分子生物学讲稿
- 格式:doc
- 大小:179.00 KB
- 文档页数:8
分子生物学讲稿陈耕夫副教授绪论一、分子生物学分子生物学是从分子水平来研究生命现象的科学。
其核心内容是通过生物的物质基础――核酸、蛋白质、酶等生物大分子的结构,功能及其相互作用等运动规律的研究来阐明生命现象的分子基础,从而探索生命的奥秘。
分子生物学是现代生命科学的“共同语言”。
二、分子生物学的任务1. 核酸的分子生物学是目前分子生物学内容最丰富的一个领域。
研究内容包括基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。
2. 蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子——蛋白质的结构与功能。
3. 细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。
三、分子生物学与现代医药科学的关系在发病机制方面的研究应用、在疾病诊断中的应用、在疾病治疗中的应用、在个体识别中的应用、在医药工业领域的应用,等等。
第一章核酸的分子结构、性质和功能一、核酸是遗传物质(一)核酸的种类和分布分布:DNA:主要分布在细胞核(或类核区)、线粒体、叶绿体RNA主要分布在细胞质中(二)核酸是遗传物质DNA是遗传物质的证据:肺炎双球菌的转化试验、噬菌体感染实验等。
RNA是遗传物质的证据:烟草花叶病毒M和HR品系的重建试验二、DNA的结构与功能(一)DNA的一级结构与种属的差异DNA一级结构指的是脱氧核苷酸在DNA链中的组成和排列顺序。
DNA一级结构的不同是物种间差异的更本原因。
除了少数RNA病毒外,DNA几乎是所有生物遗传信息的携带者。
核酸一级结构的书写方式。
(二)DNA的二级结构具有多样性1. 双螺旋结构是DNA二级结构的主要类型DNA双螺旋结构主要有A、B、Z等三种类型,染色体在大多数时候以B型DNA形式存在。
B型DNA二级结构特点:两条脱氧核酸链构成右手双螺旋结构,链的走向相反;磷酸脱氧核糖链在螺旋的外侧,碱基在螺旋的内侧;脱氧核糖平面与碱基平面相互垂直;碱基配对规律:A=T、G C;稳定力横向是氢键;纵向是碱基堆积力。
分子生物学课程教学讲义朱玉贤第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。
从1847年Schleiden和Schwann提出\细胞学说\,证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将\性状\与\基因\相耦联,成为分子遗传学的奠基石。
Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。
而Kendrew和Perutz利用X 射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。
1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。
《分子生物学》讲稿课程简介课程编号:总学时数:80 周学时:6开课学期:第7学期学分:5本课程是生物科学专业一门重要的专业基础课,主要内容是通过对分子生物学的基本概念、基本理论和基本技能进行系统的阐述,注重学科体系的建立和发展过程,以DNA的结构及功能为主线,以基因表达及调控为视点,加大利用科学实验理解分子生物学概念和理论的内容,把基础知识和前沿技术有机地结合在一起。
考试方式:闭卷考试预修课程:生物化学、细胞生物学教材:现代分子生物学(第三版),朱玉贤等(注:为专科学习时采用的教材)Gene VIII (Benjamin Lewin主编)(注:为接本时的补充教材)教学参考书:1 .Molecular Biology of the Cell (4th Edition by B Alberts)2.Molecular Cell Biology (4th Edition by H Lodish)3.Molecular Biology (2nd Edition by R Weaver)4.分子生物学(Instant Notes in Molecular Biology, 2nd Edition by P Turner)5.Advanced Molecular Biology (by R Twyman)6. 分子细胞生物学(第二版),韩贻仁,山东大学出版社7. Genomes 2, T. A.布朗著,袁建刚等译,科学出版社学时分配表理论课65学时章次内容学时一绪论 3二 DNA是遗传物质 3三 DNA的结构 3四 DNA复制和分子杂交 6五基因突变和修复8六遗传重组 8七基因组及基因作图8八基因转录和RNA加工 9九蛋白质合成 6十基因表达调控 9《分子生物学》理论课程内容课程要求: 按照知识点进行介绍;不拘泥于形式;互相学习,可以随时打断,随时质疑;要求能够在掌握一些知识的情况下熟悉分子生物学的基本原理和技术;要能够提出问题和建议;能自己进行实验设计和结果分析1 绪论[基本要求]通过本部分的学习,学生应对分子生物学的主要研究内容有一个全面系统地了解,对分子生物学的主要研究对象(基因、基因组、染色体)有一个全面的了解。
分子生物学实验讲稿实验一:分子生物学各种仪器的使用和药品配制的一般方法实验目的: 1、通过实验掌握分子生物学的基本技能和仪器的使用方法。
2、学习分子生物学实验中药品的配制及其规范实验内容: 1 离心机的使用规范。
2超低温冰箱的适用范围和用途。
3移液枪、高速离心机、电泳仪、纯水仪的使用简介等。
4分子生物学药品及试剂种类和的选用。
实验设备及材料:(1)实验设备:纯水仪、凝胶呈像系统、PCR仪器、制冰机、高速冷冻离心机、超低温冰箱、紫外分光光度仪、控温摇床、超净工作台等仪器、微量依液枪。
(2)相关药品和试剂:①分子生物学相关符号:A260、bp、cccDNA、E.coli、kb、MCS、ocDNA、Ori、OD、PAGE、PCR、RNase、rpm、ss、Taq DNA polimerase、SDS-PAGE。
②分子生物学相关药品和试剂:Amp、BPB、CIAA、dNTP、DEPC、EB、EDTA、IAA、PBS、PCI、PEG、SDS、TAE、TBE、TE、Tris-HCL实验方法步骤及注意事项:(1)药品和试剂的特性和配制:①向学生强调仪器的使用和药品配制的重要性②介绍一些重要符号和名称(要求学生上网查阅理解其正确的概念)③使学生掌握原液法配制试剂的优点④分组后让每组选择1-2种分子生物学的重要试剂进行配制⑤上网查阅试剂的配制方法及试剂配制的优化以及该试剂的用途和实验原理⑥正式实验课时正确配制试剂⑦在后续实验中加以证实试剂配制的优劣。
(2)仪器的使用和用途:①在实验课预实验前老师带各班同学参观分子实验室现有的重要仪器②对重要的仪器功能向学生演示。
③让学生记下相关仪器的型号。
④学生上网查阅该型号仪器的使用参数和性能、仪器的用途等⑤了解和熟悉仪器根据下序实验的原理让学生自行设计和选用仪器。
试剂配制:1、1M Tris-Cl (ppH8.0) 500ml原液的配制Tris—三羟基氨基甲烷(hydroxymethy aminomethane)分子量:121.41g,分子式:C4H11NO3称取1mol/l×500 ml×121.41g=60.57gTris,加入200 ml双蒸水,用盐酸调节pH到8.0,补水到500ml。
实验一、菌株复壮与单菌落菌株的获取一、实验目的学习细菌培养的LB培养基及抗生素抗性筛选培养基的配制,掌握高压灭菌和获取细菌单菌落菌株两种基本实验操作技能。
二、实验材料、设备及试剂1、实验材料大肠杆菌(E. coli)DH5α菌株:R-,M-,Amp-2、实验设备恒温摇床,电热恒温培养箱,无菌工作台,高压灭菌锅3、试剂酵母浸膏,蛋白胨,氯化钠,琼脂,卡那霉素三、实验步骤液体LB(Luria-Bertain)培养基配方:蛋白胨(typtone) 1.0% (1 g/100 ml)酵母提取物(Yeast extraction)0.5% (0.5g/100 ml)氯化钠 1.0% (1 g/100 ml)PH 7.0固体LB培养基:每100 ml液体培养基中加入1.5g琼脂粉请按试剂瓶上的编号使用相应编号的药勺取药,防止药品相互污染!(1)每组按上述液体LB培养基配方,以配制100ml的量称取药品放入烧杯。
(2)用量筒量取约80 ml 蒸馏水注入烧杯中,玻棒搅拌使药品完全溶解后用100ml量筒定容至100ml。
(3)pH试纸检测pH值,并用1 N NaOH或1 N HCl调节pH值至7.0。
(4)将100ml溶液分装入两个三角瓶,每瓶为50ml。
(5)按固体培养基配方称取适量琼脂粉分别放入两个三角瓶中,以配制成两瓶50ml固体LB培养基。
(6)两个三角瓶分别用锡纸包扎瓶口。
并用记号笔在三角瓶上标注各组标记。
(7)把装有培养基三角瓶放入灭菌锅中,盖上锅盖,以对称方式拧紧锅盖,打开排气阀通电加热,至有连续的白色水蒸气从排气阀排出时,关闭排气阀。
当高压锅温度(气压)指示器指示锅内温度升高至121℃(0.1Mpa)时,调节电压(或利用手动开关电源的方式)使高压锅稳定在该温度(压力)下20 min,然后断开电源。
待指示器指示压力降为0时,方可打开排气阀,然后再打开锅盖小心取出锅内物品。
(8)取出三角瓶后,在酒精灯火焰旁进行下述操作。
《分子生物学》教案第一章:分子生物学概述1.1 分子生物学的定义和发展历程1.2 分子生物学的研究内容和方法1.3 分子生物学的重要性和应用领域第二章:DNA与基因2.1 DNA的结构和功能2.2 基因的概念和作用2.3 基因的表达和调控第三章:RNA与蛋白质3.1 RNA的结构和功能3.2 蛋白质的结构和功能3.3 蛋白质合成和调控第四章:酶与催化作用4.1 酶的定义和特性4.2 酶的分类和作用机制4.3 酶的研究方法和应用第五章:分子生物学实验技术5.1 分子克隆与基因工程5.2 PCR技术及其应用5.3 蛋白质分离和鉴定技术5.4 生物信息学在分子生物学中的应用第六章:基因表达调控6.1 基因表达的转录和翻译过程6.2 真核生物的转录调控机制6.3 翻译调控和后修饰机制第七章:蛋白质结构与功能7.1 蛋白质结构的基本层次7.2 蛋白质功能的多样性7.3 结构决定功能的原则第八章:信号传导与细胞代谢8.1 细胞信号传导的基本概念8.2 细胞信号传导的主要途径8.3 信号传导与细胞代谢的调控第九章:基因组学与遗传变异9.1 基因组学的基本概念和方法9.2 基因组结构和变异类型9.3 遗传变异在疾病和进化中的作用第十章:分子生物学在生物技术与医学中的应用10.1 基因克隆与基因治疗10.2 重组蛋白药物的开发与应用10.3 分子诊断与个性化医疗10.4 生物芯片技术及其应用第十一章:分子生物学实验设计与分析11.1 实验设计的原则和方法11.2 实验数据的收集与分析11.3 实验结果的验证与解释第十二章:蛋白质相互作用与网络12.1 蛋白质相互作用的机制12.2 蛋白质相互作用网络的构建与分析12.3 蛋白质相互作用在生物学中的意义第十三章:RNA干扰与基因沉默13.1 RNA干扰机制及其作用13.2 基因沉默技术在研究中的应用13.3 RNA干扰在医学和生物技术领域的应用第十四章:病毒分子生物学14.1 病毒的基本结构与生命周期14.2 病毒基因组的复制与表达14.3 病毒与宿主细胞的相互作用第十五章:分子生物学在生物技术与医学中的应用案例分析15.1 基因治疗与基因编辑技术的应用15.2 生物制药与重组蛋白的应用15.3 分子诊断与个性化医疗的实践案例重点和难点解析第一章:分子生物学概述重点:分子生物学的定义和发展历程,研究内容和方法,重要性和应难点:分子生物学研究方法的理解和应用。
一、名词解释1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。
2、基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。
3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。
该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。
4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。
5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。
包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。
6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。
7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。
8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。
它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。
9、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。
10、信息分子:调节细胞生命活动的化学物质。
其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。
11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。
12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝。
13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。
14、蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。
硕士研究生公共选修课分子生物学讲稿浙江大学生物技术研究所胡东维二零零三年八月修改概论一、分子生物学的基本含义分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。
分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。
所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。
这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。
这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。
阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。
二、分子生物学的主要研究内容1. 核酸的分子生物学核酸的分子生物学研究核酸的结构及其功能。
由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(molecular genetics)是其主要组成部分。
由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。
研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。
遗传信息传递的中心法则(central dogma)是其理论体系的核心。
2. 蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。
尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。
近年来虽然在认识蛋白质的结构及1其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。
3. 细胞信号转导的分子生物学细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。
构成生物体的每一个细胞的分裂与分化及其它各种功能的完成均依赖于外界环境所赋予的各种指示信号。
在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。
信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。
信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。
三、分子生物学发展简史1.准备和酝酿阶段19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。
在这一阶段产生了两点对生命本质的认识上的重大突破:确定了蛋白质是生命的主要基础物质胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。
20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。
随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。
在此期间对蛋白质结构的认识也有较大的进步。
1902年Emil Fisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson完成了第一个23多肽分子--胰岛素A 链和B 链的氨基全序列分析。
由于结晶X-线衍射分析技术的发展,1950年Pauling 和Corey 提出了α-角蛋白的α-螺旋结构模型。
所以在这阶段对蛋白质一级结构和空间结构都有了认识。
确定了生物遗传的物质基础是DNA虽然1868年F.Miescher 就发现了核素(nuclein ),但是在此后的半个多世纪中并未引起重视。
20世纪20-30年代已确认自然界有DNA 和RNA 两类核酸,并阐明了核苷酸的组成。
由于当时对核苷酸和碱基的定量分析不够精确,得出DNA 中A 、G 、C 、T 含量是大致相等的结果,因而曾长期认为DNA 结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。
40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。
1944年O.T.Avery 等证明了肺炎球菌转化因子是DNA ;1952年A.D.Hershey 和M.Chase 用DNA35S 和32P 分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。
在对DNA 结构的研究上,1949-52年S.Furbery 等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA 是螺旋结构;1948-1953年Chargaff 等用新的层析和电泳技术分析组成DNA 的碱基和核苷酸量,积累了大量的数据,提出了DNA 碱基组成A=T 、G=C 的Chargaff 规则,为碱基配对的DNA 结构认识打下了基础。
2.现代分子生物学的建立和发展阶段这一阶段是从50年代初到70年代初,以1953年Watson 和Crick 提出的DNA 双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。
DNA 双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出了碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。
在此期间的主要进展包括:遗传信息传递中心法则的建立在发现DNA 双螺旋结构同时,Watson 和Crick 就提出DNA 复制的可能模型。
其后在1956年A.Kornbery 首先发现DNA 聚合酶;1958年Meselson 及Stahl4 用同位素标记和超速离心分离实验为DNA 半保留模型提出了证明;1968年Okazaki (冈畸)提出DNA 不连续复制模型;1972年证实了DNA 复制开始需要RNA 作为引物;70年代初获得DNA 拓扑异构酶,并对真核DNA 聚合酶特性做了分析研究;这些都逐渐完善了对DNA 复制机理的认识。
在研究DNA 复制将遗传信息传给子代的同时,提出了RNA 在遗传信息传到蛋白质过程中起着中介作用的假说。
1958年Weiss 及Hurwitz 等发现依赖于DNA 的RNA 聚合酶;1961年Hall 和Spiege-lman 用RNA-DNA 杂交证明mRNA 与DNA 序列互补;逐步阐明了RNA 转录合成的机理。
在此同时认识到蛋白质是接受RNA 的遗传信息而合成的。
50年代初Zamecnik 等在形态学和分离的亚细胞组分实验中已发现微粒体(microsome )是细胞内蛋白质合成的部位;1957年Hoagland 、Zamecnik 及Stephenson 等分离出tRNA 并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年Brenner 及Gross 等观察了在蛋白质合成过程中mRNA 与核糖体的结合;1965年Holley 首次测出了酵母丙氨酸tRNA 的一级结构;特别是在60年代Nirenberg 、Ochoa 以及Khorana 等几组科学家的共同努力破译了RNA 上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。
上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系。
1970年Temin 和Baltimore 又同时从鸡肉瘤病毒颗粒中发现以RNA 为模板合成DNA 的反转录酶,又进一步补充和完善了遗传信息传递的中心法则。
对蛋白质结构与功能的进一步认识1956-58年Anfinsen 和White 根据对酶蛋白的变性和复性实验,提出蛋白质的三维空间结构是由其氨基酸序列来确定的。
1958年Ingram 证明正常的血红蛋白与镰刀状细胞溶血症病人的血红蛋白之间,亚基的肽链上仅有一个氨基酸残基的差别,使人们对蛋白质一级结构影响功能有了深刻的印象。
与此同时,对蛋白质研究的手段也有改进,1969年Weber 开始应用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量;60年代先后分析得血红蛋白、核糖核酸酶A 等一批蛋白质的一级结构;1973年氨基酸序列自动测定仪问世。
中国科学家在1965年人工合成了牛胰岛素;在1973年用1.8AX-线衍射分析法测定了牛胰岛素的空间结构,为认识蛋白质的结构做出了重要贡献。
3.初步认识生命本质并开始改造生命的深入发展阶段70年代后,以基因工程技术的出现作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。
其间的重大成就包括:重组DNA技术的建立和发展分子生物学理论和技术发展的积累使得基因工程技术的出现成为必然。
1967-1970年R.Yuan和H.O.Smith等发现的限制性核酸内切酶为基因工程提供了有力的工具;1972年Berg等将SV-40病毒DNA与噬菌体P22DNA在体外重组成功,转化大肠杆菌,使本来在真核细胞中合成的蛋白质能在细菌中合成,打破了种属界限;1977年Boyer等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽;1978年Itakura(板仓)等使人生长激素191肽在大肠杆菌中表达成功;1979年美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素。
至今我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用,世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献。
转基因动植物和基因剔除动植物的成功是基因工程技术发展的结果。
1982年Palmiter等将克隆的生长激素基因导入小鼠受精卵细胞核内,培育得到比原小鼠个体大几倍的“巨鼠”,激起了人们创造优良品系家畜的热情。
我国水生生物研究所将生长激素基因转入鱼受精卵,得到的转基因鱼的生长显著加快、个体增大;转基因猪也正在研制中。
用转基因动物还能获取治疗人类疾病的重要蛋白质,导入了凝血因子Ⅸ基因的转基因绵羊分泌的乳汁中含有丰富的凝血因子Ⅸ,能有效地用于血友病的治疗。