正好从点B处打出.这是什么道理?4、1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q 处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点0处,让士兵丈量他所站立位置B与0点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?请说明理由.用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?5、某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有______;(2)请你选择一可行的方案,说说它可行的理由.1、已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.2、已知:如图,AB=CD,BC=DA,AE=CF.求证:BF=DE.3、如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。
全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。
精锐教育学科教师辅导讲义之宇文皓月创作学员编号:年级:初二课时数:3学员姓名:辅导科目:数学学科教师:授课类型T 角平分线C专题精讲授课日期时段教学内容1. 角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.2. 角平分线的性质及判定(1)角平分线的性质:角的平分线上的点到角的两边的距离相等.几何表达:(角的平分线上的点到角的两边的距离相等)如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB。
(2)角平分线的判定:到角的两边的距离相等的点在角的平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)如图所示,∵PA⊥OM,PB⊥ON,PA=PB,∴∠1=∠2(OP平分∠MON)(3)三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
3. 角平分线性质及判定的应用①为推导线段相等、角相等提供依据和思路; ②实际生活中的应用.例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,而且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由.【例题讲解】1.在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长。
2.如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB3.如图,P 为∠AOB 内一点,OA=OB ,且△OPA 与△OPB 面积相等,求证∠AOP=∠BOP.4.如图,AB=AC ,AD=AE ,BD 、CE 交于O ,求证AO 平分∠BAC.EDCBAEABCD F【同步练习】1.在Rt △ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,则: ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE 相等?为什么?⑶若AB =10,BC =8,AC =6, 求BE ,AE 的长和△AED 的周长2.已知,如图DABC 中,AB=AC ,D 是BC 的中点。
AAS,HL证全等及角平分线的性质知识点总结和重难点精析
知识点总结:
1、AAS定理:两个三角形中,如果两条对应边及其夹角相等,那么这两个三角形全等。
简写成对应角相等的角边角定理。
2、HL定理:两个直角三角形中,如果一条直角边和斜边相等,那么这两个三角形全等。
简写成对应边相等的直角边和斜边定理。
3、角平分线的性质:角平分线是将角分成两个相等的角的射线,角平分线上点到角的两边距离相等。
重难点精析:
1、AAS定理的应用难点在于如何通过已知条件构造出至少一组边角相等的关系,这对于推导证明过程至关重要。
对于初学者来说,可以尝试通过画图和模拟过程来理解,逐渐提高空间想象能力。
2、HL定理的应用主要难点在于直角三角形的判断,需要学生熟悉勾股定理的相关知识。
在解决实际问题时,需要灵活运用直角三角形的性质,如等角对等边等。
3、角平分线的性质在学习中容易被忽视,其重要性在于为证明线段相等提供了一种重要的方法。
对于初学者来说,需要加强对此性质的练习和理解,能够熟练地应用到各种几何问题中。
总结:
AAS,HL定理和角平分线的性质是八年级数学中的重要知识点,
它们在几何学中的应用广泛且具有挑战性。
通过对这些定理的深入学习和实践,学生可以提升自身的几何思维能力和问题解决能力。
实用第四讲全等三角形与角平分线【知识回顾】1全等三角形的性质与判定 2、角平分线的性质与判定【讲解与练习】2 .如图,在平面直角坐标系中, 是线段OA 上的动点,从点O 出发,AB 上.已知A 、Q 两点间的距离是 (s )时,△ OCF 、△ FAQ >△ CBQ况 x 轴和 y 轴上,OA=10cm ,0C=6cm . FOA 方向作匀速运动,点 Q 在线段 a 倍.若用(a , t )表示经过时间t 请写出(a , t )的所有可能情3. ___________________________________________________________ 如图,已知△ ABC 三个角的平分线交于点 O ,延长BA 到点D ,使AD=AO ,连接DO , 若 BD=BC ,/ ABC=54 °,则/ BCA 的度数为 ° .7.如图,已知五边形 ABCDE 中,/ ABC= / AED=90 ° , AB=CD=AE=BC+DE=2 ,则五边 形ABCDE 的面积为 _______________________________________ .1如图,四边形ABCD 中,/ 则AC 长是 cm . 2 ABCD 的面积为24cm ,矩形OABC 的两边分别在 以1cm/s 的速度沿O 、F 两点间距离的 中有两个三角形全等. 4. 如图所示, AB=AC , AD=AE ,/ BAC= / DAE ,/ 1=24 °,/ 2=36 ° ,则/ 3= __________________ .5. 如图,AC=DB ,/ 仁/2,则△ ABC ◎△ ____________________________ ,/ ABC= / _____________________6.如图,点 D 在BC 上, DE 丄AB 于点E , DF 丄BC 交AC 于点F , BD=CF , BE=CD .若 /AFD=145 ° ,则/ EDF= ____________________________________________ .5的形网络,在网格中画出点 F ,使得△ DEF 与厶ABC 全等,这样的格点个.9. ____________________ 如图,0是厶ABC 一点,且0到三边 AB 、BC 、CA 的距离 OF=OD=OE ,若/ BAC=70 Z BOC= _________ .10. 如图,△ ABC 的周长是12, OB 、OC 分别平分Z ABC 和Z ACB , OD 丄BC 于D ,且OD=3,则△ ABC 的面积是 ____________________11. 如图,OC 平分Z AOB , Z AOC=20 ° , P 为 OC 上一点,PD=PE,OD 工 OE , Z OPE=11012. 如图,△ ABC 中,Z A=60 ° , AB > AC ,两角的平分线 CD 、BE 交于点 O , OF 平分ZBOC 交 BC 于 F , (1)Z BOC=120 ° ; (2)连 AO ,贝U AO 平分Z BAC ; (3) A 、O 、F 三点在同一直线上,(4) OD=OE , ( 5) BD+CE=BC .其中正确的结论是 _____________________________ (填序号).13. 如图1,已知△ ABC 中,AB=AC , Z BAC=90 °,直角Z EPF 的顶点P 是BC 中点,两 边PE 、PF 分别交AB 、CA 的延长线于点 E 、F .(1) 求证:AE=CF ;(2) 求证:△ EPF 是等腰直角三角形;(3) 求证:Z FEA+ Z PFC=45 ° ;S ^ABC .8.如图,在5X 三角最多可以画出 (4)求证: S A PFC _ S A PBE = 尹14.如图,△ ACO为等腰直角三角形.(1 )若C (- 1, 3),求A点坐标;(2)过A作AE丄AC,若/ FEO= / COE,求/ EOF的度数;(3)当厶ACO绕点O旋转时,过C作CN丄y轴,M为AO的中点,/ MNO的大小是否发生变化?15.如图,在△ ABC中,D是边BC上一点,AD平分/ BAC,在AB上截取AE=AC,连接BD=3cm,求线段BC的长.16.如图,在四边形ABCD 中,AC 平分/ DAE,DA // CE,AB=CB .(1)试判断BE与AC有何位置关系?并证明你的结论;(2)若/ DAC=25 °,求/ AEB 的度数.AD平分/ BAC,请利用线段之比可转化为面积之比的思路方法,求证18.如图,△ ABC 中,/ C=60 证:,AD , BE分别平分/ CAB , / CBA、AD、BE交于点P.求(1)/ APB=120 ° ;(2 )点P在/ C的平分线上;(3)AB=AE+BD .19. (1)如图1①,在△ ABC中,/ ABC= / ACB , AB的垂直平分线交AB于点N,交BC 的延长线于点M,若/ BAC=40 °,求/ AMB的度数;(2)如图1②,如果将(1)中的/ BAC的度数改为70°,其余条件不变,再求/ AMB的度数.20.在△ ABC 中, AD是/ BAC的平分线.(1)如图①,求证:S AACD AC(2)如图②,若BD=CD,求证:AB=AC ;(3)如图③,若AB=5 , AC=4 , BC=6 .求BD 的长.2. ________________________________________________________ 如图,在△ ABC 中,AB=AC ,/ BAC=90 ° , AE 是过 A 点的一条直线, CE 丄AE 于E , BD 丄 AE 于 D , DE=4cm , CE=2cm ,贝U BD= .3. 如图,在 Rt △ ABC 中,AC=BC ,/ C=90 ° , AB=8,点F 是AB 边的中点,点 D 、E 分 别在AC 、BC 边上运动,且保持 AD=CE ,连接DE 、DF 、EF .在此运动变化的过程中,下 列结论中正确的结论是(1 )△ DFE 是等腰直角三角形;(2) 四边形CDFE 不可能为形;(3) DE 长度的最小值是4;(4) 四边形CDFE 的面积保持不变;(5) △ CDE 面积的最大值为 4.4. 在直角坐标系中,如图有厶 ABC ,现另有一点D 满足以A 、B 、D 为顶点的三角形与△ABC 全等,则D 点坐标为 _____________________5. 如图所示,在△ ABC 中,/ A=90 ° , BD 平分/ ABC , AD=2cm , AB+BC=8 , S ^ABC= _____________________ .6. __________________________________________________ 如图,AD 是厶ABC 的角平分线, DF 丄AB ,垂三.【作业】1•“石门福地”小区有一块直角梯形花园,测量 则该花园面积为 _________________ 平方米.AB=20 米,/ DEC=90 °,/ ECD=45足为F, DE=DG , △ ADG和厶AED的面积分别为50和38,则厶EDF的面积为.7.如图,在△ ABC 中,/ ABC=90 ° . AB=BC , A (- 4, 0), B (0, 2) I 玖圏1 图2 图3(1)如图1,求点C的坐标;(2)如图2, BC交x轴于点M , AC交y轴于点N,且BM=CM,求证:/ AMB= / CMN ;(3)如图3,若点A不动,点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、第二象限作等腰直角厶BOF与等腰直角△ ABE,连接EF交y轴于P点,问当点B在y 轴正半轴上移动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出其长度.&如图,在厶ABC中,已知/ B= / C,AB=AC=10厘米,BC=8厘米,点D为AB的中点.点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.(1)若点Q的运动速度与点P的运动速度相等,则经过1s,A BPD与厶CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使厶9.如图,AD // BC,/ D=90 ° .(1)如图1,若/ DAB的平分线与/ CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分/ ABC,/ CPB=35°,求/ PAD的度数为多10.观察、猜想、探究:在厶ABC 中,/ ACB=2 / B.(1)如图①,当/ C=90 ° , AD为/ BAC的角平分线时,求证:AB=AC+CD ;(2)如图②,当/ CM 90°, AD为/ BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.参考答案与试题解析(1, 4)(丄,5), (0 10)b.解:①当△ COF 和厶FAQ 全等时,OC=AF ,OF=AQ 或 OC=AQ ,OF=AF , •/ OC=6 , OF=t , AF=10 - t , AQ=at ,代入得:::厂或(Mt ,解得2,a=1, ,5);②同理当厶FAQ 和厶CBQ 全等时,必须BC=AF , BQ=AQ ,10=10 - t , 6- at=at ,此时不存在;③因为△ CBQ 最长直角边 BC=10,而△ COF 的最长直角 边不能等于10,所以△。
角平分线的性质与全等三角形一、知识回顾1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。
3、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
••• AB=A B/ ,BC=B/ C ,AC=A/ C ; / A=/ A , / B=/ B,, / 0=/ C、典型例题例1 :下列定理中逆定理不存在的是(A .角平分线上的点到这个角的两边距离相等B .在一个三角形中,如果两边相等,那么它们所对的角也相等C .同位角相等,两直线平行D .全等三角形的对应角相等分析:把每个选项的逆命题写出,然后利用相关的知识进行证明,不能证明的是错误的, 选项D的逆定理是不存在的.解答:A角平分线上的点到这个角的两边距离相等的逆定理存在,可通过三角形全等来证明,正确;B、在一个三角形中,如果两边相等,那么它们所对的角也相等逆定理存在,可通过证明三角形全等来证明,正确;C、同位角相等,两直线平行的逆定理是平行线的性质定理之一,正确;D、对应角相等的三角形不全等,及其逆命题不正确,也就是逆定理不存在.故选D.例2 :如图,PDI AB PE! AC 垂足分别为D、E,且PA平分/ BAC则△APD与△APE全等的理由是(①DE=DF②AE=AF③AD平分/ EDF④ADI BC ⑤图**有3对全等三角形.A . SASC. SSSB. AASD. ASA分析:根据已知条件在三角形中的位置来选择判定方法, 本题中有两角及一角的对边对应相等,所以应选择AAS比较简单.解答:由已知得,AP=AP / DAP=^ EAP / ADPdAEP所以符合AAS判定.故选B.例3:已知,如图,△ ABC中, 列说法,正确的有(AD是角平分线,DEI AB DF丄AC垂足分别是E、F.下A . B.3 个 个 分析:根据题意可以推出 DE=DF △ AED^A AFD 即可推出说法①②③为正确.解答:••• AD 是角平分线,DEI AB DF 丄AC••• DE=DF / EAD=^ FAD••• AE=AF AD 平分/ EDF故选B .例4:(2002 •四川)以下命题中,真命题是(①同一平面内的两条直线不平行就相交; ②三角形的外角必定大于它的内角;三角形的外角大于任何一个和它不相邻的内角;全等三角形的判定方法: SSS SAS AAS ASA全等三角形的面积比相等.B 、三角形的外角应大于任何一个和它不相邻的内角,故错误;C 、不符合全等三角形的判定定理,故错误;D 、根据全等三角形的定义,故正确.C. 4③两边和其中一边的对角对应相等的两个三角形全等; ④两个全等三 角形的面积相等.A .①、③ —B .①、④ C.①、②、D.②、③、④ 分析: 同一个平面内的两条直线的位置关系:平行、相交;解答: A 根据平面内两条直线的位置关系,故正确;故选B.例5 :如图,/仁/ 2,/ C=/ D, AC BD交于E点,下列结论中不正确的是(A. / DAE=/ CBE B CE=DEC.A DEA不全等于^ CBE D △ EAB是等腰三角形分析:由题中条件可得,△ ABD^^ BAC由全等可得对应角相等,对应线段相等,即可得^ ADE^^ BCE所以C中说两个三角形不全等是错误的;再由角相等也可得△ EAB 为等腰三角形,进而可得出结论.解答:•••/ 1=/ 2,/ C=/ D,且AB为公共边,:.△ABD^A BAC •••/ DAB/ CBA AD=BC又/仁/ 2, •••/ DAE/ CBE A 正确;又AD=BC/ D=/ C, •••△ ADE^A BCE C错误;••• CE=DE B 正确;•••/ 1=/2△ EAB为等腰三角形,D正确.故C错,选C.三、解题经验角平分线的性质很简单,也比较容易掌握。
CE O D BA21C E DBA 2143O A全等三角形专题讲解专题一 全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”)而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等.三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对.分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90º.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90º,∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90º,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO .所以图中全等的三角形一共有4对.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC .要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE即可;根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E .故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E .(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3 已知:如图,AB=AC ,∠1=∠2.GA B F D E C OA B 分析:要证AO 平分∠BAC ,即证∠BAO=∠BCO , 要证∠BAO=∠BCO ,只需证∠BAO 和∠BCO 所在的两个三角形全等.而由已知条件知,只需再证明BO=CO 即可.证明:连结BC .因为AB=AC ,所以∠ABC =∠ACB .因为∠1=∠2,所以∠ABC -∠1=∠ACB -∠2. 即∠3=∠4,所以BO=CO .因为AB=AC ,BO=CO ,AO=AO , 所以△ABO ≌△ACO .所以∠BAO=∠CAO ,即AO 平分∠BAC .(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4 已知:在Rt △ABC 中,∠ACB=90º,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接DF .求证:∠ADC=∠BDF . 证明:过B 作BG ⊥BC 交CF 延长线于G , 所以BG ∥AC .所以∠G=∠ACE .因为AC ⊥BC , CE ⊥AD ,所以∠ACE=∠ADC .所以∠G=∠ADC .因为AC=BC ,∠ACD =∠CBG=90º,所以△ACD ≌△CBG .所以BG=CD=BD .因为∠CBF=∠GBF=45º,BF=BF ,所以△GBF ≌△DBF .所以∠G=∠BDF .所以∠ADC =∠BDF .所以∠ADC =∠BDF .说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A 、B 间建一座观赏桥,由于条件 限制,无法直接度量A ,B 两点间的距离﹒请你用学过的数 学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)(3)计算A 、B 的距离(写出求解或推理过程,结果用字母表示)﹒分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB ,这时测得CD 的长为a ,则AB 的长就是a .第(3)题易证△AOB ≌△COD ,所以AB=CD ,测得CD 的长即可得AB 的长.解:(1)如右图示.(2)在陆地上找到可以直接到达A 、B 的一点O ,在AO 的延长线上取一点C ,并测得OC =OA ,在BO 的延长线上取一点D ,并测得OD =OB ,这时测出CD 的长为a ,则AB 的长就是a .(3)理由:由测法可得OC=OA ,OD=OB .又∠COD=∠AOB ,∴△COD ≌△AOB .FCEDBA CEDBAA OQ M CPBN A D C PBHF EGAD CB评注:本题的背景是学生熟悉的,提供了一个学生 动手操作的机会,重点考查了学生的操作能力,培养了 学生用数学的意识﹒练习:1.已知:如图,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE=FE . 求证:AE=CE .2.如图,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD=∠ACD ,∠BDE=∠CDE . 求证:BD=CD .3.用有刻度的直尺能平分任意角吗?下面是一种 方法:如图所示,先在∠AOB 的两边上取OP=OQ , 再取PM=QN ,连接PN 、QM ,得交点C ,则射线OC 平分∠AOB .你能说明道理吗?4.如图,△ABC 中,AB=AC ,过点A 作 GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的 延长线分别交GE 于点E 、G .试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.5.已知:如图,点C 、D 在线段AB 上,PC=PD .请你添加一个条件,使图 中存在全等三角形,并给予证明.所添条件为__________,你得到的一 对全等三角形是△_____≌△_____.AD CFBEADCB AOD CBAFC GBE AF DC BE6.如图,∠A=∠D ,BC=EF ,那么需要 补充一个直接条件_____(写出一个即可),才能 使△ABC ≌△DEF .7.如图,在△ABD 和△ACD 中, AB=AC ,∠B=∠C .求证:△ABD ≌△ACD .8.如图,直线AD 与BC 相交于点O , 且AC=BD ,AD=BC . 求证:CO=DO .9.已知△ABC ,AB=AC ,E 、F 分别 为AB 和AC 延长线上的点,且BE=CF ,EF 交BC 于G .求证:EG=GF .10.已知:如图,AB=AE ,BC=ED , 点F 是CD 的中点,AF ⊥CD . 求证:∠B=∠E .11.如图,某同学把一把三角形的玻璃 打碎成了三块,现在要到玻璃店去配一块大小 形状完全一样的玻璃,那么最省事的办法是( )(A )带①和②去 (B )带①去 (C )带②去 (D )带③去43O E DC B A 21F ED C BA 2112.有一专用三角形模具,损坏后,只剩下 如图中的阴影部分,你对图中做哪些数据度量后, 就可以重新制作一块与原模具完全一样的模具,并 说明其中的道理.13.如图,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB ,那么判定△OAB ≌△OAB 的理由是( )(A )边角边 (B )角边角 (C )边边边 (D )角角边专题二 角的平分线从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线.角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴.因此当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路.(1)利用角的平分线的性质证明线段或角相等例6 如图,∠1=∠2,AE ⊥OB 于E ,BD ⊥OA 于D ,交点为C .求证:AC=BC .证法:∵AE ⊥OB ,BD ⊥OA ,∴∠ADC=∠BEC=︒90. ∵∠1=∠2,∴CD=CE . 在△ACD 和△BCE 中,∠ADC=∠BEC ,CD=CE ,∠3=∠4. ∴△ACD ≌△BCE(ASA),∴AC=BC .说明:本题若用全等方法证明点C 到OA 、OB 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法,不善于直接应用定理,仍去找全等三角形,结果相当于重新证明了一次定理,以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法.例7 已知:如图,△ABC 中,BD=CD ,∠1=∠2. 求证:AD 平分∠BAC .证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F . 在△BED 与△CFD 中,∠1=∠2,∠BED =∠CFD =︒90,BD=CD ,∴△BED ≌△CFD(AAS).∴DE =DF ,∴AD 平分∠BAC . 说明:遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等,然后根据全等三角形的性A FH D CG B EA D CB E A F DC B E CED(2)利用角的平分线构造全等三角形 ①过角平分线上一点作两边的垂线段例8 如图,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD . 求证:AE=ED .分析:由于角平分线上一点到角的两边的距离相等,而点E 是两条角平分线的交点,因此我们自然想到过点E 分别作AB 、BC 、CD 的垂线段.证明:过点E 作EF ⊥AB ,交BA 的延长线于点F ,作EG ⊥BC ,垂足为G ,作EH ⊥CD ,垂足为H . ∵BE 平分∠ABC ,EF ⊥AB ,EG ⊥BC , ∴EF=EG .同理EG =EH .∴EF=EH . ∵AB ∥CD ,∴∠FAE=∠D . ∵EF ⊥AB ,EH ⊥CD ,∴∠AFE=∠DHE=90º.在△AFE 和△DHE 中,∠AFE=∠DHE ,EF=EH ,∠FAE=∠D . ∴△AFE ≌△DHE .∴AE=ED .②以角的平分线为对称轴构造对称图形例9 如图,在△ABC 中,AD 平分∠BAC ,∠C=2∠B . 求证:AB=AC+CD .分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC ,连接DE ,我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了.证明:在AB 上截取AE=AC ,连接DE . ∵AD 平分∠BAC ,∴∠EAD=∠CAD . 在△EAD 和△CAD 中,∠EAD=∠CAD ,AD=AD ,AE=AC , ∴△EAD ≌△CAD .∴∠AED=∠C ,CD=DE .∵∠C=2∠B ,∴∠AED=2∠B .∵∠AED=∠B+∠EBD ,∴∠B=∠EDB . ∴BE=ED .∴BE=CD .∵AB=AE+BE ,∴AB=AC+CD .③延长角平分线的垂线段,使角平分线成为垂直平分线例10 如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .分析:注意到AD 平分∠BAC ,CE ⊥AD ,于是可延长CE 交AB 于点F , 即可构造全等三角形.证明:延长CE 交AB 于点F .∵AD 平分∠BAC ,∴∠FAE=∠CAE . ∵CE ⊥AD ,∴∠FEA=∠CEA=90º.在△FEA 和△CEA 中,∠FAE=∠CAE ,AE=AE ,∠FEA=∠CEA .∴△FEA ≌△CEA .∴∠ACE=∠AFE .∵∠AFE=∠B+∠ECD ,∴∠ACE=∠B+∠ECD .(3)利用角的平分线构造等腰三角形如图,在△ABC 中,AD 平分∠BAC ,过点D 作DE ∥AB ,DE 交AC 于点E .易证△AED 是等腰三角形. 因此,我们可以过角平分线上一点作角的一边的平行线,CF E BADQPCBA例11 如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE . 分析:要证CD=21BE ,可将BE 分成两条线段,然后再证明CD 与这两条线段都相等. 证明:过点D 作DF ∥AB 交BC 于点F . ∵BD 平分∠ABC ,∴∠1=∠2.∵DF ∥AB ,∴∠1=∠3,∠4=∠ABC . ∴∠2=∠3,∴DF=BF .∵DE ⊥BD ,∴∠2+∠DEF=90º,∠3+∠5=90º. ∴∠DEF=∠5.∴DF=EF . ∵AB=AC ,∴∠ABC=∠C . ∴∠4=∠C ,CD=DF . ∴CD=EF=BF ,即CD=21BE .练习:1.如图,在△ABC 中,∠B=90º, AD 为∠BAC 的平分线,DF ⊥AC 于F ,DE=DC .求证:BE=CF .2.已知:如图,AD 是△ABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF .求证:(1)AD 是∠BAC 的平分线; (2)AB=AC .3.在△ABC 中,∠BAC=60º,∠C=40º,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q .求证:AB+BP=BQ+AQ .CB AD CEBA D CB AD4321C EBADCEBAD4.如图,在△ABC 中,AD 平分 ∠BAC ,AB=AC+CD .求证:∠C=2∠B .5.如图,E 为△ABC 的∠A 的平分线 AD 上一点,AB >AC .求证:AB -AC >EB -EC .6.如图,在四边形ABCD 中,BC >BA , AD=CD ,BD 平分∠ABC . 求证:∠A+∠C=180º.7.如图所示,已知AD ∥BC ,∠1=∠2, ∠3=∠4,直线DC 过点E 作交AD 于点D ,交 BC 于点C .求证:AD+BC=AB .8.已知,如图,△ABC 中,∠ABC=90º, AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE .FCE BA D CBADACB D ACF E B MD 9.△ABC 中,AB=AC ,∠A=100º, BD 是∠B 的平分线.求证:AD+BD=BC .10.如图,∠B 和∠C 的平分线相交于点F , 过点F 作DE ∥BC 交AB 于点D ,交AC 于点 E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7 D .611.如图,△ABC 中,AD 平分∠BAC , AD 交BC 于点D ,且D 是BC 的中点. 求证:AB=AC .12.已知:如图,△ABC 中,AD 是∠BAC 的平分线, E 是BC 的中点,EF ∥AD ,交AB 于M , 交CA 的延长线于F . 求证:BM=CF .。