2016年亚太杯数学竞赛5年级初赛及决赛试题及解析2套
- 格式:docx
- 大小:4.38 MB
- 文档页数:30
人教版【word 直接打印】小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库 一、拓展提优试题1.已知13411a b -=,那么()20132065b a --=______。
2.(7分)将偶数按下图进行排列,问:2008排在第 列. 2 4 6 816 14 12 1018 20 22 2432 30 28 26…3.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是 ,余数是 .4.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是 .5.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年 岁,(注:数a 的立方等于a ×a ×a ,数a 的四次方等于a ×a ×a ×a )6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.7.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.8.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距 千米.9.用0、1、2、3、4这五个数字可以组成 个不同的三位数.10.如图中,A 、B 、C 、D 为正六边形四边的中点,六边形的面积是16,阴影部分的面积是 .11.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A 、B 两人各自答题,得分之和是58分,A 比B 多得14分,则A 答对 道题.12.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.13.用1、2、3、5、6、7、8、9这8个数字最多可以组成 个质数(每个数字只能使用一次,且必须使用).14.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有 种.15.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.【参考答案】一、拓展提优试题1.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=2.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.3.解:设除数为b ,商和余数都是c ,这个算式就可以表示为:47÷b =c …c ,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.4.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.5.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.6.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.7.解:设录取者的平均成绩为X分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.8.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.9.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.10.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.11.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.12.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.13.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.14.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.15.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:14。
2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A 12.B 3.C 1 .D 3 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ).A 0 .B 14 .C 34- .D 2-4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为 ( ).A 12 .B 15 .C 16 .D 185.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++=求222222()()()a ab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题详解 第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ).A 12.B .C 1 .D 【答案】A .【解析】22,t ==+<<Q 324,∴<+< 即34,t <<3 1.a t ∴=-=又221,t -=---<-423,∴-<-<-(4)2b t ∴=---=11211,2222b a ∴-==-=故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩ 依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 【答案】B .【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B . 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ) .A 0 .B 14 .C 34- .D 2- 【答案】B .【解析】依题意知0,0,10,2ba ab a<-<++= 故0,b < 且1b a =--, (1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB ⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC = (第4题答案图)OC Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,B ∴∠=o 114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 2 .D 12(第5题答案图)【答案】D . 【解析】过点A 作AH BD ⊥于点,H 则AMH ∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAHCM ∴=设,AM x = 则,CM x AH =∴=在Rt ABM ∆中,BM == 则AB AMAH BM⋅===显然0x ≠,化简整理得22100x -+=解得2x =(x =,故2CM =在Rt CDM ∆中,12DM ==,故选D . 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1【答案】C .【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x y =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C . 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】322⎛⎫⎪ ⎪⎝⎭. 【解析】如图,过点C 作CD AB ⊥于点D . 在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD ∆中,33sin 2CD BC B =⋅=(第1题答案图) 9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,C m A n ⎛⎛ ⎝⎭⎝⎭, 依题意知0,n m >>故33,CD n m AD =-=3323332n m mn ⎧-=⎪⎪-=⎩ 解得323m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫ ⎪ ⎪⎝⎭. 1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,3AD =则AM = .【答案】2.【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠= 060,DAC ∴∠= 从而0090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠==o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =. 2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=,BC Q ∥AD ,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=, (第2题答案图) OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=, Q ,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o Q2,2180,βααβ∴=+=o解得36,72αβ==o o ,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o 故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3t x t +∴=x Q 是三位数,10001003tx t+∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时 167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007.【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值.又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q 的可能取值为 23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去.当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 . 【答案】10.【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =;(2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故 2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故 351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾. 综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =. (下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+, 2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC AB AD AC∴=2AC AD AB ∴=⋅ 由四边形DEFM 是正方形及CD AB ⊥于点D 可知:点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN AB AD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅ ,AE AC =Q 2AE AM AN ∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE ∴==.(注:上述最后一段得证明用了“同一法”)(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++= 求222222()()()a ab b b bc c c ca a ++++++的值. 【解析】由已知得22221()()52ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦ 由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a b c a b ab bc ca c c ++=+++-++=--=- 同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++- 125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32()()()()()t a t b t c t a b c t ab bc ca t abc ---=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且 222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= . (3) 求111xy yz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦ ()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y z xyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++ 222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.(第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q 点C 关于直线AD 的对称点为点E ,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠ ,ABD AED ∴∠=∠,,,A E B D ∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等) BAD BCF ∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AF AD AB ∴=225 5.AD AF AB ∴⋅===(注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)------------------------------------------------------------------------ 怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。
【精选】小学数学竞赛五年级试题及答案解析word百度文库一、拓展提优试题1.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…2.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.3.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.4.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.5.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.8.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.9.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.10.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.11.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?12.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.13.观察下面数表中的规律,可知x=.14.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.15.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC【参考答案】一、拓展提优试题1.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.2.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.3.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.4.解:行驶300米,甲车比乙车快2小时;那么甲比乙快1小时,需要都行驶150米;300﹣150=150(千米);故答案为:1505.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;经检验,只有26﹣12=14,14是7的倍数,即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,答:小胖的生日是5月26日.故答案为:26.6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.8.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.9.设大合x盒,小盒y盒,依题意有方程:85.6x+46.8(9﹣x)=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.10.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.11.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.12.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12013.解:根据分析可得,81=92,所以,x=9×5=45;故答案为:45.14.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.15.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.16。
五年级数学数学竞赛试题答案及解析1.我国首艘航母辽宁舰的弦号是16,这个数共有个因数.【答案】5【解析】分析:找一个数的因数,可以一对一对的找,把16写成两个数的乘积,那么每一个乘积中的因数都是16的因数,然后从小到大依次写出即可.解答:因为16=1×16=2×8=4×4,所以这个数共有5个因数:1、2、4、8、16.【考点】找一个数的因数的方法.2.同时是2、 3、 5的倍数的数是()A、75B、18C、120【答案】C【解析】同时是2和5的倍数特征是:个位是0。
只有120符合条件,1+2+0=3,3是3的倍数,120同时也是3的倍数,故本题选C。
3.在15、18、25、30、19中,2的倍数有,5的倍数有,3的倍数有,既是2、5又是3的倍数有.【答案】18、30;15、25、30;15、18、30;30.【解析】根据2、3、5的倍数特征分析解答;①个位上是0、2、4、6、8的数就是2的倍数;②个位上是0或5的数就是5的倍数;③各个数位上的和是3的倍数,这个数就是3的倍数;④个位上是0,各个数位上的和是3的倍数,这样的数是2、5、3的倍数.解:在15、18、25、30、19中,2的倍数有 18、30;5的倍数有 15、25、30;3的倍数有 15、18、30;既是2、5 又是3的倍数有:30.故答案为:18、30;15、25、30;15、18、30;30.【点评】本题主要考查2、3、5的倍数特征,注意牢固掌握2、3、5的倍数特征,灵活运用.4.按要求填数.627 97 100 0 1 41 35 4 3 2奇数:.偶数:.质数:.合数:.【答案】627,97,1,41,35,3;100,0,4,2;97,41,3,2;627,100,35,4.【解析】根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解:奇数:627,97,1,41,35,3.偶数:100,0,4,2.质数:97,41,3,2.合数:627,100,35,4.故答案为:627,97,1,41,35,3;100,0,4,2;97,41,3,2;627,100,35,4.【点评】解答本题主要明确自然数,合数、质数、奇数、偶数的概念.5.五年级(1)班学生进行队列表演,每行12人或16人都正好整行,已知这个班的学生不到50人,这个班有多少人?【答案】48人.【解析】由题意得:要求这个班有多少人,因为这个班的学生不到50人,所以也就是求12和16的最小公倍数是多少,根据求两个数的最小公倍数的方法进行解答即可.解:12=2×2×3,16=2×2×2×2,因为这个班的学生不到50人,所以12和16的最小公倍数为:2×2×3×2×2=48;答:这个班有48人.【点评】此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.6.如果b是a的2倍(a≠0),那么a、b的最大公因数是a,最小公倍数是b..(判断对错)【答案】×【解析】a、b必须是不为0的自然数,b是a的整数倍,求两个数为倍数关系时的最大公约数和最小公倍数:两个数为倍数关系,最大公约数为较小的数;最小公倍数是较大的数;由此解答问题即可.解:由题意得,b÷a=2(a≠0),a、b如果是0.2和0.4不是自然数,则不存在a和b的最大公因数是a,最小公倍数是b.故答案为:错误.【点评】此题主要考查求两个部位0的自然数数为倍数关系时的最大公约数和最小公倍数:两个数为倍数关系,最大公约数为较小的数;最小公倍数是较大的数.7.四(1)班的优秀学生进行照相,4人一组或5人一组都正好分完,这批学生至少有多少人?【答案】20人.【解析】由“4人一组或5人一组都正好分完,”可知这批学生人数既是4的倍数又是5的倍数,即求4和5的最小公倍数,据此解答即可.解:4和5的最小公倍数为:4×5=20答:这批学生至少有20人.【点评】此题主要考查最小公倍数的应用:是互质数的两个数,最小公倍数即这两个数的乘积.8.两个数的()的个数是无限的。
2016 年第27 届亚太小学奥林匹克(上海赛区初赛)五年级A卷90 分钟(总分:150 分)2015 年12 月21 日下午18: 30 20 :00(注意事项)1 尽量解答所有问题。
2 不准使用数学用表或计算器。
3 答案请另填写在所提供的第一回合的作答卷上。
4 只有正确答案才能得分。
【第1 题】计算:91.5 19.8 80.2 ________ 。
【分析与解】计算,加法结合律。
91.5 19.8 80.2 91.5 19.8 80.2 91.5 100 191.5【第2 题】计算:若A* B表示A3B A B,那么8*9 ________ 。
【分析与解】定义新运算。
8*9 8 398 9595【第3 题】某班学生手中分别拿红、黄两种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有红、黄两种小旗的有9 人,那么这个班共有_______ 人。
(每个学生手上都拿着小旗)【分析与解】容斥原理。
由容斥原理,这个班共有34 26 9 51人。
如图,每个小方格都是边长为1的正方形,图中共有_______ 个不同的正方形。
【分析与解】图形计数。
将原图右上角补一个小方格,使之变成5 3 的方格网。
11的小方格有5 3 15 个;2 2 的小方格有4 2 8个;3 3 的小方格有31 3 个;其中包含右上角阴影小方格有3个(11的小方格、2 2 的小方格、3 3 的小方格各1个);故原图中共有15 8 3 3 23个不同的正方形。
从一个正方形的木板上锯下宽1m的一个长方形木条后,剩下的长方形面积为6m2 ,那么锯下的长方形木条面积是_______ 平方米。
1m6m2【分析与解】几何,面积。
设原来正方形的边长为x米(x1);则剩下的长方形的长为x米、宽为x1米;故x x1 6 ;经尝试,当x3时,方程成立;当x1时,x越大,x x1越大;故x 6 是方程的唯一正整数解。
锯下的长方形木条面积是31 3 平方米。
小升初5年级数学竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个长方体的长、宽、高分别是5cm、3cm和2cm,它的体积是?A. 15cm³B. 30cm³C. 60cm³D. 90cm³3. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 6/124. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 圆形5. 一个等差数列的前三项分别是2、5、8,那么它的第五项是?A. 11B. 12C. 13D. 14二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 两个等腰三角形一定是相似的。
()4. 1kg的棉花和1kg的铁一样重。
()5. 1的倒数是1。
()三、填空题(每题1分,共5分)1. 一个数加上它自己等于 _______。
2. 一个长方形的长是8cm,宽是4cm,它的面积是_______ cm²。
3. 3.5小时等于 _______ 分钟。
4. 一个等边三角形的内角和是 _______ 度。
5. 0.25的分数形式是 _______。
四、简答题(每题2分,共10分)1. 请解释质数和合数的区别。
2. 请简述等差数列的定义。
3. 请解释平行四边形的特点。
4. 请简述分数的约分方法。
5. 请解释长方体的体积公式。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个等差数列的前三项分别是3、7、11,求它的第五项。
3. 0.6小时等于多少分钟?4. 一个等边三角形的边长是6cm,求它的周长。
5. 2/3的分数形式是0._______。
六、分析题(每题5分,共10分)1. 一个数是24的倍数,也是16的倍数,请找出这个数的前三个数。
第十四届“走进美妙的数学花园”上海初赛五年级试题详解一、填空题(每小题8分,共40分)【第1题】(2016÷7+9)÷11=______。
《考点》整数计算〖解析〗20167911=288911=29711=27÷+÷+÷÷()()【第2题】自然数N 有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N 有______个约数。
《考点》约数倍数〖解析〗一个正整数最小的约数是1,而最小的两个约数的和是4,所以第二小的约数是4-1=3.约数是成对出现的,=133N N N ⨯=⨯,把3N 看作1份,则N 为3份,所以()=26843+13=2013N ÷⨯分解质因数2013=31161⨯⨯,所以2013有()()()1+11+11+1=8⨯⨯个约数。
【第3题】如下图,一个六边形的6个内角都是120°,其连续四边的长依次是2、8、8、6厘米。
求这个六边形的周长是______厘米。
《考点》巧求周长〖解析〗法一:如图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=8(厘米),在△BGC中,有BG=GC=BC=2(厘米),有IA+AB+BG=IG=8+8+2=18,即为大正三角形的边长,所以有IG=IH=GH=18(厘米).则EH=IH-IF-FE=18-8-6=4(厘米),在△EDH中,DH=EH=4(厘米),所CD=GH-GC-DH=18-2-4=12(厘米).于是,原图中六边形的周长为2+8+8+6+4+12=40(厘米).法二:将原图补成一个平行四边形,由于六边形的6个内角都是120°,所以延长出来的两个三角形都是等边三角形。
知识提要第一讲速算与巧算8.要熟记2x5=10,4x25=100,8x125=1000,一个数乘10,就是在这个数后面加上一个零;乘100,就是在这个在每次数学竞赛中.都有一定数量的计算题,计算题一般可以分为两类:一类是基本题,主要考查同学们对基本知识的理解和掌握的程度;另一类则是综合性较强和灵活性较大的题目.主要是考查同学们灵活、综合应用知识的能力,这就要求同学们必须要有扎实的基础知识和熟练的技能技巧.简便运算主要是应用加法交换律、结合律;减法的性质;一个数减去几个数的和,可以从被减数中依次减去各个减数;一个数连续减去几个数,可以从被减数里一次减去各个减数的和;乘法的交换律、结合律和乘法对加法的分配律:除法的性质等进行简便运算.技巧运算主要根据试题的特点,寻找某种规律或应用某些公式把算式变形,从而达到运算简便的目的.常用方法主要有以下几种方法:1.交换法:看哪几个数能凑成整十、整百,就交换它们的位置,把它们凑在一起计算,交换位置时要连同它前面的运算符号一起交换.2.拆数法:就是把一个数拆成两个数或几个数,使分拆后的数能和其他数凑成整十、整百.3.结合法:就是把能凑成整十、整百的数用括号结合在一起,使计算简便.4.去括号法:如果括号前面是加号,去括号后,原数的加、减符号都不变;如果括号前面是减号,去括号后,原来括号里的加号要变为减号,原来的减号要变为加号.5.添括号法:如果需要改变运算顺序,就要添加括号.如果括号前面是加号,括到括号里面的各个数都不用改变符号.如果括号前面是减号,括到括号里面的数原来的加号要变成减号,原来是减号要变成加号.6.基准数法:如果n个数都接近某个数,就把原来的,n个数都看作是这个数.再比较.多加了几要减去几,少加了几,再加上几;多减了几,就加上几,少减了几就减去几.计算结果不变.7.利用等差数列求和法进行简算.数后面加上两个零;乘1000,就是在这个数后面加上三个零.基本技巧一、基本运算律l.加法交换律:a+b=b+a;2.加法结合律:(a+b)+c=a+(b+c);3.减法的性质:a-b-c=a-(b+c);4.乘法交换律:axb=bxa;5.乘法结合律:axbxc=(axb)×c=ax(b×c);6.乘法分配律:ax(b+c)=axb+axc,ax(b-c)=axb-axc;7.除法的性质:a÷b÷c=a÷(b×c).二、数列及特殊公式1.等差数列(1)通项公式:a=a+(n-1)d;n1(2)求项数公式:n=+1;(3)求和公式:S=.2.等比数列:a=a×q n-1;Sn=(q≠1).n13.1+2+3+…+n=×n×(n+1);12+22+32+…+n2=×n×(n+1)×(2n+1).4.1+2+3+…+n+…+3+2+1=n2.三、常用的运算性质(1)积不变的性质:若一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,则积不变.(2)商不变的性质:被除数和除数同时乘以(或除以)一个相同的数(0除外),商不变.四、一些特殊计算的解题技巧(1)一个两位数乘以11技巧:在这个两位数的数字之间,写这个两位数的数字之和,如果和满十,要向前一位进一,个位仍写在两数中间,如:81x11=891,73x11=8038+17+3(2)一个三位数乘以101技巧:先将三位数加上它的百位数,再自左至右写下这个三位数的后两位数字.如:436x101=44036,348x101=35148.436+4348+3典例精讲例1、计算:321x250x125x32.分析:可将32分解成4x8后,再根据乘法的交换律和结合律进行简便运算.解:原式=321x250x125x8x4=321x(250x4)x(125x8)=321xl000xl000=321000000.例2、计算:2006+200.6+20.06+2.006+994+99.4+9.94+0.994.分析1:通过审题就能够发现2006和994可以凑整为3000,200.6和99.4可以凑整为300,其余各项依次类推.解法1:原式=(2006+994)+(200.6+99.4)+(20.06+9.94)+(2.006+0.994)=3000+300+30+3=333 3.分析2:通过观察,可以发现式子的前半部分和后半部分分别有整数公因数2006和994.解法2:原式=2006×(1+0.1+0.01+0.001)+994×(1+0.1+0.01+0.001)=(2006+994)x1.111=3333.例3、计算:3.56x32+2.5x35.6+0.356x430.分析:可根据“积不变的性质”将算式进行改写:原式=35.6x3.2+2.5x35.6+35.6x4.3.这样每一个乘法算式中都含有相同因数35.6,可用乘法分配律进行合并.解:原式=35.6x3.2+2.5x35.6+35.6x4.3=35.6x(3.2+2.5+4.3)=35.6xl0=356.例4、计算:1995×73+×730+153.3.分析:“73”好像是关键,如果可以提取73.那不是很简单吗?解:原式=1995.5x73+0.24x73x10+73x2.1=73x(1995.5+2.4+2.1)=73x2000=146000.注:(1)提取公因数的两大特征:一是要有“公因数”,“疑似”公因数也不错,我们可以借助下面两招对它加工.二是要有互补数.(2)axb=(ax10)×(),axbxc=ax(bxc).(3)变招xc=xa例5、计算:(0.523x3+0.227x3)×11-×11.分析:(1)本题中含有几种运算,先算什么?(2)括号内的式子有何特点,能提公因数吗?其余的呢?你能试试吗?相信你能行.解:原式=[3×(0.523+0.227)]x11-×11=(3x0.75)×11-x11=(×)×11-x11=×11-x11=11×=22.例6、计算:1064÷28+1736÷28.分析:1064和1736都除以28.可以将两数合并后再除以28.解:原式=(1064+1736)÷28=2800÷28=100.第二讲巧找规律知识提要1.按一定规律排列的一串数.通常称为数列,从数列中找规律,常见的有三种情况:一种情况是根据前后两个数之间的关系,找出规律,推断出所要填的数;另一种情况是根据相隔两个数之间的关系,找出规律,推断出所要填的数;第三种是分群数列.2.关于一些数、图形和事物的变化是循环出现的,这种特殊的规律问题称为周期问题.解答这类问题,关键掌握以下几点:(1)数、图形或事物的变化是不是具有周期性;(2)每个周期的长度是多少;(3)每个周期内变化的次序;(4)解答此类问题,用问句中的数据除以周期的长度,并把所得余数同一个周期内某种状态相对应.常用规律1.两个整数和与积的尾数分别等于这两个整数尾数的和与积的尾数.2.求若干个整数连乘的积的末尾有多少个零.要研究这些整数中含有多少个因数2和多少个因数5,一般求较少的一个即可.3.对分数串问题要注意观察是不是分群数列;观察分子、分母的变化,观察是不是呈等差或等比数列的形式出现.4.研究循环小数中重复出现的周期现象.首先找出变化周期.确定循环小数的循环节长度及每一循环节中的数字结构,找出规律,灵活解答问题.5.整数计算的个位数字有一些常见的规律:(1)一个数的平方,其个位数字只能是0、1、4、5、6、9;(2)设a是任意整数,a5与a的个位数字相同;(3)一个整数,如果它的个位数字是1,5或6,那么这个整数的平方的个位数字也是1,5或6;(4)两个连续自然数的乘积的个位数字只能是0,2,6.典例精讲例1、在下列图中填出所缺的数.(1)(2)分析:图形有趣吧!仔细观察两组图像什么?哈!(1)题像不像张衡发明的地震仪,就是癞蛤蟆少了几只,你发现大圆中的数与四周小圆中数的区别了吗?它们之间有什么样的关系呢?先看一下一个图形中各数之间的关系,再看其他图形中的数是否也符合这个关系,记住几个图形中的关系要一致!(2)题的“拖拉机”怎么样,后轮(圆)与“拖拉机”之间留有空隙,这给你什么启示?设想一下,找出规律.解:(1)分析图形中数据可知:(5+4+6+2)x2=34,(3+4+6+7)x2=40,(5+7+3+4)x2=38,(1+3+5+7)x2=32.规律:4个小圆内数的和等于大圆内数的一半.则最后一个图形中大圆中的数为:(8+4+2+6)×2=40.(2)由图中数据可知:(3-1)x6=12,(5-2)x2=6,(6-3)×7=21.. .规律:两个三角形中的数之差(大数减小数)与正方形中 的数相乘,结果应等于圆内的数.则空白处应填(7-3)x4=16.例 2、一串数排成一行,前两个数都是 1.从第三个数开始,每一个数都是前两个数的和,即 1,1,2,3,5,8,13,…,这串数的前 2009 个数中,共有 5 的倍数多少个?分析:(1)这串数按要求写下去会发现什么规律呢?(2)问“5 的倍数”,你有什么想法?会找到规律吗?(3)把这串数按要求多写出一些,除以 5 的余数看看吧! 你会发现奇迹的!解:在此数列中,除以 5 的余数为 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3, 0,…,可见,依上面的顺序余数的排列规律是 20 个为一周期, 每 20 个数中是 5 的倍数的有 4 个.2009-20=100...9.即这串数的前 2009 个数中.5 的倍数共有 4xl00+1=401(个).例 3、下面的算式是按某种规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,…,问:(1)第 2009 个算式是()+();(2)第几个算式的和是 3000.分析:观察每一个式子有什么特点?有几个加数,每一个 加数有规律吗?沿着这个思路,你也会发现新大陆!解:(1)第 1 个加数依次为 1,2,3,4,1,2,3,4,…,每 4 个数循环一次,重复出现.因为 20094 商 502 余 1,所 以第 2009 个算式中的第 1 个加数是 1.这些算式中的第 2 个加数依次是 1,3,5,7,9,…,形若 3+x=3000,则 x=2997.根据等差数列的项数公式, 得(2997-l)÷2+1=1499,这说明 2997 是等差数列 1,3,5,7, 9,…中的第 1499 个数,又 1499-4=374……3,说明第 1499 个算式中的第 1 个加数是 3,所以,第 1499 个算式为3+2997=3000.因此,第 1499 个算式的和是 3000.例 4、有一串数按下面的规律排列:1,2,3,2,3,4,3,4,5,4,5,6,…问从左边第一个数起,数 100 个数, 这 100 个数的和是多少?分析:观察这组数,我们发现这些数的排列有这样的规律:把它们三个三个地分组(1,2,3)、(2,3,4)、(3,4,5)、 (4,5,6)、…,每一组数都是由 3 个连续自然数组成,它们 的和等于中间一个数的 3 倍.100÷3=33……1,也就是说,第100 个数在第 34 组中,并且是 34,求前 100 个数的和,就是 求前 33 组数的和与 34 的和是多少.解:由题意,得 2x3+3x3+4x3+…+34x3+34=3x(2+3+……+34)+34=3× ×(2+34)×(34-2+1)+34=3× ×36x33+34=1782+34=1816.例 5、我国古代数学家祖冲之在数学上的重大贡献是推算 出圆周率 π 的值在 3.1415926 与 3.1415927 之间,比欧洲早 1000 多年, 是 π 的近似值, 化为小数后小数点后的第 2010 位上的数字是多少?分析: 是纯循环小数,循环节是多少?解: =3.142857,循环节的长度为 6.成了首项为 1,公差为 2 的等差数列.根据等差数列的通项公 式可知第 2009 个算式的第 2 个加数是:1+(2009-1)x2=1+4016=4017.即第 2009 个算式是 1+4017.(2)由于“和”3000 是偶数,根据这些算式所得和的排列规 律可知,只有 1+x=3000 或 3+x=3000.其中 x 是数列 1,3,5,7,9,…中的某个数.下面用试验法求出 x 值.若 1+x=3000.则 x=2999,根据等差数列的项数公式,得(2999-1)÷2+1=1500,这说明 2999 是数列 1,3,5,7,9,…中的第 1500 个数,而 1500-4=375.这说明第 1500 个 算式中的第一个加数是 4.与假设 1+x=3000 矛盾.所以 x≠2999.2010÷6=335.因为循环节的第 6 个数字是 7.所以为小数后的第 2010 位上的数字是 7.化□□x□13□ □□x □□错误!□□ □知识提要第三讲定义新运算例 3、有一个数学运算符号“#”,使下列算式成立: 3#4=2,5#3=7,3#5=1,8#2=14.求 9#3=?18#24=?学数学离不开运算,运算可以说是一种规定,一种对 应.在小学数学竞赛中,常出现一些按新定义进行运算的问 题.解这类题虽不需要新的数学知识.但必须仔细阅读题目, 认真理解新运算的意义,严格按新规定进行运算,这样才能求 得正确的结果.什么是定义新运算呢?就是用一种特定的符号来表示特定分析:解这类题目的关键是弄清新运算的实质.通过给出 的几个算式,你有什么新发现吗?要认真啊!解:由已知算式可知:3#4=3x2-4=2,5#3=5x2-3=7,3#5=3x2-5=1,8#2=8x2-2=14.故我们发现 A#B=2A-B .因此:9#3=2x9-3=15,18#24=2x18-24=12.的运算,在特殊的场合下有特殊的作用,它们与我们常用的“+、-、×、÷”这些运算有可能不相同.运算时要严格按照新 运算的定义进行代换,再进行计算,具体程序如下:5 例 4、如果 6△2=6+7=13,△4 3=4+5+6=15,△4=5+6+7+8=26,而 6△2+4△3+5△4=(6+7)+(4+5+6)1.代换:即按照定义符号的运算方式方法进行代换,注 +(5+6+7+8)=13+15+26=54.意此程序不能轻易改变原有的运算顺序.那么,1△50+2△50+3△50+…+50△50 的值是多少?2.计算:对代换后的算式准确地计算其结果.典例精讲例 1、对于任意两个数 a 、b ,定义运算“※”:a ※ b=2a+3b .分析:由题中几例可知,△a 6 表示 6 个连续自然数的和 且 a 是最小的一个,解:△l 50=1+2+3+4+…+48+49+50==1275,计算:5※6 的值.分析:根据题中的定义运算“※”知,a ※b=2a+3b .要求2△50=2+3+4+5+…+50+515※6,即当 a=5,b=6 时 a ※b 的值,把给出的数值代入并计 算可得.= =1325,解:5※6=2x5+3x6=10+18=28.3 △50=3+4+5+…+51+52例 2、假设一种运算符号 , y 表示把 x 和 y 加起来被4 除.= =1375,…………(1)求 17 的值:(2)求 2 (3 5)的值,50 △50=50+51+52+---+98+99分析:明确 y=(x+y)÷4.解:(1)13 17=(13+17)÷430÷4=7.5.(2)25)=2 [(3+5)÷4]= =3725.所以 1△50+2△50+3△50+…+50△50=1275+1325+1375+…+3725( )=2 (8÷4)=2 2=(2+2)÷4=1.=第四讲数字谜=125000知识提要在一个数学算式里,缺少一些数字,或用别的符号字母、文字来代替算式中的某些数字.要我们求出算式中缺少的数字或被替代的数字是什么?我们称它为数字谜.数字谜是与数字有关的一种有趣的数学问题,一般情况下,相同的汉字、字母或符号代表相同的数字,不同的汉字、字母、符号代表不同的数字,解答这类问题一般分三步:审清题意,寻找突破口,试验解答.(1)审清题意.分析算式中隐含的数量关系及数的性质.(2)选择题中有特征的部分作为解题的突破口.先做一些局部推理.(3)在确定所求的数字时,可采用试验法,为了减少试验的次数,要掌握估算的方法,对数字进行合理的估计,逐步排除一些取值的可能,缩小取值范围,尽快得到准确答案.典例精讲例1、在图1的算式中,汉字“河、北、数、学、素、质、杯”代表1、2、3、4、5、6、7、8、9中的7个数字.不同的汉字代表不同的数字,使得加法算式成立.“河、北、数、学、素、质、杯”所代表的7个数字的和等于多少?分析:(1)你对l,2,3,4,5,6,7,8,9这九个数字很熟悉是吗?那你了解它们吗?知道它们中任意两个数字之和的最大值和最小值吗?(2)“2009”特殊吧!仔细研究它.解:根据加法法则:“河”=1.“学”+“杯”9.“数”+“质”=10.“北”+“素”=9.所以“河”+“北”+“数”+“学”+“素”+“质”+“杯”=1+9+10+9=29.例2、在图2的算式中,不同的汉字代表不同的数字,相同的汉字表示相同的数字,如果巧+解+数+字+谜=30.求出“数字谜”所代表的三位数是什么?分析:(1)“金字塔”式竖式,你找到突破口了吗?(2)个位上的“谜”字擦亮你的眼睛了吗?它是几?(3)沿着这个思路向下推理,“金字塔”你也能征服.解:(1)由个位五个“谜”字的和的末位数字还是“谜”,可知谜字只可能是0或5,如果谜=0,那么字=0,与题中条件不符,所以谜=5.(2)五个“谜”的和为25,向十位进2.又因为四个“字”的和加上2的末位数字还是“字”,所以字=6.(3)四个“字”的和加上2等于26,向百位进2,则满足条件的“数”可能是4或9.如果数=4,向千位进1,则解=9.故解+数+字+谜=9+4+6+5=24,又因为巧+解+数+字+谜=30,所以巧=30-24=6.则“巧”和“字”相等,不符合条件.故数只能为9.向千位进2,那么解=8,巧=30-8-9-6-5=2.符合题意.综上所述,“数字谜”所代表的三位数是965.例3、图3的残缺算式中只知道三个“4”.那么补全后它的乘积是.分析:为了好说话,让我们用字母表示数,如图4所示.A中4出现在最高位,可以利用此突破,好好想想!解:如图4,(1)由cx4a=A,A百位数为4,可知c=8或9,若c=8,则c×a必须向前进8,不可能,所以c=9.(2)c=9时,ax9至少向前进4,即ax9≥40,知a≥5,故a=5,6,7,8,9.(3)对a=5,6,7,8,9进行逐一验算.若a=5,则A=405,f=4,但5xb末位数字不可能为4,排除.若a=6,则A=414,f=3,但6xb末位数字不可能为3,排除.若a=7,则A=423,f=2,7xb末位数字为2,则b=6,所以乘积为3243.若a=8,则A=432,f=l,但8xb末位数字不可能为1.排除.若a=9,则A=441,f=0,但9xb末位数字不可能为0,排除.□即残缺算式为 48x69=3243.所以补全后残缺算式的乘积是 3243.例 4、已知图 5 的除法算式中,每个 表示一个数字,那 么被除数应是.分析:此题属于数字谜中的复杂题型.题目给出的已知数字只有两个.不能直接使用个位分析法与高位分析法.但可以 结合数位考虑利用数值大小估值的方法进行分析.解:在必要的地方填上字母,如图 6 所示.(1)易知 d=0,因为 8xab=B ,而 B 是两位数,所以可估 算推知 ab=10,11,12.(2)又因为 cxab=A ,A 为 3 位数,结合 ab=10,11,12可知 c=9 且 ab=12.将其他各数补充完整即可.则被除数=12x9807=117684.知识提要第五讲数的整除性质 5 如果数 a 能被数 b 整除.那么 am 也能被 bm 整除, 即如果 b |a ,那么 bm |am(m 为非 0 整数).在整数范围内,两个数相除,余数为零(没有余数)或不 为零.两种结果必定有一种成立,如果余数为零.我们就说被 除数能被除数整除,即整数 a 除以整数 b(a≠0),除得的商正 好是整数,我们就说 a 能被 b 整除(也可以说 6 能整除 a ), 记为 b|a .如果数 a 能被数 b(6≠0)整除,a 就叫做 b 的倍数,6 就叫做 a 的因数(或约数).由于 0÷b=0(b≠0),就是说零能被任何非零整数整除.因 此.零是任意非零整数的倍数.1 是任意一个整数的因数,也就是说,对于整数 a ,都能 保证 1|a 成立.同样,由于 a÷a=1(a≠0),也就保证一个 非零整数必能整除它本身,也就是 a |a(a≠0).1.整除的性质性质 1 如果数 a 和数 b 都能被数 c 整除,那么它们的和或 差也能被 c 整除,即如果 c |a ,c |b ,那么 c |(a±b ).性质 2 如果数 a 能被数 b 整除.b 又能被数 c 整除,那么 a 也能被 c 整除.即如果 b |a ,c |b ,那么 c |a .性质 3 如果数 a 能被数 6 与数 c 的积整除.那么 a 也能被b 或c 整除.即如果 bc |a ,那么 b |a ,c |a .性质 4 如果数 a 能被数 b 整除.也能被数 c 整除,且数 b和数 c 互质,那么 a 一定能被 b 与 c 的乘积整除.即如果 b |a ,c |a 且(b ,c)=l ,那么 bc |a .性质 6 如果数 a 能被数 b 整除.且数 c 能被数 d 整除,那么 ac 也能被 bd 整除,即如果 b |a ,且 d |c ,那么 bd |ac .2.数的整除具有如下的特征:(1)能被 2 或 5 整除的数的特征:个位上的数字分别能被2 或 5 整除.(2)能被 4 或 25 整除的数的特征:末两位数能被 4 或 25整除.(3)能被 8 或 125 整除的数的特征:末三位数能被 8 或125 整除.(4)能被 3 或 9 整除的数的特征:各位数字之和能被 3 或 9 整除.(5)能被 11 整除的数的特征:奇数位数字之和与偶数位数 字之和的差(以大减小)能被 11 整除.(6)能被 7、11、13 整除的数的特征:末三位以前的数字所表示的数与末三位数字所表示的数的差(以大减小)能被 7、 11、13 整除.典例精讲例 1、按要求填空:□□ □□□5500…0 这个数,只要判断,44□55 能被□18□0□在 1278、4632、54684、119375、37625、93648、87615、1448764 中,(1)能被 9 整除的数有;(2)能被 4 整除 的数有;(3)能被 25 整除的数有;(4)能被 125 整除的数有;(5)能被 7 整除的数有;;(6)能被 11 整除的数有;(7)能被 8 整除的数有.分析:要判断上述数能被哪些数整除,可以用直接试商的方法.也可以从能被特殊数整除的数的特征入手,因能被 4、 25、125、8 整除的数的特征简易判断,所以先判断哪些数能 被 4、25、125、8 整除,然后判断能被 9 整除的数的特征, 最后选择能被 7 和 11 整除的数.解:(1)能被 9 整除的数有:1278、54684、87615;(2)能被 4 整除的数有:4632、54684、93648、1448764:(3)能被 25 整除的数有:119375、37625;(4)能被 125 整除的数有:119375、37625;(5)能被 7 整除的数有:54684,37625;(6)能被 11 整除的数有:87615;(7)能被 8 整除的数有:4632、93648.例 4、一个 41 位数,444…4 555…5 能被 7 整除,那20 个 420 个 5么中间方格内的数是几?分析:我们可以将这个 4l 位数,分成三部分来考虑能否被 7 整除 444…4 555…5=444…400…0+44 5500…0+20 个 420 个 518 个 423 个 018 个 055…5.18 个 5因为 444444=4x111111,555555=5x111111,而 111111=3x7x11x13x37.这样 18 个 4 和 18 个 5 分别 组成的数也都能被 7 整除.解:原数=444...400...0+44 5500...0+55 (5)18 个 423 个 018 个 018 个 5能被 7 整除 只要能被 7 整 能被 7 整除除,原数就能例 2、若四位数 8a9a 能被 15 整除,则 a 代表的数字是多 而 44被 7 整除少?分析:3 和 5 是两个互质数,如果一个数能被两个互质数中的每个数整除.那么这个数也能被这两个互质数的积整除.解:因为 15 是 3 和 5 的倍数,所以 8a9a 既能被 3 整除, 也能被 5 整除,因为能被 5 整除的数的个位数字是 0 或 5.能 被 3 整除的数的各位数字的和是 3 的倍数.所以当 a=0 时,8+a+9+a=17,不是 3 的倍数,所以a≠0,当 a=5 时,8+a+9+a=27,是 3 的倍数,所以 a 代表的数字是 5.例 3、各位数字是 0、1 或 2,且能被 225 整除的最小自然数是多少?分析:因为 225=25x9.所以分别考虑能被 25 和 9 整除的数的特征.解:因为 225=25x9,所以所求的自然数一定能被 25 和9 整除,要能被 25 整除,最后两位就是 00.要能被 9 整除, 所有数字的和是 9 的倍数,为了使得自然数位数尽可能少,只 能是 4 个 2 和 1 个 1,这样得到 1222200.即满足条件的最小 的自然数是 1222200.个7 整除即可,44 55→ 55-44= 11 要能被 7 整除,判断□11 中应填上 5,所以中间方格应填上“5”.例 5、三位数 1a2 加 326 得 4b8,如果 4b8 是 3 的倍数.a+b 的值是.分析:因为 4b8 是 3 的倍数,所以 4+b+8=12+b 是 3 的倍数,容易求出 b 的值,则 4b8 可知,根据题意可求出 a 值, 则 a+b 的值也得知.解:因为 4b8 是 3 的倍数,所以 4+b+8=12+b 是 3 的倍数,b=0、3、6、9.若 b=0,则 4b8=408,又 1a2+326=408,a 无解;若 b=3,则 4b8=438,又 1a2+326=438,a=1,则 a+b=1+3=4;若 b=6,则 4b8=468,又 1a2+326=468,a=4,则 a+b=6+4=10;若b=9,则4b8=498,又1a2+326=498,a=7,则a+b=9+7=16.综上所述,a+b的值是4或10或16.例6、从2至9这8个数字中选出七个数字分别组成被12整除的最大与最小的七位数.分析:能被12整除的数,必能被3和4整除.为了保证能被3整除,这七个数字之和应能被3整除.又2+3+…+9=44,因此,只能去掉2或8.要保证能被4整除,必须末两位数字所组成的两位数能被4整除.解:(1)作为最大的七位数,应该去掉2,即取3、4、5、6、7、8、9,较大的数字应居高位,最小的3和6组成36能被4整除,于是最大的七位数为9875436;(2)作为最小的七位数应去掉较大的8,即取2、3、4、5、6、7、9,使较大的数在低位.最大的96能被4整除,于是最小的七位数是2345796.第六讲分解质因数知识提要一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数).如果除了1和它本身,还能被其他自然数整除.那么它就叫做合数.但要注意1既不是质数,也不是合数.如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数.把一个数分解质因数的方法是:用这个数的质因数逐次去除,直到除得的商是质数为止.常用的是100以内的质数2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个,其中2是惟一的偶数,5是惟一的个位是5的质数.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征,同学们必须熟练掌握100以内及其他常用合数的分解质因数.部分特殊数的分解:111=3x37;1001=7xllx13;11111=41x271;10001=73x137;1995=3x5x7x19;1998=2x3x3x3x37;2007=3x3x223;2008=2x2x2x251;2007+2008=4015=5xllx73:10101=3x7x13x37.典例精讲例1、792共有多少个因数?分析:如果要求一个比较小的数的因数的个数,我们只要列出它的所有因数,然后数一数就知道了.但要写出792的所有因数不是一件容易的事,如果比792更大的数就更不容易.那怎样能非常简捷地求出792的因数个数呢?我们先将792分解质因数:792=23x32x11.显然792的任何一个因数只能合有质因数2、3、11.对于792的某个因数a,质因数2可能不出现,也可能出现1个、2个或3个,共4种可能;同理,质因数3在a中也可能不出现,也可能出现1个或2个共3种.最后用乘法原理即可求出792共有多少个因数.解:因为792=23x32x11,所以792的因数个数为:(3+1)×(2+1)×(1+1)=24(个).例2、求1x2x3x4x5x…x100的积的末尾连续有多少个零?分析:如果硬算计算量太大,可以这样想:2x5=10,22x52=100,23x53=1000,在相乘的各个因数中.如果把它们分解质因数,有1个2和1个5相乘积的末尾就会出现一个0,2个2和2个5相乘积的末尾就会出现两个0,而1—100各数的乘积中所含质因数2的个数一定比5多,所以只要找质因数5的个数就可以确定积的末尾有多少个零.解:100÷5=20(有20个5的倍数就合有20个质因数5),100÷25=4(因为25中含有两个质因数5.而在5的倍数中计算过一次还应再算一次).20+4=24.即算式1x2x3x4x-xl00的乘积末尾连续有24个零.例3、将14、33、35、30、75、39、143、169这八个数平均分成两组,使这两组乘积相等,怎样分?分析:由题意知,用分解质因数方法求解.解:先将各数分解质因数如下:14=2x7,33=3x11,35=5x7,30=2x3x5,75=3x5x5,39=3x13,143=11x13,169=13x13.其中质因数3,5,13各四个,质因数2,7,11各两个.在分组时应将相同的质数分在两个组内,即每组中应有质因数3,5,13各两个;2,7,11各一个.由于其中有两个5169( ”和两个 13 属于同一个数,故分时应先考虑,于是得到如下两 个组:75(3x5x5),143(11x13), 第一组:14(2x7);39(3x13).第二组: 13x13),35(5x7),33(3x11);30(2x3x5).由此可得以下两种不同的方法:(1)75,14,143,39;35,30,169,33;(2)75,14,169,33;35,30,143,39.例 4、把 26、33、34、35、63、85、91、143 分成若干 组,要求每组中任意两个数的最大公因数是 1,那么至少要分 几组?分析:要使每组中任意两个数的最大公因数都是“1,就必须保证每组中的数没有相同的质因数.解:先把这 8 个数分解质因数.26=2x13,33=3x11,34=2x17,35=5x7,63=3x3x7,85=5x17,91=7x13,143=11x13.从中我们可以看出,每一个数都有 2 个不同的质因数,并 且 35,63,91 中都有质因数 7;26,91,143 中都有质因数13,显然有相同质因数的 3 个数不能同在一组,因此至少要 分 3 组才有可能把这两组 3 个数分开.例 5、有一些长方形,它们的长和宽为互质数.而这些长方形的面积都是 1992cm 2,这样的长方形有多少个?分析:因为长方形面积等于长×宽.我们应首先将 1992写成两个整数之积的形式,然后再从中选出互质的几组来,这 就是本题的解答.要想找到哪两个数的乘积是 1992.我们可以将之分解质因数,再从质因数中适当搭配就行了,为使分成的两数为互质 数,我们应从以下的几种情况去寻找:①两个不同指数;②1 与另一个自然数;③两个相邻的自然数;④不含相同因数的两 个合数.解:将 1992 分解质因数是 23x3x83.为使 1992 分成两个互质数之积,其一应为 1×1992;又 2 的因数不应在两因数中都具有,故还可以分为 23x(3x83), 即 8x249;(23x3)x83,即 24x83 及(23x83)x3,即 664x3.故本题一共有 4 组解:lcmx1992cm ,3cmx664cm ,8cmx249cm ,24cmx83cm .例 6、4950 乘以一个自然数 a ,乘积是某个数的平方,a最小是多少?分析:如果 4950xa 的积等于某数的平方,那么积里所包含的质因数个数应该是偶数.4950=2x3x3x5x5x11,观察 4950 的质因数发现:质因数 3,5 的个数是偶数,2,11 的个 数是奇数.根据某数平方的特点,这个数最少应该含有两个 2,3,5,11,缺少一个 2,一个 11,那么 a 最小为 11x2=22.解:因为 4950=2x3x3x5x5x11.所以 a 的最小值为:2x11=22.例 7、春天到了,赵老师带领本班学生上山种树,学生们恰好平均分成 3 组,师生共植树 175 棵,赵老师植树棵数与 所有学生都一样多.一共有多少学生植树?(学生平均每人植 树不超过 20 棵)分析:由于 175=平均每人植树棵数×人数.所以 175 分解质因数后,可以根据题意推断出人数及每人植树棵数.175=5x5x7=25x7=5x35.根据题意,分析 35x5,5 只能是平均每人植树棵数,35 减去 1 得 34,34 人不能平均分成 3 份.所以这个组合不符合题意.再看 25x7,7 只能是平均每人植树棵树.25 人减去 1 人得 24,24 人可以平均分成 3 组,符合题意,即有学生 24 人 植树.解:175=5x5x7=25x7=35x5.经检验 25x7,符合题意,即共有 25 人植树,其中学生有 24 人.例 8、某商店出售 0.25 元的笔记本,根本没人买,但经过降价后,立即把全部笔记本卖光了,共卖得 13.91 元,每 个笔记本降价多少元?共卖了多少本笔记本?分析:13.91 元=1391 分,而 1391=13x107,所以 13与 107 必有一个是单价.一个是本数.解:13.91 元=1391 分,而 1391=13x107,因为是降价,所以单价只能是 13 分,而本数是 107 本.降价金额是:0.25-0.13=0.12 元,答:每本笔记本降价 0.12 元,共卖了 107 本笔记本.。